
5 Transfer functions

Associated with the linear system (input u, output y) governed by the ODE

y[n](t) + a1y
[n−1](t) + · · ·+ an−1y

[1](t) + any(t)
= b0u

[n](t) + b1u
[n−1](t) + · · ·+ bn−1u

[1](t) + bnu(t)
(35)

we write “in transfer function form”

Y =
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
U (36)

The expression in (36) is interpreted to be equivalent to the ODE in (35), just
a different way of writing the coefficients. The notation in (36) is suggestive of
multiplication, and we will see that such an interpretation is indeed useful. The
function

G(s) :=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
is called the transfer function from u to y, and is sometimes denoted Gu→y(s) to
indicate this. At this point, the expression in equation (36),

Y = Gu→y(s)U

is nothing more than a new notation for the differential equation in (35). The
differential equation has a well-defined meaning, and we understand what each
term represents, and the meaning of the equality sign, =. In the transfer function
expression, (36), there is no specific meaning to the individual terms, or the equality
symbol. The expression, as a whole, simply means the differential equation it is
associated with.

In this section, we will see that, in fact, we can assign proper equality, and make
algebraic substitutions and manipulations of transfer function expressions, which
will aid our manipulation of linear differential equations. But all of that requires
proof, and that is the purpose of this section.

5.1 Linear Differential Operators (LDOs)

Note that in the expression (36), the symbol s plays the role of d
dt
, and higher

powers of s mean higher order derivatives, ie., sk means dk

dtk
. If z is a function of

time, let the notation
[

b0
dn

dtn
+ b1

dn−1

dtn−1
+ · · ·+ bn−1

d

dt
+ bn

]

(z) := b0
dnz

dtn
+ b1

dn−1z

dtn−1
+ · · ·+ bn−1

dz

dt
+ bnz

We will call this type of operation a linear differential operation, or LDO. For the
purposes of this section, we will denote these by capital letters, say

L :=
[
dn

dtn
+ a1

dn−1

dtn−1 + · · ·+ an−1
d
dt
+ an

]

R :=
[

b0
dn

dtn
+ b1

dn−1

dtn−1 + · · ·+ bn−1
d
dt
+ bn

]
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Using this shorthand notation, we can write the original ODE in (39) as

L(y) = R(u)

With each LDO, we naturally associate a polynomial. Specifically, if

L :=

[

dn

dtn
+ a1

dn−1

dtn−1
+ · · ·+ an−1

d

dt
+ an

]

then pL(s) is defined as

pL(s) := sn + a1s
n−1 + · · ·+ an−1s+ an

Similarly, with each polynomial, we associate an LDO – if

q(s) := sm + b1s
m−1 + · · ·+ bm−1s+ bm

then Lq is defined as

Lq :=

[

dm

dtm
+ b1

dm−1

dtm−1
+ · · ·+ bm−1

d

dt
+ bm

]

Therefore, if a linear system is governed by an ODE of the form L(y) = R(u), then
the transfer function description is simply

Y =
pR(s)

pL(s)
U

Similarly, if the transfer function description of a system is

V =
n(s)

d(s)
W

then the ODE description is Ld(v) = Ln(w).

5.2 Algebra of Linear differential operations

Note that two successive linear differential operations can be done in either order.
For example let

L1 :=

[

d2

dt2
+ 5

d

dt
+ 6

]

and

L2 :=

[

d3

dt3
− 2

d2

dt2
+ 3

d

dt
− 4

]
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Then, on a differentiable signal z, simple calculations gives

L1 (L2(z)) =
[
d2

dt2
+ 5 d

dt
+ 6

] ([
d3

dt3
− 2 d2

dt2
+ 3 d

dt
− 4

]

(z)
]

=
[
d2

dt2
+ 5 d

dt
+ 6

] (

z[3] − 2z̈ + 3ż − 4z
)

= z[5] − 2z[4] + 3z[3] − 4z[2]

5z[4] − 10z[3] + 15z[2] − 20z[1]

6z[3] − 12z[2] + 18z[1] − 24z
= z[5] + 3z[4] − z[3] − z[2] − 2z[1] − 24z

which is the same as

L2 (L1(z)) =
[
d3

dt3
− 2 d2

dt2
+ 3 d

dt
− 4

] ([
d2

dt2
+ 5 d

dt
+ 6

]

(z)
]

=
[
d3

dt3
− 2 d2

dt2
+ 3 d

dt
− 4

] (

z[2] + 5ż + 6z
)

= z[5] + 5z[4] + 6z[3]

−2z[4] − 10z[3] − 12z[2]

z[3] + 15z[2] + 18z[1]

−4z[2] − 20z[1] − 24z
= z[5] + 3z[4] − z[3] − z[2] − 2z[1] − 24z

This equality is easily associated with the fact that multiplication of polynomials
is a commutative operation, specifically

(s2 + 5s+ 6) (s3 − 2s2 + 3s− 4) = (s3 − 2s2 + 3s− 4) (s2 + 5s+ 6)
= s5 + 3s4 − s3 − s2 − 2s+ 24

Since composition of two linear differential operations behaves like polynomial
multiplication, we sometimes notate the “product” L1L2 to be composition, in
other words, given LDOs L1 and L2, the LDO L1L2 is defined by composition, and
on a differentiable signal z, it is

[L1L2] (z) := L1 (L2(z))

We will often use the notation [L1 ◦ L2] to also denote this composition of LDOs.

Similarly, if L1 and L2 are LDOs, then the sum L1 + L2 is an LDO defined by its
operation on a signal z as [L1 + L2] (z) := L1(z) + L2(z).

It is clear that the following manipulations are always true for every differentiable
signal z,

L1 (L2(z)) + L3 (L4(z)) = (L1L2 + L3L4) (z)

and
L (z1 + z2) = L (z1) + L (z2)

and
[L1 ◦ L2] (z) = [L2 ◦ L1] (z)

In terms of LDOs and their associated polynomials, we have the relationships

p[L1+L2](s) = pL1
(s) + pL2

(s)
p[L1◦L2](s) = pL1

(s)pL2
(s)

In the next several subsections, we derive the LDO representation of an intercon-
nection from the LDO representation of the subsystems.
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5.3 Feedback Connection

The most important interconnection we know of is the basic feedback loop. It is also
the easiest interconnection for which we derive the differential equation governing
the interconnection from the differential equation governing the components.

Consider the simple unity-feedback system shown below

S- d - -
6

r
u

y−
+

Assume that system S is described by the LDO L(y) = D(u). The feedback
interconnection yields u(t) = r(t)− y(t). Eliminate u by substitution, yielding an
LDO relationship between r and y

L(y) = D(r − y) = D(r)−D(y)

This is rearranged to the closed-loop LDO

(L+D)(y) = D(r).

That’s a pretty simple derivation. Based on the ODE description of the closed-
loop, we can immediately write the closed-loop transfer function,

Y =
pD(s)

p[L+D](s)
R

=
pD(s)

pL(s) + pD(s)
R.

Additional manipulation leads to further interpretation. LetG(s) denote the trans-

fer function of S, so G = pD(s)
pL(s)

. Then

Y =
pD(s)

pL(s) + pD(s)
R

=

pD(s)
pL(s)

1 + pD(s)
pL(s)

R

=
G(s)

1 +G(s)
R

This can be interpreted rather easily. Based on the original system interconnection,
redraw, replacing signals with their capital letter equivalents, and replacing the
system S with its transfer function G. This is shown below.
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S- d - -
6

r
u

y−
+

G- d - -
6

R
U

Y−
+

The diagram on the right is interpreted as a diagram of the equations U = R −
Y , and Y = GU . Note that manipulating these as though they are arithmetic
expressions gives

Y = G(R− Y ) after substituting for U
(1 +G)Y = GR moving GY over to left− hand− side
Y = G

1+G
R solving for Y.

This is is precisely what we want!

5.4 Cascade Connection

Suppose that we have two linear systems, as shown below,

S1 S2
- - -u y v

with S1 governed by

y[n](t) + a1y
[n−1](t) + · · ·+ any(t) = b0u

[n](t) + b1u
[n−1](t) + · · ·+ bnu(t)

and S2 governed by

v[m](t) + c1v
[m−1](t) + · · ·+ cmv(t) = d0y

[m](t) + d1y
[m−1](t) + · · ·+ dmy(t)

Let G1(s) denote the transfer function of S1, and G2(s) denote the transfer function
of S2. Define the differential operations

L1 :=

[

dn

dtn
+ a1

dn−1

dtn−1
+ · · ·+ an−1

d

dt
+ an

]

R1 :=

[

b0
dn

dtn
+ b1

dn−1

dtn−1
+ · · ·+ bn−1

d

dt
+ bn

]

and

L2 :=

[

dm

dtm
+ c1

dm−1

dtm−1
+ · · ·+ cm−1

d

dt
+ cm

]

R2 :=

[

d0
dm

dtm
+ d1

dm−1

dtm−1
+ · · ·+ dm−1

d

dt
+ dm

]
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Hence, the governing equation for system S1 is L1(y) = R1(u), while the governing
equation for system S2 is L2(v) = R2(y). Moreover, in terms of transfer functions,
we have

G1(s) =
pR1

(s)

pL1
(s)

, G2(s) =
pR2

(s)

pL2
(s)

Now, apply the differential operation R2 to the first system, leaving

R2 (L1(y)) = R2 (R1(u))

Apply the differential operation L1 to system 2, leaving

L1 (L2(v)) = L1 (R2(y))

But, in the last section, we saw that two linear differential operations can be ap-
plied in any order, hence L1 (R2(y)) = R2 (L1(y)). This means that the governing
differential equation for the cascaded system is

L1 (L2(v)) = R2 (R1(u))

which can be rearranged into

L2 (L1(v)) = R2 (R1(u))

or, in different notation

[L2 ◦ L1] (v) = [R2 ◦R1] (u)

In transfer function form, this means

V =
p[R2◦R1](s)

p[L2◦L1](s)
U

=
pR2

(s)pR1
(s)

pL2
(s)pL1

(s)
U

= G2(s)G1(s)U

Again, this has a nice interpretation. Redraw the interconnection, replacing the
signals with the capital letter equivalents, and the systems by their transfer func-
tions.

S1 S2
- - -u y v

G1 G2
- - -U Y V
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The diagram on the right depicts the equations Y = G1U , and V = G2Y . Treating
these as arithmetic equalities allows substitution for Y , which yields V = G2G1U ,
as desired.

Example: Suppose S1 is governed by

ÿ(t) + 3ẏ(t) + y(t) = 3u̇(t)− u(t)

and S2 is governed by

v̈(t)− 6v̇(t) + 2v(t) = ẏ(t) + 4y(t)

Then for S1 we have

L1 =

[

d2

dt2
+ 3

d

dt
+ 1

]

, R1 =

[

3
d

dt
− 1

]

, G1(s) =
3s− 1

s2 + 3s+ 1

while for S2 we have

L2 =

[

d2

dt2
− 6

d

dt
+ 2

]

, R2 =

[

d

dt
+ 4

]

, G2(s) =
s+ 4

s2 − 6s+ 2

The product of the transfer functions is easily calculated as

G(s) := G2(s)G1(s) =
3s2 + 11s− 4

s4 − 3s3 − 15s2 + 2

so that the differential equation governing u and v is

v[4](t)− 3v[3](t)− 15v[2](t) + 2v(t) = 3u[2](t) + 11u[1](t)− 4u(t)

which can also be verified again, by direct manipulation of the ODEs.

5.5 Parallel Connection

Suppose that we have two linear systems, as shown below,

S2

S1
-

-

?

6
d -u

y1

y2

y+
+

System S1 is governed by

y
[n]
1 (t) + a1y

[n−1]
1 (t) + · · ·+ any1(t) = b0u

[n](t) + b1u
[n−1](t) + · · ·+ bnu(t)
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and denoted as L1(y1) = R1(u). Likewise, system S2 is governed by

y
[m]
2 (t) + c1y

[m−1]
2 (t) + · · ·+ cmy2(t) = d0u

[m](t) + d1u
[m−1](t) + · · ·+ dmu(t)

and denoted L2(y2) = R2(u).

Apply the differential operation L2 to the governing equation for S1, yielding

L2 (L1(y1)) = L2 (R1(u)) (37)

Similarly, apply the differential operation L1 to the governing equation for S2,
yielding and

L1 (L2(y2)) = L1 (R2(u))

But the linear differential operations can be carried out is either order, hence we
also have

L2 (L1(y2)) = L1 (R2(u)) (38)

Add the expressions in (37) and (38), to get

L2 (L1(y)) = L2 (L1(y1 + y2))
= L2 (L1(y1)) + L2 (L1(y2))
= L2 (R1(u)) + L1 (R2(u))
= [L2 ◦R1] (u) + [L1 ◦R2] (u)
= [L2 ◦R1 + L1 ◦R2] (u)

In transfer function form this is

Y =
p[L2◦R1+L1◦R2](s)

p[L2◦L1](s)
U

=
p[L2◦R1](s) + p[L1◦R2](s)

pL2
(s)pL1

(s)
U

=
pL2

(s)pR1
(s) + pL1

(s)pR2
(s)

pL2
(s)pL1

(s)
U

=

[

pR1
(s)

pL1
(s)

+
pR2

(s)

pL2
(s)

]

U

= [G1(s) +G2(s)]U

So, the transfer function of the parallel connection is the sum of the individual
transfer functions.

This is extremely important! The transfer function of an interconnection of
systems is simply the algebraic gain of the closed-loop systems, treating individual
subsystems as complex gains, with their “gain” taking on the value of the transfer
function.
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5.6 General Connection

The following steps are used for a general interconnection of systems, wach gov-
erned by a linear differential equation relating the inputs and outputs.

• Redraw the block diagram of the interconnection. Change signals (lower-
case) to upper case, and replace each system with its transfer function.

• Write down the equations, in transfer function form, that are implied by the
diagram.

• Manipulate the equations as though they are arithmetic expressions. Addi-
tion and multiplication commute, and the distributive laws hold.

5.7 Systems with multiple inputs

Associated with the multi-input, single-output linear ODE

L(y) = R1(u) +R2(w) +R3(v) (39)

we write

Y =
pR1

(s)

pL(s)
U +

pR2
(s)

pL(s)
W +

pR3
(s)

pL(s)
V (40)

5.8 Problems

1. Find the transfer function from u to y for the systems governed by the dif-
ferential equations

(a) ẏ(t) = 1
τ
[u(t)− y(t)]

(b) ẏ(t) + a1y(t) = b0u̇(t) + b1u(t)

(c) ẏ(t) = u(t) (explain connection to Simulink icon for integrator...)

(d) ÿ(t) + 2ξωnẏ(t) + ω2
ny(t) = ω2

nu(t)

2. (a) Suppose that the transfer function of a controller, relating reference
signal r and measurement y to control signal u is

U = C(s) [R− Y ]

Suppose that the plant has transfer function relating control signal u
and disturbance d to output y as

Y = G3(s) [G1(s)U +G2(s)D]

Draw a simple diagram, and determine the closed-loop transfer func-
tions relating r to y and d to y.
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(b) Carry out the calculations for

C(s) = KP +
KI

s
, G1(s) =

E

τs+ 1
, G2(s) = G, G3(s) =

1

ms+ α

Directly from this closed-loop transfer function calculation, determine
the differential equation for the closed-loop system, relating r and d to
y.

(c) Given the transfer functions for the plant and controller in (2b),

i. Determine the differential equation for the controller, which relates
r and y to u.

ii. Determine the differential equation for the plant, which relates d
and u to y.

iii. Combining these differential equations, eliminate u and determine
the closed-loop differential equation relating r and d to y.

3. Find the transfer function from e to u for the PI controller equations

ż(t) = e(t)
u(t) = KP e(t) +KIz(t)

4. Suppose that the transfer function of a controller, relating reference signal r
and measurement ym to control signal u is

U = C(s) [R− YM ]

Suppose that the plant has transfer function relating control signal u and
disturbance d to output y as

Y = [G1(s)U +G2(s)D]

Suppose the measurement ym is related to the actual y with additional noise
(n), and a filter (with transfer function F )

YM = F (s) [Y +N ]

(a) Draw a block diagram

(b) In one calculation, determine the 3 closed-loop transfer functions relat-
ing inputs r, d and n to the output y.

(c) In one calculation, determine the 3 closed-loop transfer functions relat-
ing inputs r, d and n to the control signal u. and d to y.
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6 Frequency Responses of Linear Systems

In this section, we consider the steady-state response of a linear system due to a
sinusoidal input. The linear system is the standard one,

y[n](t) + a1y
[n−1](t) + · · ·+ an−1y

[1](t) + any(t)
= b0u

[n](t) + b1u
[n−1](t) + · · ·+ bn−1u

[1](t) + bnu(t)
(41)

with y the dependent variable (output), and u the independent variable (input).

Assume that the system is stable, so that the roots of the characteristic equation are
in the open left-half of the complex plane. This guarantees that all homogeneous
solutions decay exponentially to zero as t→∞.

Suppose that the forcing function u(t) is chosen as a complex exponential, namely
ω is a fixed real number, and u(t) = ejωt. Note that the derivatives are particularly
easy to compute, namely

u[k](t) = (jω)kejωt

It is easy to show that for some complex number H, one particular solution is of
the form

yP (t) = Hejωt

How? Simply plug it in to the ODE, leaving

H [(jω)n + a1(jω)
n−1 + · · ·+ an−1(jω) + an] e

jωt

= [b0(jω)
n + b1(jω)

n−1 + · · ·+ bn−1(jω) + bn] e
jωt

For all t, the quantity ejωt is never zero, so we can divide out leaving

H [(jω)n + a1(jω)
n−1 + · · ·+ an−1(jω) + an]

= [b0(jω)
n + b1(jω)

n−1 + · · ·+ bn−1(jω) + bn]

Now, since the system is stable, the roots of the polynomial

λn + a1λ
n−1 + · · ·+ an−1λ+ an = 0

all have negative real part. Hence, λ = jω, which has 0 real part, is not a root.
Therefore, we can explicitly solve for H as

H =
b0(jω)

n + b1(jω)
n−1 + · · ·+ bn−1(jω) + bn

(jω)n + a1(jω)n−1 + · · ·+ an−1(jω) + an
(42)

Moreover, since actual solution differs from this particular solution by some homo-
geneous solution.

y(t) = yP (t) + yH(t)

In the limit, the homogeneous solution decays, regardless of the initial conditions,
and we have

lim
t→∞

y(t) = yP (t) = Hejωt
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The explanation we have given was valid at an arbitrary value of the forcing fre-
quency, ω. The expression for H in (42) is still valid. Hence, we often write H(ω)
to indicate the dependence of H on the forcing frequency.

H(ω) :=
b0(jω)

n + b1(jω)
n−1 + · · ·+ bn−1(jω) + bn

(jω)n + a1(jω)n−1 + · · ·+ an−1(jω) + an
(43)

This function is called the “frequency response” of the linear system in (41). Some-
times it is referred to as the “frequency response from u to y,” written as Hu→y(ω).
For stable systems, we have proven for fixed value ū and fixed ω

u(t) := ūejωt ⇒ yss(t) = H(ω)ūejωt

Recall that the transfer function from u to y is the rational function G(s) given by

G(s) :=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an

Note thatH(ω) = G(s)|s=jω. Hence, we can immediately write down the frequency
response function once we have derived the transfer function. Hence, we often do
not use different letters to distinguish the transfer function and frequency response,
typically writing G(s) to denote the transfer function and G(jω) to denote the
frequency response function.

6.1 Complex and Real Particular Solutions

What is the meaning of a complex solution to the differential equation (41)? Sup-
pose that functions u and y are complex, and solve the ODE. Denote the real part
of the function u as uR, and the imaginary part as uI (similar for y). Then uR and
uI are real-valued functions, and for all t u(t) = uR(t)+juI(t). Differentiating this
k times gives

u[k](t) = u
[k]
R (t) + ju

[k]
I (t)

Hence, if y and u satisfy the ODE, we have
[

y
[n]
R (t) + jy

[n]
I (t)

]

+ a1
[

y
[n−1]
R (t) + jy

[n−1]
I (t)

]

+ · · ·+ an [yR(t) + jyI(t)] =

= b0
[

u
[n]
R (t) + ju

[n]
I (t)

]

+ b1
[

u
[n−1]
R (t) + ju

[n−1]
I (t)

]

+ · · ·+ bn [uR(t) + juI(t)]

But the real and imaginary parts must be equal individually, so exploiting the fact
that the coeffcients ai and bj are real numbers, we get

y
[n]
R (t) + a1y

[n−1]
R (t) + · · ·+ an−1y

[1]
R (t) + anyR(t)

= b0u
[n]
R (t) + b1u

[n−1]
R (t) + · · ·+ bn−1u

[1]
R (t) + bnuR(t)

and
y
[n]
I (t) + a1y

[n−1]
I (t) + · · ·+ an−1y

[1]
I (t) + anyI(t)

= b0u
[n]
I (t) + b1u

[n−1]
I (t) + · · ·+ bn−1u

[1]
I (t) + bnuI(t)

Hence, if (u, y) are functions which satisfy the ODE, then both (uR, yR) and (uI , yI)
also satisfy the ODE.
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6.2 Response due to real sinusoidal inputs

Suppose that H ∈ C is not equal to zero. Recall that 6 H is the real number
(unique to within an additive factor of 2π) which has the properties

cos 6 H =
ReH

|H| , sin 6 H =
ImH

|H|
Then,

Re
(

Hejθ
)

= Re [(HR + jHI) (cos θ + j sin θ)]

= HR cos θ −HI sin θ

= |H|
[
HR

|H| cos θ −
HI

|H| sin θ
]

= |H| [cos 6 H cos θ − sin 6 H sin θ]
= |H| cos (θ + 6 H)

Im
(

Hejθ
)

= Im [(HR + jHI) (cos θ + j sin θ)]

= HR sin θ +HI cos θ

= |H|
[
HR

|H| sin θ +
HI

|H| cos θ
]

= |H| [cos 6 H sin θ + sin 6 H cos θ]
= |H| sin (θ + 6 H)

Now consider the differential equation/frequency response case. Let H(ω) denote
the frequency response function. If the input u(t) = cosωt = Re (ejωt), then the
steady-state output y will satisfy

y(t) = |H(ω)| cos (ωt+ 6 H(ω))

A similar calculation holds for sin, and these are summarized below.

Input Steady-State Output

1 H(0) = bn
an

cosωt |H(ω)| cos (ωt+ 6 H(ω))
sinωt |H(ω)| sin (ωt+ 6 H(ω))

6.3 Interconnections

Frequency Responses are a useful concept when working with interconnections
of linear systems. Since the frequency response function turned out to be the
transfer function evaluated at s = jω, frequency response functions of intercon-
nections follow the same rules as transfer functions of interconnections. This is
extremely important. The frequency response of a stable interconnec-
tion of systems (which are individually possibly unstable) is simply
the algebraic gain of the closed-loop systems, treating individual
subsystems as complex gains, with their “gain” taking on the value
of the frequency response function. This is true, even if some of
the subsystems are not themselves stable.

The frequency response of the parallel connection, shown below
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is simply G(jω) = G1(jω) + G2(jω), where G1(s) and G2(s) are the transfer
functions of the dynamic systems S1 and S2 respectively.

For the cascade of two stable systems,

S1 S2
- - -u v y

the frequency response is G(jω) = G2(jω)G1(jω).

The other important interconnection we know of is the basic feedback loop. Con-
sider the simple unity-feedback system shown below

S- d - -
6

r
u

y−
+

Again, using the transfer function derived earlier, we see that

Gr→y(jω) =
Gu→y(jω)

1 +Gu→y(jω)

6.4 Problems

1. (a) Write a Matlab program to compute the frequency response G(ω) for
the standard system

y[n](t) + a1y
[n−1] + · · ·+ any(t) = b0u

[n](t) + b1u
[n−1] + · · ·+ bnu(t)

The program syntax should be [g,gmag,gangle] = frsp132(A,B,omega).
The omega vector would be a row vector of frequencies that the user
wants the frequency response computed at. Typically, this will be about
100-200 values, logarithmically spaced between a lower bound and upper
bound. All returned quantities should have the same length as omega,
containing the values of G(ω), |G(ω)| and 6 G(ω) respectively. Hint:
read about the command phase in Matlab. You can use it to calculate
6 G.
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Verify that your program can compute the correct response for

y[3](t) + 2y[2](t) + 3y[1](t) + 4y(t) = u[2](t) + 2u[1](t) + 3u(t)

which is shown below
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(b) Use the program to calculate and plot the magnitude and angle of the
frequency response of the system

ÿ(t) + 2ξωnẏ(t) + ω2
ny(t) = ω2

nu(t)

for ωn = 2, ξ = 0.1, 0.3, 0.7, 1.0, 2.0. Compare your results to the theo-
retical results we obtained in class.

(c) Read up on the Matlab command freqresp. Use it on the above ex-
amples, and verify that it works as advertised.
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