

Teaching CDS 101: Principles of Feedback and Control

Richard M. Murray

Hideo Mabuchi Michael Dickinson Doug MacMartin Eric Klavins Sean Humbert

Control and Dynamical Systems California Institute of Technology

5 December 2002

Outline

- I. Course overview
- II. Teaching mechanisms
- **III.** Future plans
- **IV.** Discussion

Course overview

CDS 101 is a new course on "Principles of Feedback and Control"

- Aimed at a broad audience of scientists and engineers
- Focused on teaching principles and computer tools (MATLAB based)
- Format:
 - Monday: powerpoint lecture on concepts, with examples and experiments
 - Friday: optional lectures by Caltech faculty on current applications

Co-taught with CDS 110, a traditional engineering course on control

• Monday lectures are shared; additional lectures on Wed for CDS 110

R. M. Murray, Caltech

Summary: Introduction to Feedback and Control

Control =

Sensing + Computation + Actuation

Feedback Principles

- Robustness to Uncertainty
- Design of Dynamics

Many examples of control and feedback in natural and engineered systems:

Fall 2002 Topic Overview

Wk	Date	Торіс	Concepts	Friday lecture
1	9/30	Introduction + administration	Feedback, control, mud cards	MATLAB tutorial
2	10/7	System modeling	ODEs, diff eqs, FSM + examples	Insect flt t→n (MD)
3	10/14	Stability and performance	Stability, global vs local, step/freq resp	Aerospace (UTRC?)
4	10/21	Linear systems	Matrix exp, e-values, linearization	Congestion Ctrl (EK)
5	10/28	Controllability + midterm	Controllability, state space feedback	Midterm review (SH)
6	11/4	Freq response, xfer functions	DGM on Wed?	Bio S/A (MD)
7	11/11	Loop stability	Nyquist	Keck/CELT (DGM)
8	11/18	Control design I	Loop shaping	Q fbk control (HM)
9	11/25	Control design II	PID Astrom	Thanksgiving
10	12/2	Robustness + final	DFT framework Garen	Final review (SH)

Course Text

- CDS 101: CDS Panel report, Astrom
- CDS 110: Astrom, Packard (?)

Course Software

• MATLAB/SIMULINK (heavy use)

CDS 101 Lecture Techniques

Powerpoint presentations

- Allows better presentation of main concepts, including pictures, graphics, simulations, videos, etc
- Copies of slides are available at the beginning of each lecture
- Presentations are available on the web, including movies

Videos

• Substantial use of videos in the lectures; mainly tied to Caltech research

Experiments

- Physical systems are used to illustrate the main concepts
- Shows that the theory we are talking about makes a difference in the real world
- Relatively limited use this term; plan to increase for next term (ala Ph 1)

CDS 101 Teaching Features

CDS Precourse

- 2 day tutorial on modeling, ODEs, linear algebra the week before classes start
- Designed to bring students up to speed on underlying math
- Attended by 25 students; mainly in biology/bioengineering

Course web page

• All course information (lectures, reading, homework) available via course homepage

Course Instructional Staff

- 4 co-instructors: course planning, optional lectures
- 5 TAs: Homework, office hours, mud cards, grading

Lecture Videos and Remote Instruction

• All lectures available in VHS and online to students

Student Feedback Mechanisms

• Mud cards (lectures); time spent on HW; e-mail to TAs, prof; course surveys (3)

Instructional Staff

Lecturer: Richard Murray (CDS)

• Overall course management

Co-Instructors

- Michael Dickinson (BE)
- Eric Klavins (CS)
- Hideo Mabuchi (Ph)
- Doug MacMartin (CDS)

Head TA: Sean Humbert (ME)

• Coordinate course infrastructure + TAs

TAs

- Lars Cremean (ME)
- Tim Chung (ME)
- Zhipu Jin (EE)
- Shreesh Mysore (CDS)

R. M. Murray, Caltech

30 Sep 02

Mud Cards

Mud cards

- 3 x 5 cards distributed at each lecture
- Describe "muddiest" part of the lecture
- Turn in cards at end of class
- Responses posted by 8 pm on day of lecture

Class FAQ list

• Searchable database of responses to mud cards and other questions from class

What does <u>closed loop</u> mean? You used this term without defining it. CDS 101: Principles of Feedback and Control Q Lecture 1: Introduction to Feedback and Control 30 September 2002 Reading Homework Software Lecture Lecture Overview This lecture provides an overview of the basic ideas in feedback and control, including the major principles of feedback and many examples of applications. The goal of this lecture is to introduce some of the basic ideas in feedback systems and provide examples that will allow students to identify and recognize control systems in their everyday world. CDS 101/110 course administration is also covered in the second half of the lecture. Lecture Presentation **Reading Material and Handouts** Handouts from lecture · Copy of lecture Course syllabus Homework #1 + course survey **Required reading**

R. M. Murray, Caltech

Student Surveys

Background Survey

• Identify year, options, courses taken, topics that students are familiar

Midterm Survey

• Evaluate teaching mechanisms + ask for comments on improvements

Final Survey

• Check on familiarity with topics, updated teaching mechamisms, comments

Summary and Next Steps

CDS 101 version 1.0 is shipped

- Very positive experience with first iteration of the class
- Format seemed to work well and was well received
- Major areas for improvement: slow down lectures, increased help with MATLAB

CDS 101 version 1.1 plans

- Add remote instruction component (with UTRC)
- Increased use of classroom experiments
- Continuous improvement on classroom processes

Discussion

- What other ideas should we consider?
- Are there tools for supporting the teaching methods we are using?
- How do we transfer these ideas to other classes?