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Feedback Fundamentals

5.1 Introduction

Fundamental properties of feedback systems will be investigated in this
Chapter. We begin in Section 5.2 by discussing the basic feedback loop and
typical requirements. This includes the ability to follow reference signals,
effects of load disturbances and measurement noise and the effects of pro-
cess variations. It turns out that these properties can be captured by a
set of six transfer functions, called the Gang of Six. These transfer func-
tions are introduced in Section 5.3. For systems where the feedback is
restricted to operate on the error signal the properties are characterized
by a subset of four transfer functions, called the Gang of Four. Properties
of systems with error feedback and the more general feedback configura-
tion with two degrees of freedom are also discussed in Section 5.3. It is
shown that it is important to consider all transfer functions of the Gang
of Six when evaluating a control system. Another interesting observation
is that for systems with two degrees of freedom the problem of response
to load disturbances can be treated separately. This gives a natural sepa-
ration of the design problem into a design of a feedback and a feedforward
system. The feedback handles process uncertainties and disturbances and
the feedforward gives the desired response to reference signals.

Attenuation of disturbances are discussed in Section 5.4 where it is
demonstrated that process disturbances can be attenuated by feedback
but that feedback also feeds measurement noise into the system. It turns
out that the sensitivity function which belongs to the Gang of Four gives
a nice characterization of disturbance attenuation. The effects of process
variations are discussed in Section 5.5. It is shown that their effects are
well described by the sensitivity function and the complementary sensi-
tivity function. The analysis also gives a good explanation for the fact that
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Figure 5.1 Block diagram of a basic feedback loop.

control systems can be designed based on simplified models. When dis-
cussing process variations it is natural to investigate when two processes
are similar from the point of view of control. This important nontrivial
problem is discussed in Section 5.6. Section 5.7 is devoted to a detailed
treatment of the sensitivity functions. This leads to a deeper understand-
ing of attenuation of disturbances and effects of process variations. A
fundamental result of Bode which gives insight into fundamental limi-
tations of feedback is also derived. This result shows that disturbances
of some frequencies can be attenuated only if disturbances of other fre-
quencies are amplified. Tracking of reference signals are investigated in
Section 5.8. Particular emphasis is given to precise tracking of low fre-
quency signals. Because of the richness of control systems the emphasis
on different issues varies from field to field. This is illustrated in Sec-
tion 5.10 where we discuss the classical problem of design of feedback
amplifiers.

5.2 The Basic Feedback Loop

A block diagram of a basic feedback loop is shown in Figure 5.1. The sys-
tem loop is composed of two components, the process P and the controller.
The controller has two blocks the feedback block C and the feedforward
block F. There are two disturbances acting on the process, the load distur-
bance d and the measurement noise n. The load disturbance represents
disturbances that drive the process away from its desired behavior. The
process variable x is the real physical variable that we want to control.
Control is based on the measured signal y, where the measurements are
corrupted by measurement noise n. Information about the process variable
x is thus distorted by the measurement noise. The process is influenced
by the controller via the control variable u. The process is thus a system
with three inputs and one output. The inputs are: the control variable
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Figure 5.2 An abstract representation of the system in Figure 5.1. The input u
represents the control signal and the input w represents the reference r, the load
disturbance d and the measurement noise n. The output y is the measured variables
and z are internal variables that are of interest.

u, the load disturbance d and the measurement noise n. The output is
the measured signal. The controller is a system with two inputs and one
output. The inputs are the measured signal y and the reference signal r
and the output is the control signal u. Note that the control signal u is an
input to the process and the output of the controller and that the mea-
sured signal is the output of the process and an input to the controller. In
Figure 5.1 the load disturbance was assumed to act on the process input.
This is a simplification, in reality the disturbance can enter the process
in many different ways. To avoid making the presentation unnecessar-
ily complicated we will use the simple representation in Figure 5.1. This
captures the essence and it can easily be modified if it is known precisely
how disturbances enter the system.

More Abstract Representations

The block diagrams themselves are substantial abstractions but higher
abstractions are sometimes useful. The system in Figure 5.1 can be rep-
resented by only two blocks as shown in Figure 5.2. There are two types
of inputs, the control u, which can be manipulated and the disturbances
w = (r, d, n), which represents external influences on the closed loop
systems. The outputs are also of two types the measured signal y and
other interesting signals z = (e, v, x). The representation in Figure 5.2
allows many control variables and many measured variables, but it shows
less of the system structure than Figure 5.1. This representation can be
used even when there are many input signals and many output signals.
Representation with a higher level of abstraction are useful for the devel-
opment of theory because they make it possible to focus on fundamentals
and to solve general problems with a wide range of applications. Care
must, however, be exercised to maintain the coupling to the real world
control problems we intend to solve.
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Chapter 5. Feedback Fundamentals

Disturbances

Attenuation of load disturbances is often a primary goal for control. This is
particularly the case when controlling processes that run in steady state.
Load disturbances are typically dominated by low frequencies. Consider
for example the cruise control system for a car, where the disturbances are
the gravity forces caused by changes of the slope of the road. These distur-
bances vary slowly because the slope changes slowly when you drive along
a road. Step signals or ramp signals are commonly used as prototypes for
load disturbances disturbances.

Measurement noise corrupts the information about the process vari-
able that the sensors delivers. Measurement noise typically has high fre-
quencies. The average value of the noise is typically zero. If this was not
the case the sensor will give very misleading information about the pro-
cess and it would not be possible to control it well. There may also be
dynamics in the sensor. Several sensors are often used. A common situa-
tion is that very accurate values may be obtained with sensors with slow
dynamics and that rapid but less accurate information can be obtained
from other sensors.

Actuation

The process is influenced by actuators which typically are valves, motors,
that are driven electrically, pneumatically, or hydraulically. There are of-
ten local feedback loops and the control signals can also be the reference
variables for these loops. A typical case is a flow loop where a valve is
controlled by measuring the flow. If the feedback loop for controlling the
flow is fast we can consider the set point of this loop which is the flow
as the control variable. In such cases the use of local feedback loops can
thus simplify the system significantly. When the dynamics of the actua-
tors is significant it is convenient to lump them with the dynamics of the
process. There are cases where the dynamics of the actuator dominates
process dynamics.

Design Issues

Many issues have to be considered in analysis and design of control sys-
tems. Basic requirements are

• Stability

• Ability to follow reference signals

• Reduction of effects of load disturbances

• Reduction of effects of measurement noise

• Reduction of effects of model uncertainties
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The possibility of instabilities is the primary drawback of feedback. Avoid-
ing instability is thus a primary goal. It is also desirable that the process
variable follows the reference signal faithfully. The system should also
be able to reduce the effect of load disturbances. Measurement noise is
injected into the system by the feedback. This is unavoidable but it is es-
sential that not too much noise is injected. It must also be considered that
the models used to design the control systems are inaccurate. The proper-
ties of the process may also change. The control system should be able to
cope with moderate changes. The focus on different abilities vary with the
application. In process control the major emphasis is often on attenuation
of load disturbances, while the ability to follow reference signals is the
primary concern in motion control systems.

5.3 The Gang of Six

The feedback loop in Figure 5.1 is influenced by three external signals,
the reference r, the load disturbance d and the measurement noise n.
There are at least three signals x, y and u that are of great interest
for control. This means that there are nine relations between the input
and the output signals. Since the system is linear these relations can be
expressed in terms of the transfer functions. Let X , Y, U , D, N R be the
Laplace transforms of x, y, u, d, n r, respectively. The following relations
are obtained from the block diagram in Figure 5.1

X = P
1+ PC

D − PC
1+ PC

N + PCF
1+ PC

R

Y = P
1+ PC

D + 1
1+ PC

N + PCF
1+ PC

R

U = − PC
1+ PC

D − C
1+ PC

N + CF
1+ PC

R.

(5.1)

To simplify notations we have dropped the arguments of all Laplace trans-
forms. There are several interesting conclusions we can draw from these
equations. First we can observe that several transfer functions are the
same and that all relations are given by the following set of six transfer
functions which we call the Gang of Six.

PCF
1+ PC

PC
1+ PC

P
1+ PC

CF
1+ PC

C
1+ PC

1
1+ PC

,
(5.2)
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Chapter 5. Feedback Fundamentals

The transfer functions in the first column give the response of process
variable and control signal to the set point. The second column gives the
same signals in the case of pure error feedback when F = 1. The transfer
function P/(1 + PC) in the third column tells how the process variable
reacts to load disturbances the transfer function C/(1 + PC) gives the
response of the control signal to measurement noise.

Notice that only four transfer functions are required to describe how
the system reacts to load disturbance and the measurement noise and
that two additional transfer functions are required to describe how the
system responds to set point changes.

The special case when F = 1 is called a system with (pure) error
feedback. In this case all control actions are based on feedback from the
error only. In this case the system is completely characterized by four
transfer functions, namely the four rightmost transfer functions in (5.2),
i.e.

PC
1+ PC

, the complementary sensitivity function

P
1+ PC

, the load disturbance sensitivity function

C
1+ PC

, the noise sensitivity function

1
1+ PC

, the sensitivity function

(5.3)

These transfer functions and their equivalent systems are called the
Gang of Four. The transfer functions have many interesting properties
that will be discussed in then following. A good insight into these prop-
erties are essential for understanding feedback systems. The load distur-
bance sensitivity function is sometimes called the input sensitivity func-
tion and the noise sensitivity function is sometimes called the output
sensitivity function.

Systems with Two Degrees of Freedom

The controller in Figure 5.1 is said to have two degrees of freedom be-
cause the controller has two blocks, the feedback block C which is part
of the closed loop and the feedforward block F which is outside the loop.
Using such a controller gives a very nice separation of the control problem
because the feedback controller can be designed to deal with disturbances
and process uncertainties and the feedforward will handle the response to
reference signals. Design of the feedback only considers the gang of four
and the feedforward deals with the two remaining transfer functions in
the gang of six. For a system with error feedback it is necessary to make
a compromise. The controller C thus has to deal with all aspects of the
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Figure 5.3 Step responses of the Gang of Six for PI control k = 0.775, Ti = 2.05
of the process P(s) = (s + 1)−4. The feedforward is designed to give the transfer
function (0.5s+ 1)−4 from reference r to output y.

problem.
To describe the system properly it is thus necessary to show the re-

sponse of all six transfer functions. The transfer functions can be repre-
sented in different ways, by their step responses and frequency responses,
see Figures 5.3 and 5.4.

Figures 5.3 and 5.4 give useful insight into the properties of the closed
loop system. The time responses in Figure 5.3 show that the feedforward
gives a substantial improvement of the response speed. The settling time
is substantially shorter, 4 s versus 25 s, and there is no overshoot. This is
also reflected in the frequency responses in Figure 5.4 which shows that
the transfer function with feedforward has higher bandwidth and that it
has no resonance peak.

The transfer functions CF/(1 + PC) and −C/(1 + PC) represent the
signal transmission from reference to control and from measurement noise
to control. The time responses in Figure 5.3 show that the reduction in
response time by feedforward requires a substantial control effort. The
initial value of the control signal is out of scale in Figure 5.3 but the
frequency response in 5.4 shows that the high frequency gain of PCF/(1+
PC) is 16, which can be compared with the value 0.78 for the transfer
function C/(1+ PC). The fast response thus requires significantly larger
control signals.

There are many other interesting conclusions that can be drawn from
Figures 5.3 and 5.4. Consider for example the response of the output to
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Figure 5.4 Gain curves of frequency responses of the Gang of Six for PI control
k = 0.775, Ti = 2.05 of the process P(s) = (s+1)−4 where the feedforward has been
designed to give the transfer function (0.5s+ 1)−4 from reference to output.

load disturbances expressed by the transfer function P/(1 + PC). The
frequency response has a pronounced peak 1.22 at ω max = 0.5 the corre-
sponding time function has its maximum 0.59 at tmax = 5.2. Notice that
the peaks are of the same magnitude and that the product of ω maxtmax =
2.6.

The step responses can also be represented by two simulations of the
process. The complete system is first simulated with the full two-degree-
of-freedom structure. The simulation begins with a step in the reference
signal, when the system has settled to equilibrium a step in the load dis-
turbance is then given. The process output and the control signals are
recorded. The simulation is then repeated with a system without feedfor-
ward, i.e. F = 1. The response to the reference signal will be different
but the response to the load disturbance will be the same as in the first
simulation. The procedure is illustrated in Figure 5.5.

A Remark

The fact that 6 relations are required to capture properties of the basic
feedback loop is often neglected in literature. Most papers on control only
show the response of the process variable to set point changes. Such a
curve gives only partial information about the behavior of the system. To
get a more complete representation of the system all six responses should
be given. We illustrate the importance of this by an example.
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Figure 5.5 Representation of properties of a basic feedback loop by step responses
in the reference at time 0, and at the process input at time 30. The dashed full lines
show the response for a system with error feedback F = 1, and the dashed lines
show responses for a system having two degrees of freedom.

EXAMPLE 5.1—ASSESSMENT OF A CONTROL SYSTEM

A process with the transfer function

P(s) = 1
(s+ 1)(s+ 0.02)

is controlled using error feedback with a controller having the transfer
function

C(s) = 50s+ 1
50s

The loop transfer function is

L(s) = 1
s(s+ 1)

Figure 5.6 shows that the responses to a reference signal look quite rea-
sonable. Based on these responses we could be tempted to conclude that
the closed loop system is well designed. The step response settles in about
10 s and the overshoot is moderate.

To explore the system further we will calculate the transfer functions
of the Gang of Six, we have

P(s)C(s)
1+ P(s)C(s) =

1
s2 + s+ 1

P(s)
1+ P(s)C(s) =

s
(s+ 0.02)(s2 + s+ 1)

C(s)
1+ P(s)C(s) =

(s+ 0.02)(s+ 1)
s2 + s+ 1

1
1+ P(s)C(s) =

s(s+ 1)
s2 + s+ 1
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Figure 5.6 Response of output y and control u to a step in reference r.

The responses of y and u to the reference r are given by

Y(s) = 1
s2 + s+ 1

R(s), U (s) = (s+ 1)(s+ 0.02)
s2 + s+ 1

R(s)

and the responses of y and u to the load disturbance d are given by

Y(s) = s
(s+ 0.02)(s2 + s+ 1)D(s), U (s) = − 1

s2 + s+ 1
D(s)

Notice that the process pole s = 0.02 is cancelled by a controller zero.
This implies that the loop transfer function is of second order even if the
closed loop system itself is of third order. The characteristic equation of
the closed loop system is

(s+ 0.02)(s2 + s+ 1) = 0

where the the pole s = −0.02 corresponds the process pole that is canceled
by the controller zero. The presence of the slow pole s = −0.02 which ap-
pears in the response to load disturbances implies that the output decays
very slowly, at the rate of e−0.02t. The controller will not respond to the
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Figure 5.7 Response of output y and control u to a step in the load disturbance.
Notice the very slow decay of the mode e−0.02t. The control signal does not respond
to this mode because the controller has a zero s = −0.02.

signal e−0.02t because the zero s = −0.02 will block the transmission of this
signal. This is clearly seen in Figure 5.7, which shows the response of the
output and the control signals to a step change in the load disturbance.
Notice that it takes about 200 s for the disturbance to settle. This can
be compared with the step response in Figure 5.6 which settles in about
10s.

The behavior illustrated in the example is typical when there are cancel-
lations of poles and zeros in the transfer functions of the process and the
controller. The canceled factors do not appear in the loop transfer function
and the sensitivity functions. The canceled modes are not visible unless
they are excited. The effects are even more drastic than shown in the
example if the canceled modes are unstable. This has been known among
control engineers for a long time and a there has been a design rule that
cancellation of slow or unstable modes should be avoided. Another view
of cancellations is given in Section 3.7.
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Figure 5.8 Open and closed loop systems subject to the same disturbances.

5.4 Disturbance Attenuation

The attenuation of disturbances will now be discussed. For that purpose
we will compare an open loop system and a closed loop system subject to
the disturbances as is illustrated in Figure 5.8. Let the transfer function of
the process be P(s) and let the Laplace transforms of the load disturbance
and the measurement noise be D(s) and N(s) respectively. The output of
the open loop system is

Yol = P(s)D(s) + N(s) (5.4)
and the output of the closed loop system is

Ycl = P(s)D(s) + N(s)
1+ P(s)C(s) = S(s)(P(s)D(s) + N(s)) (5.5)

where S(s) is the sensitivity function, which belongs to the Gang of Four.
We thus obtain the following interesting result

Ycl(s) = S(s)Yol(s) (5.6)
The sensitivity function will thus directly show the effect of feedback on
the output. The disturbance attenuation can be visualized graphically by
the gain curve of the Bode plot of S(s). The lowest frequency where the
sensitivity function has the magnitude 1 is called the sensitivity crossover
frequency and denoted by ω sc. The maximum sensitivity

Ms = max
ω
hS(iω )h = max

ω

∣∣∣ 1
1+ P(iω )C(iω )

∣∣∣ (5.7)
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Figure 5.9 Gain curve of the sensitivity function for PI control (k = 0.8, ki = 0.4)
of process with the transfer function P(s) = (s + 1)−4. The sensitivity crossover
frequency is indicated by + and the maximum sensitivity by o.
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Figure 5.10 Outputs of process with control (full line) and without control (dashed
line).

is an important variable which gives the largest amplification of the dis-
turbances. The maximum occurs at the frequency ω ms.

A quick overview of how disturbances are influenced by feedback is
obtained from the gain curve of the Bode plot of the sensitivity function.
An example is given in Figure 5.9. The figure shows that the sensitivity
crossover frequency is 0.32 and that the maximum sensitivity 2.1 occurs at
ω ms = 0.56. Feedback will thus reduce disturbances with frequencies less
than 0.32 rad/s, but it will amplify disturbances with higher frequencies.
The largest amplification is 2.1.

If a record of the disturbance is available and a controller has been
designed the output obtained under closed loop with the same disturbance
can be visualized by sending the recorded output through a filter with the
transfer function S(s). Figure 5.10 shows the output of the system with
and without control.
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1/Ms ω ms

ω sc

−1

Figure 5.11 Nyquist curve of loop transfer function showing graphical interpre-
tation of maximum sensitivity. The sensitivity crossover frequency ω sc and the fre-
quency ω ms where the sensitivity has its largest value are indicated in the figure.
All points inside the dashed circle have sensitivities greater than 1.

The sensitivity function can be written as

S(s) = 1
1+ P(s)C(s) =

1
1+ L(s) . (5.8)

Since it only depends on the loop transfer function it can be visualized
graphically in the Nyquist plot of the loop transfer function. This is illus-
trated in Figure 5.11. The complex number 1+ L(iω ) can be represented
as the vector from the point −1 to the point L(iω ) on the Nyquist curve.
The sensitivity is thus less than one for all points outside a circle with
radius 1 and center at −1. Disturbances of these frequencies are attenu-
ated by the feedback. If a control system has been designed based on a
given model it is straight forward to estimated the potential disturbance
reduction simply by recording a typical output and filtering it through the
sensitivity function.

Slow Load Disturbances

Load disturbances typically have low frequencies. To estimate their effects
on the process variable it is then natural to approximate the transfer
function from load disturbances to process output for small s, i.e.

Gxd(s) = P(s)
1+ P(s)C(s) � c0 + c1s+ c2s2 + ⋅ ⋅ ⋅ (5.9)
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5.5 Process Variations

The coefficients ck are called stiffness coefficients. This means that the
process variable for slowly varying load disturbances d is given by

x(t) = c0d(t) + c1
dd(t)

dt
+ c2

d2d(t)
dt2 + ⋅ ⋅ ⋅

For example if the load disturbance is d(t) = v0t we get

x(t) = c0v0t+ c1v0

If the controller has integral action we have c0 = 0 and x(t) = c1v0.

5.5 Process Variations

Control systems are designed based on simplified models of the processes.
Process dynamics will often change during operation. The sensitivity of a
closed loop system to variations in process dynamics is therefore a funda-
mental issue.

Risk for Instability

Instability is the main drawback of feedback. It is therefore of interest
to investigate if process variations can cause instability. The sensitivity
functions give a useful insight. Figure 5.11 shows that the largest sen-
sitivity is the inverse of the shortest distance from the point −1 to the
Nyquist curve.

The complementary sensitivity function also gives insight into allow-
able process variations. Consider a feedback system with a process P and
a controller C. We will investigate how much the process can be perturbed
without causing instability. The Nyquist curve of the loop transfer func-
tion is shown in Figure 5.12. If the process is changed from P to P + ∆P
the loop transfer function changes from PC to PC + C∆P as illustrated
in the figure. The distance from the critical point −1 to the point L is
h1 + Lh. This means that the perturbed Nyquist curve will not reach the
critical point −1 provided that

hC∆Ph < h1+ Lh

This condition must be valid for all points on the Nyquist curve. The
condition for stability can be written as

h∆P(iω )h
hP(iω )h <

1
hT(iω )h (5.10)
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Figure 5.12 Nyquist curve of a nominal loop transfer function and its uncertainty
caused by process variations ∆P.

A technical condition, namely that the perturbation ∆P is a stable trans-
fer function, must also be required. If this does not hold the encirclement
condition required by Nyquist’s stability condition is not satisfied. Also
notice that the condition (5.10) is conservative because it follows from
Figure 5.12 that the critical perturbation is in the direction towards the
critical point −1. Larger perturbations can be permitted in the other di-
rections.

This formula (5.10) is one of the reasons why feedback systems work
so well in practice. The mathematical models used to design control sys-
tem are often strongly simplified. There may be model errors and the
properties of a process may change during operation. Equation (5.10) im-
plies that the closed loop system will at least be stable for substantial
variations in the process dynamics.

It follows from (5.10) that the variations can be large for those fre-
quencies where T is small and that smaller variations are allowed for
frequencies where T is large. A conservative estimate of permissible pro-
cess variations that will not cause instability is given by

h∆P(iω )h
hP(iω )h <

1
Mt

where Mt is the largest value of the complementary sensitivity

Mt = max
ω
hT(iω )h = max

ω

∣∣∣ P(iω )C(iω )
1+ P(iω )C(iω )

∣∣∣ (5.11)

The value of Mt is influenced by the design of the controller. For example
if Mt = 2 gain variations of 50% and phase variations of 30○ are permitted
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without making the closed loop system unstable. The fact that the closed
loop system is robust to process variations is one of the reason why control
has been so successful and that control systems for complex processes can
indeed be designed using simple models. This is illustrated by an example.

EXAMPLE 5.2—MODEL UNCERTAINTY

Consider a process with the transfer function

P(s) = 1
(s+ 1)4

A PI controller with the parameters k = 0.775 and Ti = 2.05 gives a closed
loop system with Ms = 2.00 and Mt = 1.35. The complementary sensitivity
has its maximum for ω mt = 0.46. Figure 5.13 shows the Nyquist curve
of the transfer function of the process and the uncertainty bounds ∆P =
hPh/hT h for a few frequencies. The figure shows that

• Large uncertainties are permitted for low frequencies, T(0) = 1.

• The smallest relative error h∆P/Ph occurs for ω = 0.46.

• For ω = 1 we have hT(iω )h = 0.26 which means that the stability
requirement is h∆P/Ph < 3.8

• For ω = 2 we have hT(iω )h = 0.032 which means that the stability
requirement is h∆P/Ph < 31

The situation illustrated in the figure is typical for many processes, mod-
erately small uncertainties are only required around the gain crossover
frequencies, but large uncertainties can be permitted at higher and lower
frequencies. A consequence of this is also that a simple model that de-
scribes the process dynamics well around the crossover frequency is suf-
ficient for design. Systems with many resonance peaks are an exception
to this rule because the process transfer function for such systems may
have large gains also for higher frequencies.

Variations in Closed Loop Transfer Function

So far we have investigated the risk for instability. The effects of small
variation in process dynamics on the closed loop transfer function will
now be investigated. To do this we will analyze the system in Figure 5.1.
For simplicity we will assume that F = 1 and that the disturbances d
and n are zero. The transfer function from reference to output is given by

Y
R
= PC

1+ PC
= T (5.12)
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Figure 5.13 Nyquist curve of a nominal process transfer function P(s) = (s+1)−4

shown in full lines. The circles show the uncertainty regions h∆Ph = 1/hT h obtained
for a PI controller with k = 0.775 and Ti = 2.05 for ω = 0, 0.46 and 1.

Compare with (5.2). The transfer function T which belongs to the Gang
of Four is called the complementary sensitivity function. Differentiating
(5.12) we get

dT
dP

= C
(1+ PC)2 =

PC
(1+ PC)(1+ PC)P = S

T
P

Hence
d log T
d log P

= dT
dP

P
T
= S (5.13)

This equation is the reason for calling S the sensitivity function. The
relative error in the closed loop transfer function T will thus be small
if the sensitivity is small. This is one of the very useful properties of
feedback. For example this property was exploited by Black at Bell labs
to build the feedback amplifiers that made it possible to use telephones
over large distances.

A small value of the sensitivity function thus means that disturbances
are attenuated and that the effect of process perturbations also are negli-
gible. A plot of the magnitude of the complementary sensitivity function
as in Figure 5.9 is a good way to determine the frequencies where model
precision is essential.
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5.5 Process Variations

Constraints on Design

Constraints on the maximum sensitivities Ms and Mt are important to
ensure that closed loop system is insensitive to process variations. Typical
constraints are that the sensitivities are in the range of 1.1 to 2. This has
implications for design of control systems which are illustrated by an
example.

EXAMPLE 5.3—SENSITIVITIES CONSTRAIN CLOSED LOOP POLES

PI control of a first order system was discussed in Section 4.4 where
it was shown that the closed loop system was of second order and that
the closed loop poles could be placed arbitrarily by proper choice of the
controller parameters. The process and the controller are characterized
by

Y(s) = b
s+ a

U (s)

U (s) = −kY(s) + ki

s
(R(s) − Y(s))

where U , Y and R are the Laplace transforms of the process input, output
and the reference signal. The closed loop characteristic polynomial is

s2 + (a+ bk)s+ bki

requiring this to be equal to

s2 + 2ζ ω 0s+ω 2
0

we find that the controller parameters are given by

k = 2ζ ω 0 − 1
b

ki = ω 2
0

b

and there are no apparent constraints on the choice of parameters ζ and
ω 0. Calculating the sensitivity functions we get

S(s) = s(s+ a)
s2 + 2ζ ω 0s+ω 2

0

T(s) = (2ζ ω 0 − a)s+ω 2
0

s2 + 2ζ ω 0s+ω 2
0
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Figure 5.14 Magnitude curve for bode plots of the sensitivity function (above) and
the complementary sensitivity function (below) for ζ = 0.7, a = 1 and ω0/a = 0.1
(dashed), 1 (solid) and 10 (dotted).

Figure 5.14 shows clearly that the sensitivities will be large if the pa-
rameter ω 0 is chosen smaller than a. The equation for controller gain
also gives an indication that small values of ω 0 are not desirable because
proportional gain then becomes negative which means that the feedback
is positive.

Sensitivities and Relative Damping

For simple low order control systems we have based design criteria on the
patterns of the poles and zeros of the complementary transfer function. To
relate the general results on robustness to the analysis of the simple con-
trollers it is of interest to find the relations between the sensitivities and
relative damping. The complementary sensitivity function for a standard
second order system is given by

T(s) = ω 2
0

s2 + 2ζ ω 0s+ω 2
0

This implies that the sensitivity function is given by

S(s) = 1− T(s) = s(s+ 2ζ ω 0)
s2 + 2ζ ω 0s+ω 2

0
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0
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Straight forward but tedious calculations give.

Ms =
√

8ζ 2 + 1+ (4ζ 2 + 1)
√

8ζ 2 + 1

8ζ 2 + 1+ (4ζ 2 − 1)
√

8ζ 2 + 1

wms = 1+
√

8ζ 2 + 1
2

ω 0

Mt =
1/(2ζ

√
1− ζ 2) if ζ ≤

√
2/2

1 if ζ >
√

2/2

ω mt =
ω 0

√
1− 2ζ 2 if ζ ≤

√
2/2

0 if ζ >
√

2/2

(5.14)

The relation between the sensitivities and relative damping are shown in
Figure 5.15. The values ζ = 0.3, 0.5 and 0.7 correspond to the maximum
sensitivities Ms = 1.99, 1.47 and 1.28 respectively.

5.6 When are Two Processes Similar?

A fundamental issue is to determine when two processes are close. This
seemingly innocent problem is not as simple as it may appear. When dis-
cussing the effects of uncertainty of the process on stability in Section 5.5
we used the quantity

δ (P1, P2) = max
ω
hP1(iω ) − P2(iω )h (5.15)
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Figure 5.16 Step responses for systems with the transfer functions P1(s) =
1000/(s+ 1) and P2(s) = 107/((s+ 1)(s+ 100)2).

as a measure of closeness of two processes. In addition the transfer func-
tions P1 and P2 were assumed to be stable. This means conceptually that
we compare the outputs of two systems subject to the same input. This
may appear as a natural way to compare two systems but there are com-
plications. Two systems that have similar open loop behaviors may have
drastically different behavior in closed loop and systems with very differ-
ent open loop behavior may have similar closed loop behavior. We illus-
trate this by two examples.

EXAMPLE 5.4—SIMILAR IN OPEN LOOP BUT DIFFERENT IN CLOSED LOOP

Systems with the transfer functions

P1(s) = 1000
s+ 1

, P2(s) = 1000a2

(s+ 1)(s+ a)2

have very similar open loop responses for large values of a. This is il-
lustrated in Figure 5.16 which shows the step responses of for a = 100.
The differences between the step responses are barely noticeable in the
figure. The transfer functions from reference values to output for closed
loop systems obtained with error feedback with C = 1 are

T1 = 1000
s+ 1001

, T2 = 107

(s− 287)(s2 + 86s+ 34879)

The closed loop systems are very different because the system T1 is stable
and T2 is unstable.
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EXAMPLE 5.5—DIFFERENT IN OPEN LOOP BUT SIMILAR IN CLOSED LOOP

Systems with the transfer functions

P1(s) = 1000
s+ 1

, P2(s) = 1000
s− 1

have very different open loop properties because one system is unstable
and the other is stable. The transfer functions from reference values to
output for closed loop systems obtained with error feedback with C = 1
are

T1(s) = 1000
s+ 1001

T2(s) = 1000
s+ 999

which are very close.

These examples show clearly that to compare two systems by investigating
their open loop properties may be strongly misleading from the point
of view of feedback control. Inspired by the examples we will instead
compare the properties of the closed loop systems obtained when two
processes P1 and P2 are controlled by the same controller C. To do this
it will be assumed that the closed loop systems obtained are stable. The
difference between the closed loop transfer functions is

δ (P1, P2) =
∣∣∣ P1C
1+ P1C

− P2C
1+ P2C

∣∣∣ = ∣∣∣ (P1 − P2)C
(1+ P1C)(1+ P2C)

∣∣∣ (5.16)

This is a natural way to express the closeness of the systems P1 and P2,
when they are controlled by C. It can be verified that δ is a proper norm
in the mathematical sense. There is one difficulty from a practical point
of view because the norm depends on the feedback C. The norm has some
interesting properties.

Assume that the controller C has high gain at low frequencies. For
low frequencies we have

δ (P1, P2) � P1 − P2

P1P2C

If C is large it means that δ can be small even if the difference P1− P2 is
large. For frequencies where the maximum sensitivity is large we have

δ (P1, P2) � Ms1Ms2hC(P1 − P2)h

For frequencies where P1 and P2 have small gains, typically for high
frequencies, we have

δ (P1, P2) � hC(P1 − P2)h
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This equation shows clearly the disadvantage of having controllers with
large gain at high frequencies. The sensitivity to modeling error for high
frequencies can thus be reduced substantially by a controller whose gain
goes to zero rapidly for high frequencies. This has been known empirically
for a long time and it is called high frequency roll off.

5.7 The Sensitivity Functions

We have seen that the sensitivity function S and the complementary sen-
sitivity function T tell much about the feedback loop. We have also seen
from Equations (5.6) and (5.13) that it is advantageous to have a small
value of the sensitivity function and it follows from (5.10) that a small
value of the complementary sensitivity allows large process uncertainty.
Since

S(s) = 1
1+ P(s)C(s) and T(s) = P(s)C(s)

1+ P(s)C(s)
it follows that

S(s) + T(s) = 1 (5.17)
This means that S and T cannot be made small simultaneously. The loop
transfer function L is typically large for small values of s and it goes to
zero as s goes to infinity. This means that S is typically small for small s
and close to 1 for large. The complementary sensitivity function is close
to 1 for small s and it goes to 0 as s goes to infinity.

A basic problem is to investigate if S can be made small over a large
frequency range. We will start by investigating an example.

EXAMPLE 5.6—SYSTEM THAT ADMITS SMALL SENSITIVITIES

Consider a closed loop system consisting of a first order process and a
proportional controller. Let the loop transfer function

L(s) = P(s)C(s) = k
s+ 1

where parameter k is the controller gain. The sensitivity function is

S(s) = s+ 1
s+ 1+ k

and we have

hS(iω )h =
√

1+ω 2

1+ 2k+ k2 +ω 2
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This implies that hS(iω )h < 1 for all finite frequencies and that the sensi-
tivity can be made arbitrary small for any finite frequency by making k
sufficiently large.

The system in Example 5.6 is unfortunately an exception. The key feature
of the system is that the Nyquist curve of the process lies in the fourth
quadrant. Systems whose Nyquist curves are in the first and fourth quad-
rant are called positive real. For such systems the Nyquist curve never
enters the region shown in Figure 5.11 where the sensitivity is greater
than one.

For typical control systems there are unfortunately severe constraints
on the sensitivity function. Bode has shown that if the loop transfer has
poles pk in the right half plane and if it goes to zero faster than 1/s for
large s the sensitivity function satisfies the following integral∫ ∞

0
log hS(iω )hdω =

∫ ∞

0
log

1
h1+ L(iω )hdω = π

∑
Re pk (5.18)

This equation shows that if the sensitivity function is made smaller for
some frequencies it must increase at other frequencies. This means that
if disturbance attenuation is improved in one frequency range it will be
worse in other. This has been been called the water bed effect.

Equation (5.18) implies that there are fundamental limitations to what
can be achieved by control and that control design can be viewed as a
redistribution of disturbance attenuation over different frequencies.

For a loop transfer function without poles in the right half plane (5.18)
reduces to ∫ ∞

0
log hS(iω )hdω = 0

This formula can be given a nice geometric interpretation as shown in
Figure 5.17 which shows log hS(iω )h as a function of ω . The area over the
horizontal axis must be equal to the area under the axis.

Derivation of Bode’s Formula*

This is a technical section which requires some knowledge of the theory
of complex variables, in particular contour integration. Assume that the
loop transfer function has distinct poles at s = pk in the right half plane
and that L(s) goes to zero faster than 1/s for large values of s. Consider
the integral of the logarithm of the sensitivity function S(s) = 1/(1 +
L(s)) over the contour shown in Figure 5.18. The contour encloses the
right half plane except the points s = pk where the loop transfer function
L(s) = P(s)C(s) has poles and the sensitivity function S(s) has zeros. The
direction of the contour is counter clockwise.

201



Chapter 5. Feedback Fundamentals

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

ω

lo
g
hS
(iω
)h

Figure 5.17 Geometric interpretation of Bode’s integral formula (5.18).

pk

Figure 5.18 Contour used to prove Bode’s theorem.

∫
Γ

log(S(s))ds =
∫ −iω

iω
log(S(s))ds+

∫
R

log(S(s))ds+
∑

k

∫
γ

log(S(s))ds

= I1 + I2 + I3 = 0

where R is a large semi circle on the right and γ k is the contour starting
on the imaginary axis at s = Im pk and a small circle enclosing the pole
pk. The integral is zero because the function log S(s) is regular inside the
contour. We have

I1 = −i
∫ iR

−iR
log(S(iω ))dω = −2i

∫ iR

0
log(hS(iω )h)dω

because the real part of log S(iω ) is an even function and the imaginary
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part is an odd function. Furthermore we have

I2 =
∫

R
log(S(s))ds =

∫
R

log(1+ L(s))ds �
∫

R
L(s)ds

Since L(s) goes to zero faster than 1/s for large s the integral goes to
zero when the radius of the circle goes to infinity. Next we consider the
integral I3, for this purpose we split the contour into three parts X+, γ
and X− as indicated in Figure 5.18. We have∫

γ
log(S(s))ds =

∫
X+

log(S(s))ds+
∫

γ
log(S(s))ds+

∫
X−

log(S(s))ds

The contour γ is a small circle with radius r around the pole pk. The
magnitude of the integrand is of the order log r and the length of the
path is 2π r. The integral thus goes to zero as the radius r goes to zero.
Furthermore we have∫

X+
log(S(s))ds+

∫
X−

log(S(s))ds

=
∫

X+

(
log(S(s)) − log(S(s− 2π i))ds = 2π pk

Letting the small circles go to zero and the large circle go to infinity and
adding the contributions from all right half plane poles pk gives

I1 + I2 + I3 = −2i
∫ iR

0
log(hS(iω )h)dω +

∑
k

2π pk = 0.

which is Bode’s formula (5.18).

5.8 Reference Signals

The response of output y and control u to reference r for the systems in
Figure 5.1 having two degrees of freedom is given by the transfer functions

Gyr = PCF
1+ PC

= FT

Gur = CF
1+ PC

First we can observe that if F = 1 then the response to reference signals
is given by T . In many cases the transfer function T gives a satisfactory

203



Chapter 5. Feedback Fundamentals

response but in some cases it may be desirable to modify the response. If
the feedback controller C has been chosen to deal with disturbances and
process uncertainty it is straight forward to find a feedforward transfer
function that gives the desired response. If the desired response from
reference r to output y is characterized by the transfer function M the
transfer function F is simply given by

F = M
T
= (1+ PC)M

PC
(5.19)

The transfer function F has to be stable and it therefore follows that all
right half plane zeros of C and P must be zeros of M . Non-minimum phase
properties of the process and the controller therefore impose restrictions
on the response to reference signals. The transfer function given by (5.19)
can also be complicated so it may be useful to approximate the transfer
function.

Tracking of Slowly Varying Reference Signals

In applications such as motion control and robotics it may be highly de-
sirable to have very high precision in following slowly varying reference
signals. To investigate this problem we will consider a system with error
feedback. Neglecting disturbances it follows that

E(s) = S(s)R(s)

To investigate the effects of slowly varying reference signals we make a
Taylor series expansion of the sensitivity function

S(s) = e0 + e1s+ e2s2 + . . . .

The coefficients ek are called error coefficients. The output generated by
slowly varying inputs is thus given by

y(t) = r(t) − e0r(t) − e1
dr(t)

dt
− e2

d2r(t)
dt2 + . . . (5.20)

Notice that the sensitivity function is given by

S(s) = 1
1+ P(s)C(s)

The coefficient e0 is thus zero if P(s)C(s) � 1/s for small s, i.e. if the
process or the controller has integral action.
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EXAMPLE 5.7—TRACKING A RAMP SIGNALS

Consider for example a ramp input

r(t) = v0t.

It follows from (5.20) that the output is given by

y(t) = v0t− e0v0t− e1v0.

The error grows linearly if e0 �= 0. If e0 = 0 there is a constant error which
is equal to e1v0 in the steady state.

The example shows that a system where the loop transfer function has
an integrator there will be a constant steady state error when tracking
a ramp signal. The error can be eliminated by using feedforward as is
illustrated in the next example.

EXAMPLE 5.8—REDUCING TRACKING ERROR BY FEEDFORWARD

Consider the problem in Example 5.7. Assume that e0 = 0. Introducing
the feedforward transfer function

F = 1+ f1s (5.21)

we find that the transfer function from reference to output becomes

Gyr(s) = F(s)T(s) = F(s)(1− S(s))
= (1+ f1s)(1− e0 − e1s− e2s2 − . . .)
= 1− e0 + ( f1(1− e0) − e1)s+ (e2 − f1e2)s2 + . . .

If the controller has integral action it follows that e0 = 0. It then follows
that the tracking error is zero if f1 = e1. The compensator (5.21) implies
that the feedforward compensator predicts the output. Notice that two
coefficients have to be matched.

The error in tracking ramps can also be eliminated by introducing an
additional integrator in the controller as is illustrated in the next example.

EXAMPLE 5.9—REDUCING TRACKING ERROR BY FEEDBACK

Choosing F = 1 and a controller which gives a loop transfer function with
two integrators we have

L(s) � k
s2

for small s. This implies that e0 = e1 = 0 and e2 = 1/k and it follows from
(5.20) that there will be no steady state tracking error. There is, however,
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Figure 5.19 Step (above) and ramp (below) responses for a system with error
feedback having e0 = e1 = 0.

one disadvantage with a loop transfer function having two integrators
because the response to step signals will have a substantial overshoot.
The error in the step response is given by

E(s) = S(s)1
s

The integral of the error is

E(s)
s

= S(s) 1
s2

Using the final value theorem we find that

lim
t→∞

∫ t

0
e(τ )dτ = lim

s→0

sS(s)
s2 = 0

Since the integral of the error for a step in the reference is zero it means
that the error must have an overshoot. This is illustrated in Figure 5.19.
This is avoided if feedforward is used.

The figure indicates that an attempt to obtain a controller that gives
good responses to step and ramp inputs is a difficult compromise if the
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controller is linear and time invariant. In this case it is possible to resolve
the compromise by using adaptive controllers that adapt their behavior
to the properties of the input signal.

Constraints on the sensitivities will, in general, give restrictions on the
closed loop poles that can be chosen. This implies that when controllers
are designed using pole placements it is necessary to check afterwards
that the sensitivities have reasonable values. This does in fact apply to all
design methods that do not introduce explicit constraints on the sensitivity
functions.

5.9 Fundamental Limitations

In any field it is important to be aware of fundamental limitations. In this
section we will discuss these for the basic feedback loop. We will discuss
how quickly a system can respond to changes in the reference signal.
Some of the factors that limit the performance are

• Measurement noise

• Actuator saturation

• Process dynamics

Measurement Noise and Saturations

It seems intuitively reasonable that fast response requires a controller
with high gain. When the controller has high gain measurement noise is
also amplified and fed into the system. This will result in variations in
the control signal and in the process variable. It is essential that the fluc-
tuations in the control signal are not so large that they cause the actuator
to saturate. Since measurement noise typically has high frequencies the
high frequency gain Mc of the controller is thus an important quantity.
Measurement noise and actuator saturation thus gives a bound on the
high frequency gain of the controller and therefore also on the response
speed.

There are many sources of measurement noise, it can caused by the
physics of the sensor, in can be electronic. In computer controlled systems
it is also caused by the resolution of the analog to digital converter. Con-
sider for example a computer controlled system with 12 bit AD and DA
converters. Since 12 bits correspond to 4096 it follows that if the high
frequency gain of the controller is Mc = 4096 one bit conversion error will
make the control signal change over the full range. To have a reasonable
system we may require that the fluctuations in the control signal due
to measurement noise cannot be larger than 5% of the signal span. This
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means that the high frequency gain of the controller must be restricted
to 200.

Dynamics Limitations

The limitations caused by noise and saturations seem quite obvious. It
turns out that there may also be severe limitations due to the dynamical
properties of the system. This means that there are systems that are
inherently difficult or even impossible to control. It is very important
for designers of any system to be aware of this. Since systems are often
designed from static considerations the difficulties do not show up because
they are dynamic in nature. A brief summary of dynamic elements that
cause difficulties are summarized briefly.

It seems intuitively clear that time delay cause limitations in the re-
sponse speed. A system clearly cannot respond in times that are shorter
than the time delay. It follows from

e−sTd � 1− sTd/2
1+ sTd/2 =

s− 2/Td

s+ 2/Td
= s− z

s+ z
(5.22)

that a zero in the right half plane z can be approximated with a time
delay Td = 2/z and we may thus expect that zeros in the right half plane
also cause limitations. Notice that a small zero corresponds to a long time
delay.

Intuitively it also seems reasonable that instabilities will cause lim-
itations. We can expect that a fast controller is required to control an
unstable system.

Summarizing we can thus expect that time delays and poles and zeros
in the right half plane give limitations. To give some quantitative results
we will characterize the closed loop system by the gain crossover frequency
ω nc. This is the smallest frequency where the loop transfer function has
unit magnitude, i.e. hL(iω nc)h. This parameter is approximately inversely
proportional to the response time of a system. The dynamic elements that
cause limitations are time delays and poles and zeros in the right half
plane. The key observations are:

• A right half plane zero z limits the response speed. A simple rule of
thumb is

ω nc < 0.5z (5.23)
Slow RHP zeros are thus particularly bad.

• A time delay Td limits the response speed. A simple rule of thumb
is

ω ncTd < 0.4 (5.24)
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• A right half plane pole p requires high gain crossover frequency. A
simple rule of thumb is

ω nc > 2p (5.25)
Fast unstable poles require a high crossover frequency.

• Systems with a right half plane pole p and a right half plane zero z
cannot be controlled unless the pole and the zero are well separated.
A simple rule of thumb is

p > 6z (5.26)

• A system with a a right half plane pole and a time delay Td cannot
be controlled unless the product pTd is sufficiently small. A simple
rule of thumb is

pTd < 0.16 (5.27)

We illustrate this with a few examples.

EXAMPLE 5.10—BALANCING AN INVERTED PENDULUM

Consider the situation when we attempt to balance a pole manually. An
inverted pendulum is an example of an unstable system. With manual
balancing there is a neural delay which is about Td = 0.04 s. The transfer
function from horizontal position of the pivot to the angle is

G(s) = s2

s2 − n
Q

where n = 9.8 m/s2is the acceleration of gravity and Q is the length of the
pendulum. The system has a pole p =

√
n/Q. The inequality (5.27) gives

0.04
√
n/Q = 0.16

Hence, Q = 0.6 m. Investigate the shortest pole you can balance.

EXAMPLE 5.11—BICYCLE WITH REAR WHEEL STEERING

The dynamics of a bicycle was derived in Section 4.3. To obtain the model
for a bicycle with rear wheel steering we can simply change the sign of the
velocity. It then follows from (4.9) that the transfer function from steering
angle β to tilt angle θ is

P(s) = mV0Q
b

Js2 −mnl
−as+ V0

209



Chapter 5. Feedback Fundamentals

Notice that the transfer function depends strongly on the forward velocity
of the bicycle. The system thus has a right half plane pole at p =

√
mnQ/J

and a right half plane zero at z = V0/a, and it can be suspected that the
system is difficult to control. The location of the pole does not depend on
velocity but the the position of the zero changes significantly with velocity.
At low velocities the zero is at the origin. For V0 = a

√
mnQ/J the pole and

the zero are at the same location and for higher velocities the zero is to
the right of the pole. To draw some quantitative conclusions we introduce
the numerical values m = 70 kg, Q = 1.2 m, a = 0.7, J = 120 kgm2 and
V = 5 m/s, give z = V/a = 7.14 rad/s and p = ω 0 = 2.6 rad/s we find
that p = 2.6. With V0 = 5 m/s we get z = 7.1, and p/z = 2.7. To have a
situation where the system can be controlled it follows from (5.26) that
to have z/p = 6 the velocity must be increased to 11 m/s. We can thus
conclude that if the speed of the bicycle can be increased to about 10 m/s
so rapidly that we do not loose balance it can indeed be ridden.

The bicycle example illustrates clearly that it is useful to assess the funda-
mental dynamical limitations of a system at an early stage in the design.
If this had been done the it could quickly have been concluded that the
study of rear wheel steered motor bikes in 4.3 was not necessary.

Remedies

Having understood factors that cause fundamental limitations it is inter-
esting to know how they should be overcome. Here are a few suggestions.

Problems with sensor noise are best approached by finding the roots
of the noise and trying to eliminate them. Increasing the resolution of
a converter is one example. Actuation problems can be dealt with in a
similar manner. Limitations caused by rate saturation can be reduced by
replacing the actuator.

Problems that are caused by time delays and RHP zeros can be ap-
proached by moving sensors to different places. It can also be beneficial to
add sensors. Recall that the zeros depend on how inputs and outputs are
coupled to the states of a system. A system where all states are measured
has no zeros.

Poles are inherent properties of a system, they can only be modified
by redesign of the system.

Redesign of the process is the final remedy. Since static analysis can
never reveal the fundamental limitations it is very important to make an
assessment of the dynamics of a system at an early stage of the design.
This is one of the main reasons why all system designers should have a
basic knowledge of control.
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Figure 5.20 Block diagram of the feedback amplifier in Figure 2.9. Compare with
Figure 2.10

5.10 Electronic Amplifiers

There are many variations on the prototype problem discussed in Sec-
tion 5.2. To illustrate this we will discuss electronic amplifiers. Examples
of such amplifiers have been given several times earlier, see Section 1.8
and Example 2.3.

The key issues in amplifier design are gain, noise and process varia-
tions. The purpose of an electronic amplifier is to provide a high gain and
a highly linear input output characteristics. The main disturbance is elec-
trical noise which typically has high frequencies. There are variations in
the components that create nonlinearities and slow drift that are caused
by temperature variations. A nice property of feedback amplifiers that
differ from many other processes is that many extra signals are available
internally.

The difficulty of finding a natural block diagram representation of a
simple feedback amplifier was discussed in Example 2.3. Some alternative
block diagram representations were given in Figure 2.10. In particular
we noted the difficulty that there was not a one to one correspondence
between the components and the blocks. We will start by showing yet
another representation. In this diagram we have kept the negative gain
of the feedback loop in the forward path and the standard −1 block has
been replaced by a feedback. It is customary to use diagrams of this type
when dealing with feedback amplifiers. The generic version of the diagram
is shown in Figure 5.21. The block A represents the open loop amplifier,
block F the feedback and block H the feedforward. The blocks F and H
are represented by passive components.
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R2
R1+R2
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Figure 5.21 Generic block diagram of a feedback amplifier.

For the circuit in Figure 5.20 we have

F = R1

R1 + R2

H = R2

R1 + R2

notice that both F and H are less than one.

The Gain Bandwidth Product

The input-output relation for the system in Figure 5.21 is given by

LV2

LV1
= −G

where

G = AH
1+ AF

(5.28)
The transfer function of an operational amplifier can be approximated by

A(s) = b
s+ a

The amplifier has gain b/a and bandwidth a. The gain bandwidth product
is b. Typical numbers for a simple operational amplifier that is often used
to implement control systems, LM 741, are a = 50 Hz, b = 1 MHz. Other
amplifiers may have gain bandwidth products that are several orders of
magnitude larger.

Furthermore we have

F = R1

R1 + R2
, H = R2

R1 + R2

212



5.10 Electronic Amplifiers

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
2

10
4

10
6

ω

G
ai

n

Figure 5.22 Gain curves of the open loop amplifier (full lines) and the feedback
amplifier (dashed)

Combining this with the expression for A(s) in (5.28) gives

G = bR2

(R1 + R2)(s+ a) + bR1
� bR2

R2s+ bR1

where the approximation is obtained from the inequalities b >> a and
R2 >> R1. The closed loop system thus has gain R2 R1 and bandwidth
ω 0 = bR1/R2 and it follows that the gain bandwidth product is constant

Gain� Bandwidth = b

Notice that feedback does not change the gain bandwidth product. The
effect of feedback is simply to decrease the gain and increase the band-
width. This is illustrated in Figure 5.22 which shows the gain curves of
the open and closed loop systems. Also notice that the sensitivity of the
system is

S = 1
1+ AF

= (R1 + R2)(s+ a)
(R1 + R2)(s+ a) + bR1

� R2(s+ a)
R2s+ bR1

The high open loop gain of the amplifier is traded off for high bandwidth
and low sensitivity. This is some times expressed by saying that gain is the
hard currency of feedback amplifiers which can be traded for sensitivity
and linearity.

Sensitivity

It follows from (5.28) that

log G = log AH − log (1+ AF)
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Differentiating this expression we find that

d log G
d log A

= 1
1+ AF

d log G
d log F

= − AF
1+ AF

d log G
d log H

= 1

The loop transfer function is normally large which implies that it is only
the sensitivity with respect the amplifier that is small. This is, how-
ever, the important active part where there are significant variations.
The transfer functions F and H typically represent passive components
that are much more stable than the amplifiers.

Signal to Noise Ratio

The ratio between signal and noise is an important parameter for an
amplifier. Noise is represented by the signals n1 and n2 in Figure 5.21.
Noise entering at the amplifier input is more critical than noise at the
amplifier output. For an open loop system the output voltage is given by

Vol = N2 − A(N1 + HV1)

For a system with feedback the output voltage is instead given by

Vcl = 1
1+ AF

(
N2 − A(N1 + HV1)

) = 1
1+ AF

Vol

The signals will be smaller for a system with feedback but the signal to
noise ratio does not change.

5.11 Summary

Having got insight into some fundamental properties of the feedback loop
we are in a position to discuss how to formulate specifications on a control
system. It was mentioned in Section 5.2 that requirements on a control
system should include stability of the closed loop system, robustness to
model uncertainty, attenuation of measurement noise, injection of mea-
surement noise ability to follow reference signals. From the results given
in this section we also know that these properties are captured by six
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transfer functions called the Gang of Six. The specifications can thus be
expressed in terms of these transfer functions.

Stability and robustness to process uncertainties can be expressed by
the sensitivity function and the complementary sensitivity function

S = 1
1+ PC

, T = PC
1+ PC

.

Load disturbance attenuation is described by the transfer function from
load disturbances to process output

Gyd = P
1+ PC

= PS.

The effect of measurement noise is be captured by the transfer function

−Gun = C
1+ PC

= CS,

which describes how measurement noise influences the control signal. The
response to set point changes is described by the transfer functions

Gyr = FPC
1+ PC

= FT , Gur = FC
1+ PC

= FCS

Compare with (5.1). A significant advantage with controller structure
with two degrees of freedom is that the problem of set point response can
be decoupled from the response to load disturbances and measurement
noise. The design procedure can then be divided into two independent
steps.

• First design the feedback controller C that reduces the effects of
load disturbances and the sensitivity to process variations without
introducing too much measurement noise into the system

• Then design the feedforward F to give the desired response to set
points.
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