
25 Stabilization by State-Feedback

25.1 Theory

Consider the linear dynamical system

ẋ(t) = Ax(t) +Bu(t)

As usual, let x(t) ∈ Rn, and input u(t) ∈ Rm. Suppose that the states x(t)
are available for measurement, so that a control law of u(t) = Kx(t) is possible.
Dimensions dictate that K ∈ Rm×n. How can the values that make up the gain
matrix K be chosen to ensure closed-loop stability? An obvious approach is to

1. Pick n desired closed-loop eigenvalues, λ1, λ2, . . . , λn

2. Calculate the coefficients of the desired closed-loop characteristic polynomial,

pdes(s) := (s− λ1) (s− λ2) · · · (s− λn) = sn + c1s
n1 + · · ·+ cn

Here the ci are complicated functions of the numbers λ1, λ2, . . . , λn.

3. Explicitly calculate the closed-loop characteristic polynomial symbolically in
the entries of K,

pA+BK (s) = sn + f1(K)sn−1 + f2(K)sn−2 + · · ·+ fn−1(K)s1 + fn(K)

4. Choose K so that for each 1 ≤ i ≤ n, the equation

fi(K) = ci (94)

is satisfied.

Suppose that u(t) ∈ R is a single input (m = 1). Then the gain matrix K ∈
R1×n. In this case, we can actually show that the coefficients of the closed-loop
characteristic equation are affine (linear plus constant) functions of the entries of
the K matrix. This means that solving the n equations in (94) will be relatively
“easy,” involving a matrix inversion problem.

pA+BK (s) := det [sI − (A+BK)]
= det [sI − (A+BK)]
= det [(sI − A)−BK]

= det (sI − A)
[

I − (sI − A)−1BK
]

= det (sI − A) det
[

I − (sI − A)−1BK
]

= det (sI − A)
[

1−K (sI − A)−1B
]

= det (sI − A)−Kadj (sI − A)B
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25.2 Example

As an example, we consider the inverted pendulum problem, described in sec-
tion 24. The linearized equations of motion about the unstable equilibrium point
(

θ̄ = 0, ¯̇θ = 0, w̄ = 0, ¯̇w = 0
)

is

δ̇x(t) = Aδx(t) +Bδu(t)

where the structure of A and B are

A =








0 1 0 0
0 0 α 0
0 0 0 1
0 0 β 0







, B =








0
γ
0
Ω








Simple calculations give

det (sI − A) = det








s −1 0 0
0 s −α 0
0 0 s −1
0 0 −β s







= s2

(

s2 − β
)

and

adj (sI − A) =








s(s2 − β) (−1)0 0 (−1)0
(−1)(β − s2) s(s2 − β) (−1)0 0

αs (−1)(−αs2) s3 (−1)(−βs2)
(−1)(−α) αs (−1)(−s2) s3








T

=








s(s2 − β) s2 − β αs α
0 s(s2 − β) αs2 αs
0 0 s3 s2

0 0 βs2 s3








Hence,

adj (sI − A)B =








γ(s2 − β) + Ωα
γs(s2 − β) + Ωαs

Ωs2

Ωs3








Denote K as
[

K1 K2 K3 K4

]

, then

pA+BK (s) = s2(s2−β)−K1

[

γ(s2 − β) + Ωα
]

−K2

[

γs(s2 − β) + Ωαs
]

−K3Ωs
2−K4Ωs

3

Rearranging gives that the closed-loop characteristic polynomial pA+BK(s) is

s4+[−K2γ −K4Ω] s
3+[−β −K1γ −K3Ω] s

2+[K2 (γβ − Ωα)] s+[K1 (γβ − Ωα)]

Denote the closed-loop characteristic polynomial as

s4 + c1s
3 + c2s

2 + c3s+ c4
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The relationship between c and K is








c1
c2
c3
c4







=








0
−β
0
0







+








0 −γ 0 −Ω
−γ 0 −Ω 0
0 γβ − Ωα 0 0

γβ − Ωα 0 0 0















K1

K2

K3

K4








Now, suppose that Ω 6= 0 and γβ−Ωα 6= 0. Then, the 4×4 matrix which multiplies
K is invertible, and so by proper choice of the Ki, we can make the coefficients c
take on any desired values. Equivalently, by proper choice of the Ki, we can make
pA+BK(s) any 4th order polynomial that we want it to be. Hence, we have
complete freedom to place the eigenvalues of A+BK.

25.3 Problems

1. The model for the tightrope walker derived in Section 16.3, problem 1 is

(

IPO +mBL
2
)

θ̈(t) = g
(

mBL+mpL̄
)

sin θ(t)− u(t)
IGB
[

θ̈(t) + ψ̈(t)
]

= u(t)

(a) Choose states x1 := θ, x2 := θ̇, x3 := ψ, x4 := ψ̇, and write the nonlinear
equations of motion in state-space form

ẋ(t) = f (x(t), u(t))

(b) Show that the upright position x̄1 = 0, x̄2 = 0, x̄3 = 0, x̄4 = 0, ū = 0 is
an equilibrium point of the system.

(c) Find the Jacobian linearization of the system about the equilibrium
point. Determine the stability/instability of the linearized system (by
determining the eigenvalues). Does this conclusion seem in line with
your intuition?

(d) Take the parameters (all SI units) to be L̄ = 1.3, L = 1.2, g = 9.8,mp =
60,mB = 15, IGB = 80, IpO = 90. Are these reasonable?

(e) Calculate state-feedback laws

δu(t) = Kαδx(t)

for the linearization such that the closed-loop eigenvalues of the lin-
earization are at the locations

α(−0.4± j1.2) , α(−0.6± j0.38)

for several values of α, namely α = 0.5, 1, 2, 4, 8. Comment on the
approximate dependence of the gains Kα on α.
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(f) For the 5 different feedback laws, simulate the linearized system and
the actual nonlinear system with this feedback law, starting from the
initial condition

x(0) =








2 π
180

0
0
0








Use subplot to plot the responses of the angles θ and ψ, as well as the
control moment u(t) on each page. Comment on the suitability of the
designs. Note, before printing, use

>> set(gcf,’paperposition’,[.3 7.9 .8 9.4])

to enlarge the area of the printed page that MatLab will use
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