25 Stabilization by State-Feedback

25.1 Theory

Consider the linear dynamical system

$$
\dot{x}(t)=A x(t)+B u(t)
$$

As usual, let $x(t) \in \mathbf{R}^{n}$, and input $u(t) \in \mathbf{R}^{m}$. Suppose that the states $x(t)$ are available for measurement, so that a control law of $u(t)=K x(t)$ is possible. Dimensions dictate that $K \in \mathbf{R}^{m \times n}$. How can the values that make up the gain matrix K be chosen to ensure closed-loop stability? An obvious approach is to

1. Pick n desired closed-loop eigenvalues, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$
2. Calculate the coefficients of the desired closed-loop characteristic polynomial,

$$
p_{\operatorname{des}}(s):=\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \cdots\left(s-\lambda_{n}\right)=s^{n}+c_{1} s^{n_{1}}+\cdots+c_{n}
$$

Here the c_{i} are complicated functions of the numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
3. Explicitly calculate the closed-loop characteristic polynomial symbolically in the entries of K,

$$
p_{A+B K}(s)=s^{n}+f_{1}(K) s^{n-1}+f_{2}(K) s^{n-2}+\cdots+f_{n-1}(K) s^{1}+f_{n}(K)
$$

4. Choose K so that for each $1 \leq i \leq n$, the equation

$$
\begin{equation*}
f_{i}(K)=c_{i} \tag{94}
\end{equation*}
$$

is satisfied.

Suppose that $u(t) \in \mathbf{R}$ is a single input $(m=1)$. Then the gain matrix $K \in$ $\mathbf{R}^{1 \times n}$. In this case, we can actually show that the coefficients of the closed-loop characteristic equation are affine (linear plus constant) functions of the entries of the K matrix. This means that solving the n equations in (94) will be relatively "easy," involving a matrix inversion problem.

$$
\begin{aligned}
p_{A+B K}(s) & :=\operatorname{det}[s I-(A+B K)] \\
& =\operatorname{det}[s I-(A+B K)] \\
& =\operatorname{det}[(s I-A)-B K] \\
& =\operatorname{det}(s I-A)\left[I-(s I-A)^{-1} B K\right] \\
& =\operatorname{det}(s I-A) \operatorname{det}\left[I-(s I-A)^{-1} B K\right] \\
& =\operatorname{det}(s I-A)\left[1-K(s I-A)^{-1} B\right] \\
& =\operatorname{det}(s I-A)-K a d j(s I-A) B
\end{aligned}
$$

25.2 Example

As an example, we consider the inverted pendulum problem, described in section 24. The linearized equations of motion about the unstable equilibrium point $(\bar{\theta}=0, \bar{\theta}=0, \bar{w}=0, \overline{\dot{w}}=0)$ is

$$
\dot{\delta}_{x}(t)=A \delta_{x}(t)+B \delta_{u}(t)
$$

where the structure of A and B are

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \beta & 0
\end{array}\right], \quad B=\left[\begin{array}{c}
0 \\
\gamma \\
0 \\
\Omega
\end{array}\right]
$$

Simple calculations give

$$
\operatorname{det}(s I-A)=\operatorname{det}\left[\begin{array}{cccc}
s & -1 & 0 & 0 \\
0 & s & -\alpha & 0 \\
0 & 0 & s & -1 \\
0 & 0 & -\beta & s
\end{array}\right]=s^{2}\left(s^{2}-\beta\right)
$$

and

$$
\begin{aligned}
\operatorname{adj}(s I-A) & =\left[\begin{array}{cccc}
s\left(s^{2}-\beta\right) & (-1) 0 & 0 & (-1) 0 \\
(-1)\left(\beta-s^{2}\right) & s\left(s^{2}-\beta\right) & (-1) 0 & 0 \\
\alpha s & (-1)\left(-\alpha s^{2}\right) & s^{3} & (-1)\left(-\beta s^{2}\right) \\
(-1)(-\alpha) & \alpha s & (-1)\left(-s^{2}\right) & s^{3}
\end{array}\right]^{T} \\
& =\left[\begin{array}{cccc}
s\left(s^{2}-\beta\right) & s^{2}-\beta & \alpha s & \alpha \\
0 & s\left(s^{2}-\beta\right) & \alpha s^{2} & \alpha s \\
0 & 0 & s^{3} & s^{2} \\
0 & 0 & \beta s^{2} & s^{3}
\end{array}\right]
\end{aligned}
$$

Hence,

$$
\operatorname{adj}(s I-A) B=\left[\begin{array}{c}
\gamma\left(s^{2}-\beta\right)+\Omega \alpha \\
\gamma s\left(s^{2}-\beta\right)+\Omega \alpha s \\
\Omega s^{2} \\
\Omega s^{3}
\end{array}\right]
$$

Denote K as $\left[\begin{array}{llll}K_{1} & K_{2} & K_{3} & K_{4}\end{array}\right]$, then
$p_{A+B K}(s)=s^{2}\left(s^{2}-\beta\right)-K_{1}\left[\gamma\left(s^{2}-\beta\right)+\Omega \alpha\right]-K_{2}\left[\gamma s\left(s^{2}-\beta\right)+\Omega \alpha s\right]-K_{3} \Omega s^{2}-K_{4} \Omega s^{3}$
Rearranging gives that the closed-loop characteristic polynomial $p_{A+B K}(s)$ is
$s^{4}+\left[-K_{2} \gamma-K_{4} \Omega\right] s^{3}+\left[-\beta-K_{1} \gamma-K_{3} \Omega\right] s^{2}+\left[K_{2}(\gamma \beta-\Omega \alpha)\right] s+\left[K_{1}(\gamma \beta-\Omega \alpha)\right]$
Denote the closed-loop characteristic polynomial as

$$
s^{4}+c_{1} s^{3}+c_{2} s^{2}+c_{3} s+c_{4}
$$

The relationship between c and K is

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\beta \\
0 \\
0
\end{array}\right]+\left[\begin{array}{cccc}
0 & -\gamma & 0 & -\Omega \\
-\gamma & 0 & -\Omega & 0 \\
0 & \gamma \beta-\Omega \alpha & 0 & 0 \\
\gamma \beta-\Omega \alpha & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
K_{1} \\
K_{2} \\
K_{3} \\
K_{4}
\end{array}\right]
$$

Now, suppose that $\Omega \neq 0$ and $\gamma \beta-\Omega \alpha \neq 0$. Then, the 4×4 matrix which multiplies K is invertible, and so by proper choice of the K_{i}, we can make the coefficients c take on any desired values. Equivalently, by proper choice of the K_{i}, we can make $p_{A+B K}(s)$ any 4th order polynomial that we want it to be. Hence, we have complete freedom to place the eigenvalues of $A+B K$.

25.3 Problems

1. The model for the tightrope walker derived in Section 16.3, problem 1 is

$$
\begin{aligned}
\left(I_{O}^{P}+m_{B} L^{2}\right) \ddot{\theta}(t) & =g\left(m_{B} L+m_{p} \bar{L}\right) \sin \theta(t)-u(t) \\
I_{B}^{G}[\ddot{\theta}(t)+\ddot{\psi}(t)] & =u(t)
\end{aligned}
$$

(a) Choose states $x_{1}:=\theta, x_{2}:=\dot{\theta}, x_{3}:=\psi, x_{4}:=\dot{\psi}$, and write the nonlinear equations of motion in state-space form

$$
\dot{x}(t)=f(x(t), u(t))
$$

(b) Show that the upright position $\bar{x}_{1}=0, \bar{x}_{2}=0, \bar{x}_{3}=0, \bar{x}_{4}=0, \bar{u}=0$ is an equilibrium point of the system.
(c) Find the Jacobian linearization of the system about the equilibrium point. Determine the stability/instability of the linearized system (by determining the eigenvalues). Does this conclusion seem in line with your intuition?
(d) Take the parameters (all SI units) to be $\bar{L}=1.3, L=1.2, g=9.8, m_{p}=$ $60, m_{B}=15, I_{B}^{G}=80, I_{O}^{p}=90$. Are these reasonable?
(e) Calculate state-feedback laws

$$
\delta_{u}(t)=K_{\alpha} \delta_{x}(t)
$$

for the linearization such that the closed-loop eigenvalues of the linearization are at the locations

$$
\alpha(-0.4 \pm j 1.2) \quad, \quad \alpha(-0.6 \pm j 0.38)
$$

for several values of α, namely $\alpha=0.5,1,2,4,8$. Comment on the approximate dependence of the gains K_{α} on α.
(f) For the 5 different feedback laws, simulate the linearized system and the actual nonlinear system with this feedback law, starting from the initial condition

$$
x(0)=\left[\begin{array}{c}
2 \frac{\pi}{180} \\
0 \\
0 \\
0
\end{array}\right]
$$

Use subplot to plot the responses of the angles θ and ψ, as well as the control moment $u(t)$ on each page. Comment on the suitability of the designs. Note, before printing, use
>> set(gcf,'paperposition', $\left[\begin{array}{llll}.3 & 7.9 & .8 & 9.4\end{array}\right]$
to enlarge the area of the printed page that MatLab will use

