
19 Jacobian Linearizations, equilibrium points

In modeling systems, we see that nearly all systems are nonlinear, in that the dif-
ferential equations governing the evolution of the system’s variables are nonlinear.
However, most of the theory we have developed has centered on linear systems.
So, a question arises: “In what limited sense can a nonlinear system be viewed as
a linear system?” In this section we develop what is called a “Jacobian lineariza-
tion of a nonlinear system,” about a specific operating point, called an equilibrium
point.

19.1 Equilibrium Points

Consider a nonlinear differential equation

ẋ(t) = f(x(t), u(t)) (72)

where f is a function mapping Rn × Rm → Rn. A point x̄ ∈ Rn is called an
equilibrium point if there is a specific ū ∈ Rm (called the equilibrium input)
such that

f (x̄, ū) = 0n

Suppose x̄ is an equilibrium point (with equilibrium input ū). Consider starting
the system (72) from initial condition x(t0) = x̄, and applying the input u(t) ≡ ū
for all t ≥ t0. The resulting solution x(t) satisfies

x(t) = x̄

for all t ≥ t0. That is why it is called an equilibrium point.

19.2 Deviation Variables

Suppose (x̄, ū) is an equilibrium point and input. We know that if we start the
system at x(t0) = x̄, and apply the constant input u(t) ≡ ū, then the state of the
system will remain fixed at x(t) = x̄ for all t. What happens if we start a little
bit away from x̄, and we apply a slightly different input from ū? Define deviation
variables to measure the difference.

δx(t) := x(t)− x̄
δu(t) := u(t)− ū

In this way, we are simply relabling where we call 0. Now, the variables x(t) and
u(t) are related by the differential equation

ẋ(t) = f(x(t), u(t))
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Substituting in, using the constant and deviation variables, we get

δ̇x(t) = f (x̄+ δx(t), ū+ δu(t))

This is exact. Now however, let’s do a Taylor expansion of the right hand side,
and neglect all higher (higher than 1st) order terms

δ̇x(t) ≈ f (x̄, ū) +
∂f

∂x

∣
∣
∣
∣
∣x=x̄
u=ū

δx(t) +
∂f

∂u

∣
∣
∣
∣
∣x=x̄
u=ū

δu(t)

But f(x̄, ū) = 0, leaving

δ̇x(t) ≈
∂f

∂x

∣
∣
∣
∣
∣x=x̄
u=ū

δx(t) +
∂f

∂u

∣
∣
∣
∣
∣x=x̄
u=ū

δu(t)

This differential equation approximately governs (we are neglecting 2nd order and
higher terms) the deviation variables δx(t) and δu(t), as long as they remain
small. It is a linear, time-invariant, differential equation, since the derivatives of
δx are linear combinations of the δx variables and the deviation inputs, δu. The
matrices

A :=
∂f

∂x

∣
∣
∣
∣
∣x=x̄
u=ū

∈ Rn×n , B :=
∂f

∂u

∣
∣
∣
∣
∣x=x̄
u=ū

∈ Rn×m (73)

are constant matrices. With the matrices A and B as defined in (73), the linear
system

δ̇x(t) = Aδx(t) + Bδu(t)

is called the Jacobian Linearization of the original nonlinear system (72), about
the equilibrium point (x̄, ū). For “small” values of δx and δu, the linear equation
approximately governs the exact relationship between the deviation variables δu
and δx.

For “small” δu (ie., while u(t) remains close to ū), and while δx remains “small”
(ie., while x(t) remains close to x̄), the variables δx and δu are related by the
differential equation

δ̇x(t) = Aδx(t) + Bδu(t)

In some of the rigid body problems we considered earlier, we treated problems
by making a small-angle approximation, taking θ and its derivatives θ̇ and θ̈ very
small, so that certain terms were ignored (θ̇2, θ̈ sin θ) and other terms simplified
(sin θ ≈ θ, cos θ ≈ 1). In the context of this discussion, the linear models we
obtained were, in fact, the Jacobian linearizations around the equilibrium point
θ = 0, θ̇ = 0.

If we design a controller that effectively controls the deviations δx, then we have
designed a controller that works well when the system is operating near the equi-
librium point (x̄, ū). We will cover this idea in greater detail later. This is a
common, and somewhat effective way to deal with nonlinear systems in a linear
manner.
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19.3 Tank Example

Consider a mixing tank, with constant supply temperatures TC and TH . Let the
inputs be the two flow rates qC(t) and qH(t). The equations for the tank are

ḣ(t) = 1
AT

(

qC(t) + qH(t)− cDAo

√

2gh(t)
)

ṪT (t) = 1
h(t)AT

(qC(t) [TC − TT (t)] + qH(t) [TH − TT (t)])

Let the state vector x and input vector u be defined as

x(t) :=

[

h(t)
TT (t)

]

, u(t) :=

[

qC(t)
qH(t)

]

f1(x, u) = 1
AT

(

u1 + u2 − cDAo

√
2gx1

)

f2(x, u) = 1
x1AT

(u1 [TC − x2] + u2 [TH − x2])
Intuitively, any height h̄ > 0 and any tank temperature T̄T satisfying

TC ≤ T̄T ≤ TH

should be a possible equilibrium point (after specifying the correct values of the
equilibrium inputs). In fact, with h̄ and T̄T chosen, the equation f(x̄, ū) = 0 can
be written as

[

1 1
TC − x̄2 TH − x̄2

] [

ū1
ū2

]

=

[

cDAo

√
2gx̄1

0

]

The 2× 2 matrix is invertible if and only if TC 6= TH . Hence, as long as TC 6= TH ,
there is a unique equilibrium input for any choice of x̄. It is given by

[

ū1
ū2

]

=
1

TH − TC

[

TH − x̄2 −1
x̄2 − TC 1

] [

cDAo

√
2gx̄1

0

]

This is simply

ū1 =
cDAo

√
2gx̄1 (TH − x̄2)
TH − TC

, ū2 =
cDAo

√
2gx̄1 (x̄2 − TC)

TH − TC

Since the ui represent flow rates into the tank, physical considerations restrict
them to be nonegative real numbers. This implies that x̄1 ≥ 0 and TC ≤ T̄T ≤ TH .
Looking at the differential equation for TT , we see that its rate of change is inversely
related to h. Hence, the differential equation model is valid while h(t) > 0, so
we further restrict x̄1 > 0. Under those restrictions, the state x̄ is indeed an
equilibrium point, and there is a unique equilibrium input given by the equations
above.

Next we compute the necessary partial derivatives.

[
∂f1

∂x1

∂f1

∂x2
∂f2

∂x1

∂f2

∂x2

]

=




− gcDAo

AT

√
2gx1

0

−u1[TC−x2]+u2[TH−x2]
x2
1AT

−(u1+u2)
x1AT
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[
∂f1

∂u1

∂f1

∂u2
∂f2

∂u1

∂f2

∂u2

]

=

[
1

AT

1
AT

TC−x2

x1AT

TH−x2

x1AT

]

The linearization requires that the matrices of partial derivatives be evaluated at
the equilibrium points. Let’s pick some realistic numbers, and see how things
vary with different equilibrium points. Suppose that TC = 10◦, TH = 90◦, AT =
3m2, Ao = 0.05m, cD = 0.7. Try h̄ = 1m and h̄ = 3m, and for T̄T , try T̄T = 25◦ and
T̄T = 75◦. That gives 4 combinations. Plugging into the formulae give the 4 cases

1.
(

h̄, T̄T

)

= (1m, 25◦). The equilibrium inputs are

ū1 = q̄C = 0.126 , ū2 = q̄H = 0.029

The linearized matrices are

A =

[

−0.0258 0
0 −0.517

]

, B =

[

0.333 0.333
−5.00 21.67

]

2.
(

h̄, T̄T

)

= (1m, 75◦). The equilibrium inputs are

ū1 = q̄C = 0.029 , ū2 = q̄H = 0.126

The linearized matrices are

A =

[

−0.0258 0
0 −0.0517

]

, B =

[

0.333 0.333
−21.67 5.00

]

3.
(

h̄, T̄T

)

= (3m, 25◦). The equilibrium inputs are

ū1 = q̄C = 0.218 , ū2 = q̄H = 0.0503

The linearized matrices are

A =

[

−0.0149 0
0 −0.0298

]

, B =

[

0.333 0.333
−1.667 7.22

]

4.
(

h̄, T̄T

)

= (3m, 75◦). The equilibrium inputs are

ū1 = q̄C = 0.0503 , ū2 = q̄H = 0.2181

The linearized matrices are

A =

[

−0.0149 0
0 −0.0298

]

, B =

[

0.333 0.333
−7.22 1.667

]
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We can try a simple simulation, both in the exact nonlinear equation, and the
linearization, and compare answers.

We will simulate the system

ẋ(t) = f(x(t), u(t))

subject to the following conditions

x(0) =

[

1.10
81.5

]

and

u1(t) =

{

0.022 for 0 ≤ t ≤ 25
0.043 for 25 < t ≤ 100

u2(t) =

{

0.14 for 0 ≤ t ≤ 60
0.105 for 60 < t ≤ 100

This is close to equilibrium condition #2. So, in the linearization, we will use
linearization #2, and the following conditions

δx(0) = x(0)−
[

1
75

]

=

[

0.10
6.5

]

and

δu1
(t) := u1(t)− ū1 =

{

−0.007 for 0 ≤ t ≤ 25
0.014 for 25 < t ≤ 100

δu2
(t) := u2(t)− ū2 =

{

0.014 for 0 ≤ t ≤ 60
−0.021 for 60 < t ≤ 100

To compare the simulations, we must first plot x(t) from the nonlinear simulation.
This is the “true” answer. For the linearization, we know that δx approximately
governs the deviations from x̄. Hence, for that simulation we should plot x̄+ δx(t).
These are shown below for both h and TT .
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19.4 Linearizing about general solution

In section 19.2, we discussed the linear differential equation which governs small
deviations away from an equilibrium point. This resulted in a linear, time-invariant
differential equation.

Often times, more complicated situations arise. Consider the task of controlling a
rocket trajectory from Earth to the moon. By writing out the equations of motion,
from Physics, we obtain state equations of the form

ẋ(t) = f(x(t), u(t), d(t), t) (74)

where u is the control input (thrusts), d are external disturbances.
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Through much computer simulation, a preplanned input schedule is developed,
which, under ideal circumstances (ie., d(t) ≡ 0), would get the rocket from Earth
to the moon. Denote this preplanned input by ū(t), and the ideal disturbance by
d̄(t) (which we assume is 0). This results in an ideal trajectory x̄(t), which solves
the differential equation,

˙̄x(t) = f
(

x̄(t), ū(t), d̄(t), t
)

Now, small nonzero disturbances are expected, which lead to small deviations in
x, which must be corrected by small variations in the pre-planned input u. Hence,
engineers need to have a model for how a slightly different input ū(t) + δu(t) and
slightly different disturbance d̄(t) + δd(t) will cause a different trajectory. Write
x(t) in terms of a deviation from x̄(t), defining δx(t) := x(t)− x̄(t), giving

x(t) = x̄(t) + δx(t)

Now x, u and d must satisfy the differential equation, which gives

ẋ(t) = f (x(t), u(t), d(t), t)
˙̄x(t) + δ̇x(t) = f

(

x̄(t) + δx(t), ū(t) + δu(t), d̄(t) + δd(t), t
)

≈ f (x̄(t), ū(t), 0, t) + ∂f
∂x

∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

δx(t) +
∂f
∂u

∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

δu(t) +
∂f
∂d

∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

δd(t)

But the functions x̄ and ū satisfy the governing differential equation, so ˙̄x(t) =
f (x̄(t), ū(t), 0, t), leaving the (approximate) governing equation for δx

˙̄x(t) =
∂f

∂x

∣
∣
∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

δx(t) +
∂f

∂u

∣
∣
∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

δu(t) +
∂f

∂d

∣
∣
∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

δd(t)

Define time-varying matrices A, B1 and B2 by

A(t) :=
∂f

∂x

∣
∣
∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

B1(t) :=
∂f

∂u

∣
∣
∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

B2(t) :=
∂f

∂d

∣
∣
∣
∣
∣x(t)=x̄(t)

u(t)=ū(t)
d(t)=d̄(t)

The deviation variables are approximately governed by

δ̇x(t) = A(t)δx(t)+B1(t)δu(t)+B2(t)δd(t) = A(t)δx(t)+
[

B1(t) B2(t)
]
[

δu(t)
δd(t)

]

This is called the linearization of system (74) about the trajectory
(

x̄, ū, d̄
)

. This
type of linearization is a generalization of linearizations about equilibrium points.
Linearizing about an equilibrium point yields a LTI system, while linearizing about
a trajectory yields an LTV system.

In general, these types of calculations are carried out numerically,

• simulink to get solution x̄(t) given particular inputs ū(t) and d̄(t)
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• Numerical evaluation of ∂f
∂x
, etc, evaluated at the solution points

• Storing the time-varying matrices A(t), B1(t), B2(t) for later use

In a simple case it is possible to analytically determine the time-varying matrices.

19.5 Problems

1. The temperature in a particular 3-dimensional solid is a function of position,
and is known to be

T (x, y, z) = 42 + (x− 2)2 + 3 (y − 4)2 − 5 (z − 6)2 + 2yz

(a) Find the first order approximation (linearization) of the temperature
near the location (4, 6, 0). Use δx, δy and δz as your deviation variables.

(b) What is the maximum error between the actual temperature and the
first order approximation formula for |δx| ≤ 0.3, |δy| ≤ 0.2, |δz| ≤ 0.1.
You may use Matlab to solve this numerically, or analytically if you
wish.

(c) More generally, suppose that x̄ ∈ R, ȳ ∈ R, z̄ ∈ R. Find the first order
approximation of the temperature near the location (x̄, ȳ, z̄).

2. The pitching-axis of a tail-fin controlled missile is governed by the nonlinear
state equations

α̇(t) = K1Mfn (α(t),M) cosα(t) + q(t)
q̇(t) = K2M

2 [fm (α(t),M) + Eu(t)]

Here, the states are x1 := α, the angle-of-attack, and x2 := q, the angular
velocity of the pitching axis. The input variable, u, is the deflection of the
fin which is mounted at the tail of the missile. K1, K2, and E are physical
constants, with E > 0. M is the speed (Mach) of the missile, and fn and
fm are known, differentiable functions (from wind-tunnel data) of α and M .
Assume that M is a constant, and M > 0.

(a) Show that for any specific value of ᾱ, with |ᾱ| < π
2
, there is a pair (q̄, ū)

such that [

ᾱ
q̄

]

, ū

is an equilibrium point of the system (this represents a turn at a constant
rate). Your answer should clearly show how q̄ and ū are functions of ᾱ,
and will most likely involve the functions fn and fm.

(b) Calculate the Jacobian Linearization of the missile system about the
equilibrium point. Your answer is fairly symbolic, and may depend on
partial derivatives of the functions fn and fm. Be sure to indicate where
the various terms are evaluated.
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3. (Taken from “Introduction to Dynamic Systems Analysis,” T.D. Burton,
1994) Constants α and β are given. Let f1(x1, x2) := x1 − x31 + αx1x2, and
f2(x1, x2) := −x2 + βx1x2. Consider the 2-state system ẋ(t) = f(x(t)).

(a) Note that there are no inputs. Find all equilibrium points of this system

(b) Derive the Jacobian linearization which describes the solutions near each
equilibrium point.

4. Car Engine Model (the reference for this problem is Cho and Hedrick, “Au-
tomotive Powertrain Modelling for Control,” ASME Journal of Dynamic
Systems, Measurement and Control, vol. 111, No. 4, December 1989): In
this problem we consider a 1-state model for an automotive engine, with the
transmission engaged in 4th gear. The engine state is ma, the mass of air (in
kilograms) in the intake manifold. The state of the drivetrain is the angular
velocity, ωe, of the engine. The input is the throttle angle, α, (in radians).
The equations for the engine is

ṁa(t) = c1T (α(t))− c2ωe(t)ma(t)
Te = c3ma(t)

where we treat ωe and α as inputs, and Te as an output. The drivetrain is
modeled

ω̇e(t) =
1

Je
[Te(t)− Tf (t)− Td(t)− Tr(t)]

The meanings of the terms are as follows:

• T (α) is a throttle flow characteristic depending on throttle angle,

T (α) =







T (−α) for α < 0
1− cos (1.14α− 0.0252) for 0 ≤ α ≤ 1.4

1 for α > 1.4

• Te is the torque from engine on driveshaft, c3 = 47500 Nm/kg.

• Tf is engine friction torque (Nm), Tf = 0.106ωe + 15.1

• Td is torque due to wind drag (Nm), Td = c4ω
2
e , with c4 = 0.0026 Nms2

• Tr is torque due to rolling resistance at wheels (Nm), Tr = 21.5.

• Je is the effective moment of inertia of the engine, transmission, wheels,
car, Je = 36.4kgm2

• c1 = 0.6kg/s, c2 = 0.095

• In 4th gear, the speed of car, v (m/s), is related to ωe as v = 0.129ωe.

(a) Combine these equations into state variable form.

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

where x1 = ma, x2 = ωe, u = α and y = v.
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(b) For the purpose of calculating the Jacobian linearization, explicitly write
out the function f(x, u) (without any t dependence). Note that f maps
3 real numbers (x1, x2, u) into 2 real numbers. There is no explicit time
dependence in this particular f .

(c) Compute the equilibrium values of m̄a, ω̄e and ᾱ so that the car travels
at a constant speed of 22 m/s . Repeat the calculation for a constant
speed of 32 m/s .

(d) Consider deviations from these equilibrium values,

α(t) = ᾱ + δα(t)
ωe(t) = ω̄e + δωe(t)
ma(t) = m̄a + δma

(t)
y(t) = ȳ + δy(t)

Find the (linear) differential equations that approximately govern these
deviation variables (Jacobian Linearzation discussed in class), in both
the 22 m/s , and 32 m/s case.

(e) Using Simulink, starting from the equilibrium point computed
in part 4c (not [0;0]), apply a sinusoidal throttle angle of

α(t) = ᾱ + β sin(0.5t)

for 3 values of β, β = 0.01, 0.04, 0.1 and obtain the response for v and
ma. Compare (and comment) on the difference between the results
of the “true” nonlinear simulation and the results from the linearized
analysis. Do this for both cases.
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20 Linear Systems and Time-Invariance

We have studied the governing equations for many types of systems. Usually, these
are nonlinear differential equations which govern the evolution of the variables as
time progresses. In section 19.2, we saw that we could “linearize” a nonlinear
system about an equilibrium point, to obtain a linear differential equation which
giverns the approximate behavior of the system near the equilibrium point. Also,
in some systems, the governing equations were already linear. Linear differential
equations are important class of systems to study, and these are the topic of the
next several section.

20.1 Linearity of solution

Consider a vector differential equation

ẋ(t) = A(t)x(t) +B(t)d(t)
x(t0) = x0

(75)

where for each t, A(t) ∈ Rn×n, B(t) ∈ Rn×m, and for each time t, x(t) ∈ Rn and
d(t) ∈ Rm.

Claim: The solution function x(·), on any interval [t0, t1] is a linear function of

the pair
(

x0, d(t)[t0 t1]

)

.

The precise meaning of this statement is as follows: Pick any constants α, β ∈ R,

• if x1(t) is the solution to (75) starting from initial condition x1,0 (at t0) and
forced with input d1(t), and

• if x2(t) is the solution to (75) starting from initial condition x2,0 (at t0) and
forced with input d2(t),

then αx1(t) + βx2(t) is the solution to (75) starting from initial condition αx1,0 +
βx2,0 (at t0) and forced with input αd1(t) + βd2(t).

This can be easily checked, note that for every time t, we have

ẋ1(t) = A(t)x1(t) +B(t)d1(t)
ẋ2(t) = A(t)x2(t) +B(t)d2(t)

Multiply the first equation by the constant α and the second equation by β, and
add them together, giving

d
dt
[αx1(t) + βx2(t)] = αẋ1(t) + βẋ2(t)

= α [Ax1(t) +Bd1(t)] + β [Ax2(t) +Bd2(t)]
= A [αx1(t) + βx2(t)] +B [αd1(t) + βd2(t)]
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which shows that the linear combination αx1 + βx2 does indeed solve the dif-
ferential equation. The initial condition is easily checked. Finally, the existence
and uniqueness theorem for differential equations tells us that this (αx1 + βx2)
is the only solution which satisfies both the differential equation and the initial
conditions.

Linearity of the solution in the pair (initial condition, forcing function) is often
called The Principal of Superposition and is an extremely useful property of
linear systems.

20.2 Time-Invariance

A separate issue, unrelated to linearity, is time-invariance. A system described
by ẋ(t) = f(x(t), d(t), t) is called time-invariant if (roughly) the behavior of the
system does depend explicitly on the absolute time. In other words, shifting the
time axis does not affect solutions.

Precisely, suppose that x1 is a solution for the system, starting from x10 at t = t0
subject to the forcing d1(t), defined for t ≥ t0.

Now, let x̃ be the solution to the equations starting from x0 at t = t0 +∆, subject
to the forcing d̃(t) := d(t−∆), defined for t ≥ t0+∆. Suppose that for all choices of
t0,∆, x0 and d(·), the two responses are related by x̃(t) = x(t−∆) for all t ≥ t0+∆.
Then the system described by ẋ(t) = f(x(t), d(t), t) is called time-invariant.

In practice, the easiest manner to recognize time-invariance is that the right-hand
side of the state equations (the first-order differential equations governing the pro-
cess) do not explicitly depend on time. For instance, the system

ẋ1(t) = 2 ∗ x2(t)− sin [x1(t)x2(t)d2(t)]
ẋ2(t) = − |x2(t)| − x2(t)d1(t)

is nonlinear, yet time-invariant.
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21 Matrix Exponential

21.1 Definition

Recall that for the scalar differential equation

ẋ(t) = ax(t) + bu(t)

x(t0) = x0

the solution for t ≥ t0 is given by the formula

x(t) = ea(t−t0) +
∫ t

t0
ea(t−τ)bu(τ)dτ

What makes this work? The main thing is the special structure of the exponential
function. Namely that

d

dt
eat = aeat

Now consider a vector differential equation

ẋ(t) = Ax(t) +Bu(t)

x(t0) = x0
(76)

where A ∈ Rn×n, B ∈ Rn×m are constant matrices, and for each time t, x(t) ∈ Rn

and u(t) ∈ Rm. The solution can be derived by proceeding analogously to the
scalar case.

For a matrix A ∈ Cn×n define a matrix function of time, eAt ∈ Cn×n as

eAt :=
∞∑

k=0

tk

k!
Ak

= I + tA+ t2

2!
A2 + t3

3!
A3 + · · ·

This is exactly the same as the definition in the scalar case. Now, for any T > 0,
every element of this matrix power series converges absolutely and uniformly on
the interval [0, T ]. Hence, it can be differentiated term-by-term to correctly get
the derivative. Therefore

d
dt
eAt :=

∞∑

k=0

k tk−1

k!
Ak

= A+ tA2 ++ t2

2!
A3 + · · ·

= A
(

I + tA+ t2

2!
A2 + · · ·

)

= AeAt

This is the most important property of the function eAt. Also, in deriving this
result, A could have been pulled out of the summation on either side. Summarizing
these important identities,

eA0 = In,
d

dt
eAt = AeAt = eAtA

181



So, the matrix exponential has properties similar to the scalar exponential function.
However, there are two important facts to watch out for:

• WARNING: Let aij denote the (i, j)th entry of A. The (i, j)th entry of
eAt IS NOT EQUAL TO eaijt. This is most convincingly seen with a
nontrivial example. Consider

A =




1 1

0 1





A few calculations show that

A2 =




1 2

0 1



 A3 =




1 3

0 1



 · · · Ak =




1 k

0 1





The definition for eAt is

eAt = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

Plugging in, and evaluating on a term-by-term basis gives

eAt =




1 + t+ t2

2!
+ t3

3!
+ · · · 0 + t+ 2 t2

2!
+ 3 t3

3!
+ · · ·

0 + 0 + 0 + 0 + · · · 1 + t+ t2

2!
+ t3

3!
+ · · ·





The (1, 1) and (2, 2) entries are easily seen to be the power series for et, and
the (2, 1) entry is clearly 0. After a few manipulations, the (1, 2) entry is tet.
Hence, in this case

eAt =




et tet

0 et





which is very different than the element-by-element exponentiation of At,




ea11t ea12t

ea21t ea22t



 =




et et

1 et





• WARNING: In general,

e(A1+A2)t 6= eA1teA2t

unless t = 0 (trivial) or A1A2 = A2A1. However, the identity

eA(t1+t2) = eAt1eAt2

is always true. Hence eAte−At = e−AteAt = I for all matrices A and all t, and
therefore for all A and t, eAt is invertible.
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21.2 Diagonal A

If A ∈ Cn×n is diagonal, then eAt is easy to compute. Specifically, if A is diagonal,
it is easy to see that for any k,

A =











β1 0 · · · 0

0 β2 · · · 0
...

...
. . .

...

0 0 · · · βn











Ak =











βk
1 0 · · · 0

0 βk
2 · · · 0

...
...

. . .
...

0 0 · · · βk
n











In the power series definition for eAt, any off-diagonal terms are identically zero,
and the i’th diagonal term is simply

[

eAt
]

ii
= 1 + tβi +

t2

2!
β2
i +

t3

3!
β3
i + · · · = eβit

21.3 Block Diagonal A

If A1 ∈ Cn1×n1 and A2 ∈ Cn2×n2 , define

A :=




A1 0

0 A2





Question: How is eAt related to eA1t and eA2t? Very simply – note that for any
k ≥ 0,

Ak =




A1 0

0 A2





k

=




Ak

1 0

0 Ak
2





Hence, the power series definition for eAt gives

eAt =




eA1t 0

0 eA2t





21.4 Effect of Similarity Transformations

For any invertible T ∈ Cn×n,

eT
−1ATt = T−1eAtT

Equivalently,
TeT

−1ATtT−1 = eAt

This can easily be shown from the power series definition.

eT
−1ATt = I + t

(

T−1AT
)

+
t2

2!

(

T−1AT
)2

+
t3

3!

(

T−1AT
)3

+ · · ·
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It is easy to verify that for every integer k

(

T−1AT
)k

= T−1AkT

Hence, we have (with I written as T−1IT )

eT
−1ATt = T−1IT + tT−1AT +

t2

2!
T−1A2T +

t3

3!
T−1A3T + · · ·

Pull T−1 out on the left side, and T on the right to give

eT
−1ATt = T−1

(

I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

)

T

which is simply
eT

−1ATt = T−1eAtT

as desired.

21.5 Candidate Solution To State Equations

The matrix exponential is extremely important in the solution of the vector differ-
ential equation

ẋ(t) = Ax(t) +Bu(t) (77)

starting from the initial condition x(t0) = x0. First, consider the case when B ≡
0n×m, so that the differential equation is

ẋ(t) = Ax(t) (78)

with x(t0) = x0. Proceeding as in the scalar case, a candidate for the solution for
t ≥ t0 is

xc(t) := eA(t−t0)x0.

We need to check two things

• xc should satisfy the initial condition – plugging in gives

xc(t0) = eA(t0−t0)x0 = Ix0 = x0

which verifies the first condition.

• xc should satisfy the differential equation – differentiating the definition of
xc gives

ẋc(t) = d
dt

[

eA(t−t0)x0
]

= d
dt

[

eA(t−t0)
]

x0

= AeA(t−t0)x0

= Axc(t)

which verifies the second condition
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Hence xc(t) := eA(t−t0)x0 is the solution to the undriven system in equation (78)
for all t ≥ t0.

Now, consider the original equation in (77). We can derive the solution to the
forced equation using the “integrating factor” methid, proceeding in the same
manner as in the scalar case, with extra care for the matrix-vector operations.
Suppose a function x satisfies (77). Multiply both sides by e−At to give

e−Atẋ(t) = e−AtAx(t) + e−AtBu(t)

Move one term to the left, leaving,

e−AtBu(t) = e−Atẋ(t)− e−AtAx(t)

= e−Atẋ(t)− Ae−Atx(t)

= d
dt

[

e−Atx(t)
]

(79)

Since these two functions are equal at every time, we can integrate them over the
interval [t0 t1]. Note that the right-hand side of (79) is an exact derivative, giving

∫ t1

t0
e−AtBu(t)dt =

∫ t1

t0

d

dt

[

e−Atx(t)
]

dt

= e−Atx(t)
∣
∣
∣

t1

t0

= e−At1x(t1)− e−At0x(t0)

Note that x(t0) = x0. Also, multiply both sides by eAt1 , to yield

eAt1

∫ t1

t0
e−AtBu(t)dt = x(t1)− eA(t1−t0)x0

This is rearranged into

x(t1) = eA(t1−t0)x0 +
∫ t1

t0
eA(t1−t)Bu(t)dt

Finally, switch variable names, letting τ be the variable of integration, and letting
t be the right end point (as opposed to t1). In these new letters, the expression for
the solution of the (77) for t ≥ t0, subject to initial condition x(t0) = x0 is

x(t) = eA(t−t0)x0 +
∫ t

t0
eA(t−τ)Bu(τ)dτ

consisting of a free and forced response.

21.6 Examples

Given β ∈ R, define

A :=




0 β

−β 0
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Calculate

A2 =




−β2 0

0 −β2





and hence for any k,

A2k =




(−1)kβ2k 0

0 (−1)kβ2k



 , A2k+1 =




0 (−1)kβ2k+1

(−1)k+1β2k+1 0





Therefore, we can write out the first few terms of the power series for eAt as

eAt =




1− 1

2
β2t2 + 1

4!
β4t4 − · · · βt− 1

3!
β3t3 + 1

5!
β5t5 − · · ·

−βt+ 1
3!
β3t3 − 1

5!
β5t5 + · · · 1− 1

2
β2t2 + 1

4!
β4t4 − · · ·





which is recognized as

eAt =




cos βt sin βt

− sin βt cos βt





Similarly, suppose α, β ∈ R, and

A :=




α β

−β α





Then, A can be decomposed as A = A1 + A2, where

A1 :=




α 0

0 α



 , A2 :=




0 β

−β 0





Note: in this special case, A1A2 = A2A1, hence

e(A1+A2)t = eA1teA2t

Since A1 is diagonal, we know eA1t, and eA2t follows from our previous example.
Hence

eAt =




eαt cos βt eαt sin βt

−eαt sin βt eαt cos βt





This is an important case to remember. Finally, suppose λ ∈ F, and

A =




λ 1

0 λ





A few calculations show that

Ak =




λk kλk−1

0 λk





Hence, the power series gives

eAt =




eλt teλt

0 eλt
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22 Eigenvalues, eigenvectors, stability

22.1 Diagonalization: Motivation

Recall two facts from Section 21: For diagonal matrices Λ ∈ Fn×n,

Λ =









λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn









⇒ eΛt =









eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt









and: If A ∈ Fn×n, and T ∈ Fn×n is invertible, and Ã := T−1AT , then

eAt = TeÃtT−1

Clearly, for a general A ∈ Fn×n, we need to study the invertible transformations
T ∈ Fn×n such that T−1AT is a diagonal matrix.

Suppose that T is invertible, and Λ is a diagonal matrix, and T−1AT = Λ. Moving
the T−1 to the other side of the equality gives AT = TΛ. Let ti denote the i’th
column of the matrix T . SInce T is assumed to be invertible, none of the columns
of T can be identically zero, hence ti 6= Θn. Also, let λi denote the (i, i)’th entry
of Λ. The i’th column of the matrix equation AT = TΛ is just

Ati = tiλi = λiti

This observation leads to the next section.

22.2 Eigenvalues

Definition: Given a matrix A ∈ Fn×n. A complex number λ is an eigenvalue of
A if there is a nonzero vector v ∈ Cn such that

Av = vλ = λv

The nonzero vector v is called an eigenvector of A associated with the eigenvalue
λ.

Remark: Consider the differential equation ẋ(t) = Ax(t), with initial condition
x(0) = v. Then x(t) = veλt is the solution (check that it satisfies initial condition
and differential equation). So, an eigenvector is “direction” in the state-space such
that if you start in the direction of the eigenvector, you stay in the direction of the
eigenvector.

Note that if λ is an eigenvalue of A, then there is a vector v ∈ Cn, v 6= Θn such
that

Av = vλ = (λI) v
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Hence
(λI − A) v = Θn

Since v 6= Θn, it must be that det (λI − A) = 0.

For an n × n matrix A, define a polynomial, pA (·), called the characteristic
polynomial of A by

pA (s) := det (λI − A)
Here, the symbol s is simply the indeterminate variable of the polynomial.

For example, take

A =






2 3 −1
−1 −1 −1
0 2 0






Straightforward manipulation gives pA(s) = s3−s2+3s−2. Hence, we have shown
that the eigenvalues of A are necessarily roots of the equation

pA(s) = 0.

For a general n× n matrix A, we will write

pA (s) = sn + a1s
n−1 + · · ·+ an−1s+ an

where the a1, a2, . . . , an are complicated products and sums involving the entries
of A. Since the characteristic polynomial of an n × n matrix is a n’th order
polynomial, the equation pA(s) = 0 has at most n distinct roots (some roots
could be repeated). Therefore, a n × n matrix A has at most n distinct
eigenvalues.

Conversely, suppose that λ ∈ C is a root of the polynomial equation

pA(s)|s=λ = 0

Question: Is λ an eigenvalue of A?

Answer: Yes. Since pA(λ) = 0, it means that

det (λI − A) = 0

Hence, the matrix λI − A is singular (not invertible). Therefore, by the matrix
facts, the equation

(λI − A) v = Θn

has a nonzero solution vector v (which you can find by Gaussian elimination).
This means that

λv = Av

for a nonzero vector v, which means that λ is an eigenvalue of A, and v is an
associated eigenvector.

We summarize these facts as:
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• A is a n× n matrix

• The characteristic polynomial of A is

pA(s) := det (sI − A)
= sn + a1s

n−1 + · · ·+ an−1s+ an

• A complex number λ is an eigenvalue of A if and only if λ is a root of the
“characteristic equation” pa(λ) = 0.

Next, we have a useful fact from linear algebra: Suppose A is a given n×n matrix,
and (λ1, v1) , (λ2, v2) , . . . , (λn, vn) are eigenvalue/eigenvector pairs. So, for each i,
vi 6= Θn and Avi = viλi. Fact: If all of the {λi}ni=1 are distinct, then the set of
vectors

{v1, v2, . . . , vn}
are a linearly independent set. In other words, the matrix

V := [v1 v2 · · · vn] ∈ Cn×n

is invertible.

Proof: We’ll prove this for 3× 3 matrices – check your linear algebra book for the
generalization, which is basically the same proof.

Suppose that there are scalars α1, α2, α3, such that

3∑

i=1

αivi = Θ3

This means that

Θ3 = (A− λ3I)Θ3

= (A− λ3I)
∑3

i=1 αivi
= α1 (A− λ3I) v1 + α2 (A− λ3I) v2 + α3 (A− λ3I) v3
= α1 (λ1 − λ3) v1 + α2 (λ2 − λ3) v2 +Θ3

(80)

Now multiply by (A− λ2I), giving

Θ3 = (A− λ2I)Θ3 = (A− λ2I) [α1(λ1 − λ3)v1 + α2(λ2 − λ3)v2]
= α1(λ1 − λ3)(λ1 − λ2)v1

Since λ1 6= λ3, λ1 6= λ2, v1 6= Θ3, it must be that α1 = 0. Using equation (80), and
the fact that λ2 6= λ3, v2 6= Θ3 we get that α2 = 0. Finally, α1v1+α2v2+α3v3 = Θ3

(by assumption), and v3 6= Θ3, so it must be that α3 = 0. ]
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22.3 Diagonalization Procedure

In this section, we summarize all of the previous ideas into a step-by-step diago-
nalization procedure for n× n matrices.

1. Calculate the characteristic polynomial of A, pA(s) := det (sI − A).

2. Find the n roots of the equation pA(s) = 0, and call the roots λ1, λ2, . . . , λn.

3. For each i, find a nonzero vector ti ∈ Cn such that

(A− λiI) ti = Θn

4. Form the matrix
T := [t1 t2 · · · tn] ∈ Cn×n

(note that if all of the {λi}ni=1 are distinct from one another, then T is
guaranteed to be invertible).

5. Note that AT = TΛ, where

Λ =









λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn









6. If T is invertible, then T−1AT = Λ. Hence

eAt = TeΛtT−1 = T









eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...
0 0 · · · eλnt









T−1

We will talk about the case of nondistinct eigenvalues later.

22.4 eAt as t →∞

For the remainder of the section, assume A has distinct eigenvalues.

• if all of the eigenvalues (which may be complex) of A satisfy

Re (λi) < 0

then eλit → 0 as t→∞, so all entries of
[

eAt
]

decay to zero
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• If there is one (or more) eigenvalues of A with

Re (λi) ≥ 0

then

eλit → bounded 6= 0
∞ as→∞

Hence, some of the entries of eAt either do not decay to zero, or, in fact,
diverge to ∞.

So, the eigenvalues are an indicator (the key indicator) of stability of the differential
equation

ẋ(t) = Ax(t)

• if all of the eigenvalues of A have negative real parts, then from any initial
condition x0, the solution

x(t) = eAtx0

decays to Θn as t → ∞ (all coordinates of x(t) decay to 0 as t → ∞). In
this case, A is said to be a Hurwitz matrix.

• if any of the eigenvalues of A have nonnegative real parts, then from
some initial conditions x0, the solution to

ẋ(t) = Ax(t)

does not decay to zero.

22.5 Complex Eigenvalues

In many systems, the eigenvalues are complex, rather than real. This seems un-
usual, since the system itself (ie., the physical meaning of the state and input
variables, the coefficients in the state equations, etc.) is very much Real. The
procedure outlined in section 22.3 for matrix diagonalization is applicable to both
real and complex eigenvalues, and if A is real, all intermediate complex terms
will cancel, resulting in eAt being purely real, as expected. However, in the case
of complex eigenvalues it may be more advantageous to use a different similarity
transformation, which does not lead to a diagonalized matrix. Instead, it leads to
a real block-diagonal matrix, whose structure is easily interpreted.

Let us consider a second order system, with complex eigenvalues

ẋ(t) = Ax(t) (81)

where A ∈ Rn×n, x ∈ R2 and

pA(λ) = det(λI2 − A) = (λ− σ)2 + ω2 . (82)

191



The two eigenvalues of A are λ1 = σ + jω and λ2 = σ − jω, while the two
eigenvectors of A are given by

(λ1I2 − A)v1 = Θ2 (λ2I2 − A)v2 = Θ2 . (83)

Notice that, since λ2 is the complex conjugate of λ1, v2 is the complex conjugate
vector of v1, i.e. if v1 = vr + jvi, then v2 = vr − jvi. This last fact can be verified
as follows. Assume that λ1 = σ+ jω, v1 = vr + jvi and insert these expressions in
the first of Eqs. (83).

[(σ + jω)I2 − A)] [vr + jvi] = Θ2 ,

Separating into its real and imaginary parts we obtain

[σvr − ωvi] + j [σvi + ωvr] = Avr + jAvi

[σvr − ωvi] = Avr (84)

[σvi + ωvr] = Avi .

Notice that Eqs. (84) hold if we replace ω by −ω and vi by −vi. Thus, if λ1 =
σ+ jω and v1 = vr + jvi are respectively an eigenvalue and eigenvector of A, then
λ2 = σ− jω and v2 = vr − jvi are also respectively an eigenvalue and eigenvector.

Eqs. (84) can be rewritten in matrix form as follows

A
[

vr vi
]

=
[

vr vi
]
[

σ ω
−ω σ

]

. (85)

Thus, we can define the similarity transformation matrix

T =
[

vr vi
]

∈ R2×2 (86)

and the matrix

Jc =

[

σ ω
−ω σ

]

(87)

such that

A = T Jc T
−1, eAt = T eJct T−1 . (88)

The matrix exponential eJct is easy to calculate. Notice that

Jc =

[

σ ω
−ω σ

]

= σI2 + S2

where

I2 =

[

1 0
0 1

]

and S2 =

[

0 ω
−ω 0

]
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is skew-symmetric, i.e. ST
2 = −S2. Thus,

eS2t =

[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]

.

This last result can be verified by differentiating with respect to time both sides
of the equation:

d

dt
eS2t = S2 e

S2t

and

d

dt

[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]

=

[

−ω sin(ωt) ω cos(ωt)
−ω cos(ωt) −ω sin(ωt)

]

=

[

0 ω
−ω 0

] [

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]

= S2 e
S2t .

Since σI2 S2 = S2 σI2, then

eJct = eσt
[

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

]

. (89)

22.5.1 Examples

Consider the system

ẋ(t) = Ax(t) (90)

where x ∈ R2 and

A =

[

−1.3̄ 1.6̄
−1.6̄ 1.3̄

]

.

The two eigenvalues ofA are λ1 = j and λ2 = −j. Their corresponding eigenvectors
are respectively

v1 =

[

0.4243 + 0.5657j
0 + 0.7071j

]

and v2 =

[

0.4243− 0.5657j
0− 0.7071j

]

.

Defining

T =

[

0.4243 0.5657
0 0.7071

]

(91)

we obtain A T2 = T2 Jc, where

Jc =

[

0 1
−1 0

]

.
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Thus,

eJct =

[

cos(t) sin(t)
− sin(t) cos(t)

]

and

eAt = T eJctT−1 =

[

0.4243 0.5657
0 0.7071

] [

cos(t) sin(t)
− sin(t) cos(t)

] [

2.3570 −1.8856
0 1.4142

]

.

Utilizing the coordinate transformation

x∗ = T−1x x = Tx∗ , (92)

where T is given by Eq. (91), we can obtain from Eqs. (92) and(90)

ẋ∗(t) =
{

T−1AT
}

x∗(t) (93)

= Jc x
∗(t) .

Consider now the initial condition

x(0) =

[

0.4243
0

]

= Tx∗(0) , x∗(0) =

[

1
0

]

.

The phase plot for x∗(t) is given by Fig. 8-(a), while that for x(t) is given by Fig.
8-(b).
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(a) ẋ∗ = Jcx
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Figure 8: Phase plots

22.6 Problems

1. Find (by hand calculation) the eigenvalues and eigenvectors of the matrix

A =






−3 −2 2
5 7 −5
5 8 −6
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Does eAt have all of its terms decaying to zero?

2. Read about the MatLab command eig (use the MatLab manual, the Matlab
primer, and/or the comnand >> help eig). Repeat problem 1 using eig,
and explain any differences that you get. If a matrix has distinct eigenvalues,
in what sense are the eigenvectors not unique?

3. Consider the differential equation ẋ(t) = Ax(t), where x(t) is (3× 1) and A
is from problem (1) above. Suppose that the initial condition is

x(0) =






1
−1
0






Write the initial condition as a linear combination of the eigenvectors, and
find the solution x(t) to the differential equation, written as a time-dependent,
linear combination of the eigenvectors.

4. Suppose that we have a 2nd order system (x(t) ∈ R2) governed by the
differential equation

ẋ(t) =

[

0 −2
2 −5

]

x(t)

Let A denote the 2× 2 matrix above.

(a) Find the eigenvalues an eigenvectors of A. In this problem, the eigen-
vectors can be chosen to have all integer entries (recall that eigenvectors
can be scaled)
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(b) On the grid below (x1/x2 space), draw the eigenvectors.

-

-

-

-

-

-

-

-

-

-6 6 6 6 6 6 6 6 6 6
6

- x1

x2

(c) A plot of x2(t) vs. x1(t) is called a phase-plane plot. The variable t is
not explicitly plotted on an axis, rather it is the parameter of the tick
marks along the plot. On the grid above, using hand calculations, draw
the solution to the equation ẋ(t) = Ax(t) for the initial conditions

x(0) =

[

3
3

]

, x(0) =

[

−2
2

]

, x(0) =

[

−3
−3

]

, x(0) =

[

4
2

]

HINT: Remember that if vi are eigenvectors, and λi are eigenvalues of
A, then the solution to ẋ(t) = Ax(t) from the initial condition x(0) =
∑2

i=1 αivi is simply

x(t) =
n∑

i=1

αie
λitvi

(d) Use Matlab to create a similar picture with many (say 20) different
initial conditions spread out in the x1, x2 plane

5. Suppose A is a real, n× n matrix, and λ is an eigenvalue of A, and λ is not
real, but λ is complex. Suppose v ∈ Cn is an eigenvector of A associated
with this eigenvalue λ. Use the notation λ = λR + jλI and v = vr + jvI for
the real and imaginary parts of λ, and v ( j means

√
−1).

(a) By equating the real and imaginary parts of the equation Av = λv, find
two equations that relate the various real and imaginary parts of λ and
v.

(b) Show that λ̄ (complex conjugate of λ) is also an eigenvalue of A. What
is the associated eigenvector?
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(c) Consider the differential equation ẋ = Ax for the A described above,
with the eigenvalue λ and eigenvector v. Show that the function

x(t) = eλRt [cos (λIt) vR − sin (λIt) vI ]

satisfies the differential equation. What is x(0) in this case?

(d) Fill in this sentence: If A has complex eigenvalues, then if x(t) starts
on the part of the eigenvector, the solution x(t) oscillates
between the and parts of the eigenvector,
with frequency associated with the part of the eigenvalue.
During the motion, the solution also increases/decreases exponentially,
based on the part of the eigenvalue.

(e) Consider the matrix A

A =

[

1 2
−2 1

]

It is possible to show that

A

[ 1√
2

1√
2

j 1√
2
−j 1√

2

]

=

[ 1√
2

1√
2

j 1√
2
−j 1√

2

] [

1 + 2j 0
0 1− 2j

]

Sketch the trajectory of the solution x(t) in R2 to the differential equa-

tion ẋ = Ax for the initial condition x(0) =

[

1
0

]

.

(f) Find eAt for the A given above. NOTE: eAt is real whenever A is real.
See the notes for tricks in making this easy.

6. A hoop (of radius R) is mounted vertically, and rotates at a constant angular
velocity Ω. A bead of mass m slides along the hoop, and θ is the angle that
locates the bead location. θ = 0 corresponds to the bead at the bottom of
the hoop, while θ = π corresponds to the top of the hoop.

The nonlinear, 2nd order equation (from Newton’s law) governing the bead’s
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motion is
mRθ̈ +mg sin θ + αθ̇ −mΩ2R sin θ cos θ = 0

All of the parameters m,R, g, α are positive.

(a) Let x1(t) := θ(t) and x2(t) := θ̇(t). Write the 2nd order nonlinear
differential equation in the state-space form

ẋ1(t) = f1 (x1(t), x2(t))
ẋ2(t) = f2 (x1(t), x2(t))

(b) Show that x̄1 = 0, x̄2 = 0 is an equilibrium point of the system.

(c) Find the linearized system

δ̇x(t) = Aδx(t)

which governs small deviations away from the equilibrium point (0, 0).

(d) Under what conditions (on m,R,Ω, g) is the linearized system stable?
Under what conditions is the linearized system unstable?

(e) Show that x̄1 = π, x̄2 = 0 is an equilibrium point of the system.

(f) Find the linearized system δ̇x(t) = Aδx(t) which governs small devia-
tions away from the equilibrium point (π, 0).

(g) Under what conditions is the linearized system stable? Under what
conditions is the linearized system unstable?

(h) It would seem that if the hoop is indeed rotating (with angular velocity
Ω) then there would other equilibrium point (with 0 < θ < π/2). Do
such equilibrium points exist in the system? Be very careful, and please
explain your answer.

(i) Find the linearized system δ̇x(t) = Aδx(t) which governs small devia-
tions away from this equilibrium point.

(j) Under what conditions is the linearized system stable? Under what
conditions is the linearized system unstable?
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23 Jordan Form

23.1 Motivation

In the last section, we saw that if A ∈ Fn×n has distinct eigenvalues, then there
exists an invertible matrix T ∈ Cn×n such that T−1AT is diagonal. In this sense,
we say that A is diagonalizable by similarity transformation (the matrix
T−1AT is called a similarity transformation of A).

Even some matrices that have repeated eigenvalues can be diagonalized. For in-
stance, take A = I2. Both of the eigenvalues of A are at λ = 1, yet A is diagonal
(in fact, any invertible T makes T−1AT diagonal).

On the other hand, there are other matrices that cannot be diagonalized. Take,
for instance,

A =

[

0 1
0 0

]

The characteristic equation of A is pA(λ) = λ2. Clearly, both of the eigenvalues of
A are equal to 0. Hence, if A can be diagonalized, the resulting diagonal matrix
would be the 0 matrix (recall that if A can be diagonalized, then the diagonal
elements are necessarily roots of the equation pA(λ) = 0). Hence, there would be
an invertible matrix T such that T−1AT = 02×2. Rearranging gives

[

0 1
0 0

] [

t11 t12
t21 t22

]

=

[

t11 t12
t21 t22

] [

0 0
0 0

]

Multiplying out both sides gives

[

t21 t22
0 0

]

=

[

0 0
0 0

]

But if t21 = t22 = 0, then T is not invertible. Hence, this 2 × 2 matrix A cannot
be diagonalized with a similarity transformation.

23.2 Details

It turns out that every matrix can be “almost” diagonalized using similarity trans-
formations. Although this result is not difficult to prove, it will take us too far
from the main flow of the course. The proof can be found in any decent linear
algebra book. Here we simply outline the facts.
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Definition: If J ∈ Cm×m appears as

J =












λ 1 0 · · · 0
0 λ 1 · · · 0

. . . . . .

λ 1
0 0 0 · · · λ












then J is called a Jordan block of dimension m, with associated eigenvalue λ.

Theorem: (Jordan Canonical Form) For everyA ∈ Fn×n, there exists an invertible
matrix T ∈ Cn×n such that

T−1AT =









J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...
0 0 · · · Jk









where each Ji is a Jordan block.

If J ∈ Fm×m is a Jordan block, then using the power series definition, it is straight-
forward to show that

eJt =











eλt teλt · · · tm−1

(m−1)!e
λt

0 eλt
. . . tm−2

(m−2)!e
λt

...
...

. . .
...

0 0 · · · eλt











Note that if Re (λ) < 0, then every element of eJt decays to zero, and if if Re (λ) ≥
0, then some elements of eJt diverge to ∞.

23.3 Significance

In general, there is no numerically reliable way to compute the Jordan form of a
matrix. It is a conceptual tool, which, among other things, shows us the extent to
which eAt contains terms other than exponentials.

Notice that if the real part of λ is negative, then for any finite integer m,

lim
t→∞

{

tmeλt
}

= 0 .

From this result, we see that even in the case of Jordan blocks, the signs of the
real parts of the eigenvalues of A determine the stability of the linear differential
equation

ẋ(t) = Ax(t)
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