
13 Control of Second-Order System

In this section, we analyze PD and PID control of a plant typical in mechanical
positioning systems. We also propose a possible design method. The nominal
model for the plant is

P (s) =
A

s(s+ p)

where A and p are fixed parameters.

13.1 PD control

First, consider PD control, specifically proportional control, with inner loop rate-
feedback. This is shown below (its just the PID diagram, with the integral action
removed)
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In terms of plant and controller parameters, the loop gain (at breaking point
marked by ×) is

L(s) =
A(KDs+KP )

s(s+ p)

In other words, from a stability point of view, the system is just unity-gain, negative
feedback around L.
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The closed-loop transfer function from R and D to Y is

Y (s) =
AKP

s2 + (AKD + p)s+ AKP

R(s) +
1

s2 + (AKD + p)s+ AKP

D(s)

The characteristic equation is

CE : s2 + (AKD + p)s+ AKP

Clearly, with two controller parameters, and a 2nd order closed-loop system, the
poles can be freely assigned. Using the (ξ, ωn) parametrization, we set the charac-
teristic equation to be

s2 + 2ξωns+ ω2
n

giving design equations

KP :=
ω2
n

A
, KD :=

2ξωn − p
A

In terms of the (ξ, ωn) parametrization, the loop gain and transfer functions are

L(s) =
(2ξωn − p)s+ ω2

n

s(s+ p)

Y (s) =
ω2
n

s2 + 2ξωn + ω2
n

R(s) +
1

s2 + 2ξωn + ω2
n

D(s) (66)

Although this is a 2nd order system, and most quantities can be computed an-
alytically, the formulae that arise are rather messy, and interpretation ends up
requiring plotting. Hence, we skip the analytic calculations, and simply numeri-
cally compute and plot interesting properties for different values of ωn, p and ξ.
Normalization is the key to displaying the data in a cohesive and minimal fashion.

For now, take p = 0 (you should take the time to write a MatLab script file
that duplicates these results for arbitrary p). In this case, it is possible to write
everything in terms of normalized frequency, all relative to ωn. This simultaneously
leads to a normalization in time (recall homework 8). Hence frequency responses
are plotted G(jω) versus ω

ωn
, and time responses plotted y(t) versus ωnt. We

consider a few typical values for ξ.
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The plots below are:

• Magnitude/Phase plots of Loop transfer function. These are normalized
in frequency, and show L(jω) versus ω

ωn
. From these, we can read off the

crossover frequencies and margins.
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• Magnitude/Phase plots of closed-loop R → Y transfer function. These are
normalized in frequency, and show GR→Y (jω) versus

ω
ωn
.
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• Magnitude plot of closed-loop D → Y These are normalized in frequency
and magnitude,, and show ω2

nGD→Y (jω) versus
ω
ωn
.
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• Unit step d → y responses. These are normalized both in time, and in
response. Hence the plot is ω2

ny(t) versus ωnt.
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• Unit step r → y responses. These are normalized in time, and show y(t)
versus ωnt.
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• Magnitude plot of closed-loop R → E. These are normalized in frequency,
and show GR→E(jω) versus

ω
ωn
.
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Some things to notice.
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• The r → y response has the canonical 2nd order response we have come to
know and love.

• The steady-state disturbance rejection properties are dependent on ωn. As
ωn increases, the effect of a disturbance d on the output y is decreased.
Hence, in order to improve the disturbance rejection characteristics, we need
to pick larger ωn.

• Depending on ξ, the gain-crossover frequency is between about 1.3ωn and
2.5ωn. So, using this controller architecture, the gain crossover frequency
must increase when the steady-state disturbance rejection is improved. The
phase margin varies between 53◦ and 83◦.

• There is no phase-crossover frequency, so as defined, the gain margin is infi-
nite.

• The closer that the complex frequency response remains to 1 (over a large
frequency range), the better the r → y response. The term “bandwidth” is
often used to mean the largest frequency ωB such that for all ω satisfying
0 ≤ ω ≤ ωB,

|1−GR→Y (jω)| ≤ 0.3

Be careful with the word “bandwidth.” Make sure whoever you are talking
to agrees on exactly what you both mean. Sometimes people use it to mean
the gain crossover frequency. Generally, the higher the bandwidth, the faster
the response, and better the disturbance rejection. Of course, its hard to
explicitly assess time-domain properties from a single number about a fre-
quency response, so use it carefully. The same types of intuition can also be
assessed by looking at the frequency range over which the transfer function
is GR→E small, and also verifying that it is not too large in another range.

13.2 PID Control

In order to reduce the steady-state effect of the disturbance, we next analyze
PID control, namely proportional+integral, with inner loop rate feedback. This is
shown below.
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The open-loop transfer function is

L(s) =
A(KDs

2 +KP s+KI)

s2(s+ p)

The closed-loop transfer function is

Y (s) =
A(KP s+KI)

s3 + (p+ AKD)s2 + AKP s+ AKI

R(s) +
s

s3 + (p+ AKD)s2 + AKP s+ AKI

D(s)

The closed-loop characteristic equation is

s3 + (p+ AKD)s
2 + AKP s+ AKI

With three controller parameters, and a 3rd order closed-loop system, the poles
can be freely assigned. Using the (ξ, ωn) parametrization, along with a 3rd pole at
−αωn, we set the characteristic equation to be

CE : (s2 + 2ξωns+ ω2
n)(s+ αωn)

Multiplied out, this gives

s3 + (2ξ + α)ωns
2 + (2ξα + 1)ω2

ns+ αω3
n

Choosing specific values of ξ, ωn and α yields appropriate controller gains, via the
design equations, which are obtained by simply equating coefficients,

KD =
(2ξ + α)ωn − p

A
, KP =

(2ξα + 1)ω2
n

A
, KI =

αω3
n

A

Note that for α¿ 1, the design equations giveKD andKP as in the PD case, along
with a very small integral control term. Hence, for a given pair (ξ, ωn), picking α
small and doing the full PID design is equivalent to doing the PD design for ξ and
ωn, and then simply adding a small amount of integral control as an afterthought.
That approach will leave a closed-loop pole near the origin, approximately at
s = −AKI

ω2
n
(= −αωn).

In terms of the parameters, the closed-loop transfer function is

Y (s) =
(2ξα + 1)ω2

ns+ αω3
n

(s2 + 2ξωns+ ω2
n)(s+ αωn)

R(s) +
s

(s2 + 2ξωns+ ω2
n)(s+ αωn)

D(s)

The steady-state gain from d to y is zero, due to the integral term. Again, take
the case p = 0. For clarity, let’s also pick ξ = 0.707, and only study the variation
in responses due to our choice of α. Again, the normalization with ωn is complete,
in both time and frequency, with frequency responses plotted versus ω

ωn
, and time

responses plotted versus ωnt.
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The plots below are:

• Magnitude/Phase plots of Loop transfer function
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• Magnitude/Phase plots of closed-loop R→ Y transfer function
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• Magnitude plot of closed-loop R→ E
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• Normalized Disturbance-to-output response
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• Unit step r → y responses
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• R→ E magnitude plots
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• For a given ωn and α > 1, both the crossover frequencies, and bandwidth
(look atGR→E) are much higher than the PD case. This is somewhat reflected
in quicker rise times and comparable settling times.

• The gain crossover frequency increases significantly with increasing α. For
instance, at α ≈ 0 (which is the same as the PD control) the crossover
frequency is about 1.7ωn, whereas for the crossover frequency jumps to ap-
proximately ≈ 5ωn at α ≈ 3.1. At the respective crossover frequencies, the
phase margins of eth PD and PID designs are similar.

• As α increases, the disturbance rejection properties change. Any (and every)
α > 0 gives perfect steady-state disturbance rejection, but the time-domain
and frequency domain properties for different α are quite different.

• It is instructive to calculate the residue associated with the pole at −αωn

when r(t) is a unit step. It is then fairly easy to explain the slow settling
times that occur for the intermediate values of α.

Remember, in typical applications, the uncertainty in the plant’s behavior increases
with increasing frequency, so designs that lead to higher crossover frequencies usu-
ally are required (for confidence) to have significantly larger phase margins. Usu-
ally, for a given problem, modeling innaccuracies and unknown dynamics typically
impose a maximum allowable crossover frequency, regardless of phase margin.
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Since some normalization is possible (using ωn), brute-force repeated simulation
allows us to approximately compute several functions. They are functions of p,
ξ and α. Here, we imagine that p is known, and fixed. We also propose to fix
ξ = 0.707, leaving only functions of α. In any given design situation, it may be
necessary to modify the choice of ξ, and recompute. The functions are plotted
below.

• normalized crossover frequency versus α
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• phase margin versus α
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• normalized rise time versus α
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• normalized settling time versus α
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• normalized peak response due to step disturbance versus α
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• normalized settling time due to step disturbance versus α
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• percentage overshoot versus α
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Suppose that these have been computed reasonably accurately, at sufficiently large
numbers of α values. Can we use all of this data to develop a foolproof design
method?

13.3 A Brute-Force Design Method

In designing the PID controller gains, the free parameters (at this point) to be cho-
sen are ξ, ωn and α. For fixed choice of ξ, we can precompute functions f1, f2, . . . , f5
of α such that

1. Gain crossover frequency (ωc) equals ωnf1(α)

2. Rise Time (tR) equals f2(α)/ωn

3. Settling Time (tS) equals f3(α)/ωn

4. Peak response to step disturbance (yd,max) equals f4(α)/ω
2
n

5. Settling time of step disturbance response (tS,d) equals f5(α)/ωn

So, given target requirements, we can fairly easily determine if there is a PID
controller which satisfies the objectives. Specifically, take objectives as

ωc ≤ ω̄c, tR ≤ t̄R, tS ≤ t̄S, yd,max ≤ ȳd,max, tS,d ≤ t̄S,d
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where the over-bar quantities are targets. Hence we search for values of ωn and α
which satisfy

gL(α) := max







f2(α)

t̄R
,
f3(α)

t̄S
,

√
√
√
√
f4(α)

ȳd,max

,
f5(α)

t̄S,d






≤ ωn ≤

ω̄c

f1(α)
=: gU(α)

Hence, we simply graph the two functions gL and gU , and see if there is any value
of α where gl(α) ≤ gu(α). If so, then simply pick an α∗ for which the inequality it
true, and pick any ω∗n such that

gL(α
∗) ≤ ω∗n ≤ gU(α

∗)

Moreover, since the overshoot reaches a maximum at α = 1, and falls off on both
sides, you can easily reduce the overshoot by moving to one side of the feasible
region.

13.4 Design Example

Consider the Lab, with single inertia, and pulley. The PD control worked reason-
ably well with ωn = 25, and ξ = 0.707. This implies that a phase margin of 65◦ at
a crossover frequency of 38 is adequate for stability robustness. So, in designing a
PID controller, let’s aim for a crossover frequency of 38, a rise time of 0.4 seconds,
settling time of 0.55 seconds, and a disturbance response settling time of 0.7 sec-
onds. We’ll set the peak disturbance response at 5, which essentially makes it not
relevant, and then we could tighten down on it if we wanted.

The constraints on α and ωn are shown below
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The circle is the point I chose, which MatLab tells me is

α = 0.36, ωn = 19.2

which is pretty similar to what we had working in the lab. Plots of the various
relevant quantities

• Open-Loop gain
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• Open-Loop Phase
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• Response to unit-step reference
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• Response to unit-step disturbance
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