

Panel on Future Directions in Control, Dynamics, and Systems

Richard M. Murray (chair) Caltech

<u>Outline</u>

- Overview of Panel
- Summary of Panel Findings
- Themes & Recommendations
- Next Steps & Timeline

http://www.cds.caltech.edu/~murray/cdspanel

Motivation for the Panel

Articulate the challenges and opportunities for the field

- Present a vision that can be used to inform high level decision makers of the importance of the field to future technological advances
- Identify possible changes in the way that research is funded and organized that may be needed to realize new opportunities
- Provide a compelling view of the field that continues to attract the brightest scientists, engineers, and mathematicians to the field

Respond to the changing nature of control, dynamics, and systems research

- Many new application areas where controls tools are playing a stronger role: biology, environment, materials, information, networks, ...
- Controls engineers taking on a much broader, systems-oriented role, while maintaining a rigorous approach and practical toolset

Panel Organization

Organizing Committee

Boyd Brockett Burns Doyle Murray Stein

Panel Composition

Karl Astrom Lund Institute of Technology	Siva Banda Air Force Research Lab	Stephen Boyd Stanford	Roger Brockett Harvard	John Burns Virginia Tech
Munther Dahleh MIT	John Doyle Caltech	John Guckenheimer Cornell	Charles Holland DDR&E	Pramod Khargonekar U. Michigan
P. S. Krishnaprasad U. Maryland	P. R. Kumar U. Illinois, Champagne- Urbana	Jerrold Marsden Caltech	Greg McRae MIT	George Meyer NASA Ames
	William Powers Ford	Gunter Stein Honeywell	Pravin Varaiya UC Berkeley	

R. M. Murray, Caltech

Panel on Future Directions in Control and Dynamical Systems 16-17 June 2000

Meeting Summary

Adam Arkin Kishan Baheti Siva Banda John Baras Stephen Boyd Richard Braatz Roger Brockett John Burns Jagdish Chandra Munther Dahleh John Doyle Brian Farrell Eric Feron Charlie Holland Jonathan How Dimitris Hristu Marc Jacobs Eric Justh Navin Khajeda Pramod Khargonekar Dan Koditschek P.S. Krishnaprasad P.R. Kumar Vijay Kumar Steven Low Greg McRae Steve Marcus Landis Markley Jerry Marsden Kristi Morgansen George Meyer Igor Mezic Richard Murray Andy Packard Tariq Samad Shankar Sastry Ben Shapiro Eduardo Sontag Anna Stefanopoulou Gunter Stein Claire Tomlin Allen Tannenbaum Pravin Varaiya Ram Venkataraman Kevin Wise

Overview of the Meeting

Friday

General Session – 8:30-11:00

- Overview of objectives, summary Fleming report
- Introductory talks by Doyle, Sastry, Brockett
- Discussion throughout talks focused on the role of control (who are we) and the necessary interaction with other groups

Breakout Groups – 11:00-4:30 pm

- Six groups with 4-8 people per group
- Desired output: 3 charts listing people, technologies areas, research issues, teaching and organizational needs

General Session – 4:30-5:30

- Presentation by each group of output
- Main themes: modeling, communications, computation, optimization, autonomy

Saturday

General Session - 8:15-10:00

- Who are we? Need to move beyond thinking just about the control law (usually very simple)
- What is our role? We are an essential element of a team needed to solve problems. We bring some unique tools
- How do we maintain our culture? Maintain rigor, don't abandon control

Breakout Groups - 10:15-noon

- Four groups with 6-10 people per group
- Desired output: 3 charts listing people, overarching themes, specific problems areas, research issues, vignettes

General Session - 1:00-4:00

- Presentation by each group of output
- Discussion of overarching themes, next steps

Introductory Session

Murray: Panel Meeting Overview

- Description of Panel
- Plan for the meeting

Burns: Fleming Report Overview

- How the report was produced and used
- Strengths and weakness of the report

Doyle: Complex Systems

- Dominant challenges:
 - Robustness of complex, interconnected dynamical systems and networks
 - "Unified theory" of control, communications, computing
- Role of control: robustness, interconnection, rigor, talent
- Applications: Turbulence, quantum systems, statistical physics, biological networks, engineering networks, volatility in financial markets, simulation-based design, ecosystems and global change, ...

Sastry: Embedded Systems

- Need to make case for fundamental theory
- Need to address societal problems
- Embedded systems (software and physics) presents an opportunity for more controls involvement
 - Correct by construction
 - Autonomous systems
 - Mapping distributed control to hardware

Brockett: Systems and Control

- The value of the systems point of view
 - The rigorous training
 - The confidence it gives people
- The need for better integration with CS
- Applications
 - Communications
 - Molecular biology
 - Web related algorithms
 - Materials science

Subpanel Report: Biology and Medicine

Adam Arkin	Munzer Dahleh	John Doyle
Eduardo Sontag	Allen Tannenbaum	Ram Venkataraman

Science of reverse (and forward) engineering biological control networks

- gene regulation and signal transduction
- hormonal, immunology, cardiovascular
- neuroscience, neuroengineering
- muscular, locomotion, prosthesis
- active sensing, vision, proprioception
- attention and consciousness
- group dynamics, population, epidemics

Figuring out what and how it works, and what we can do to affect it.

Systems technology and instrumentation for medicine/biomedical research

- Intelligent operation rooms and hospitals, from data to decision
- Systems-guided surgery and therapy
- Hardware and soft tissue integration
- Fluid flow control for medicine and biological assays
- Prosthesis

New Thrust: Biological Engineering

"Systems Biology"

- Many molecular mechanisms for biological organisms are characterized
- Missing piece: understanding of how network interconnection creates robust behavior from uncertain components in an uncertain environment
- Transition from organisms as genes, to organisms as networks of integrated chemical, electrical, fluid, and structural elements

Key features of biological systems

- Integrated control, communications, computing
- Reconfigurable, distributed control, built at molecular level

Design and analysis of biological systems

- Apply engineering principles to biological systems
- Systems level analysis is required
- Processing and flow information is key

Subpanel Report: Information and Networks

Kishan B	aheti	John B	aras	Stephe	n Boyd
Roger Brockett	Jagdish Cha	andra	Dimitris	Hristu	Marc Jacobs
P. R. K	umar	Steven	Low	Pravin	Varaiya

Networks, Information, and Systems/Control

- Ubiquitous networks (wireless, ...) transport data cheaply
- Cheap (embedded, integrated) sensors collect vast amounts of data
- Processing power plentiful

Networks for Control

- Distributed asynchronous
- Packet based
- Varying topology, delays, ...

If we get it right:

• We get a system with the resilience of a network and the performance of a current control system

We're cleverness limited

Complex, Multi-Scale Networks and Systems

Pervasive, ubiquitous, convergent networking

- Heterogeneous networks merging communications, computing, transportation, finance, utilities, manufacturing, health, consumer, entertainment, ...
- Robustness and reliability are the dominant challenges
- Need "unified field theory" of communications, computing, and control

Many applications

- Congestion control on the internet
- Power and transportation systems
- Financial and economic systems
- Quantum networks and computation
- Biological regulatory networks and evolution
- Ecosystems and global change

Subpanel Report: Transportation and Aerospace

Siva Banda	Jonatl	nan How	Eric J	Justh	Landis Markley
George Meyer	Kristi N	Iorgansen	Andy P	ackard	Anna Stefanopoulou
Gunter	Stein	Claire 7	Fomlin	Key	vin Wise

Themes

- Autonomy
- Global dynamic interconnectivity
 real-time
- Ultra-reliable control systems
 embedded software
- Multi-disciplinary teams
- Modeling for control
 - more than just $\dot{x} = f(x, u, p, w)$
 - analyzable accurate hybrid models

Technology Areas

- Air traffic control
- Vehicle management
- Mission/multi-vehicle management
- Command and control of battlefield - people in the loop
- Ground traffic control (air & ground)
- Automotive vehicle & engine control
- Topology/architecture (dynamic)
- Space vehicle clusters
- Autonomous control for deep space travel

Future Battlespace Systems

Subpanel Report: Materials, Processes, Environment

Richard Braatz	John Burns		Brian Farrell	Navin Khaneja	
Pramod Khargonekar	P. S. Krishn	laprasad Saria Sama	Greg McRae	Jerry Marsden	
Igor Mea Modeling • multi-scale, time and spa • model reduction • model identification • heterogeneous model int • hierarchical • uncertainty • role of data/statistics/noi • complex systems • exploiting problem struc Paradigm Shifts • data centric • coordinated control • complex systems • spatially multidisciplinat • control configured desig	zic T ice egration se ture ry teaming n	Con • a • a • s • d • d • d • a • h • u Exp • p • c • iii • n • d	ad Ben S nputation Igorithmic and softwar tructured algorithms istributed computing ynamic resource allow Igorithmic develops ADIFOR, optimic ierarchical/multiscancertainty/verification eriment/Validation hysical omputational hterface (with mode ew technology (sen istributed (control, second)	ware interfacing s g ocation ment zation, sensitivity de ion ion ling, computation) sor, etc) sensors)	
		A Marman Cal		14	

R. M. Murray, Caltech

Challenge: Control of Surface Morphology

Question: can control be used to modify surface morphology?

- Use unsteady processing conditions and *in situ* diagnostics to alter growth
- Provide more structured approach than existing techniques
- Can also be used to understand actuation of domain walls

Challenges

- Sensing of relevant characteristics
 - Nucleation events
 - Grain boundary features
 - Surface roughness
- Coupling between macro-scale actuation and micro-scale physics
- Models suitable for controllability analysis and control design

Control in an Information Rich World

- 1. Executive Summary
- 2. Overview of the Field
 - What is Control?
 - Control System Examples
 - The Increasing Role of Information-Based Systems
 - Opportunities and Challenges Now Facing Us
- 3. Applications, Opportunities and Challenges
 - Aerospace and Transportation
 - Information and Networks
 - Robotics and Intelligent Machines
 - Biology and Medicine
 - Materials and Processing
 - Other Applications
- 4. Education and Outreach
- 5. Recommendations

Panel Recommendations

- 1. Substantially increase research aimed at the *integration* of control, computer science, communications, and networking.
- 2. Substantially increase research in control at higher levels of decision making, moving toward enterprise level systems.
- 3. Explore high-risk, long-range applications of control to areas such as nanotechnology, quantum mechanics, electromagnetics, biology, and environmental science.
- 4. Maintain support for theory and interaction with mathematics, broadly interpreted.
- 5. Invest in new approaches to education and outreach for the dissemination of control concepts and tools to non-traditional audiences.

Next Steps

26 Apr 01: Report Released (!)

SIAM book available 10/02

- Will include high resolution images plus complete index
- Will be sent to congressional offices, S&T leaders, program managers
- Need ideas for a cover (send to <u>murray@cds.caltech.edu</u>)

Web version of report available

• Working on searchable HTML

http://www.cds.caltech.edu/~murray/cdspanel

FDC, 26 Apr 02

R. M. Murray, Caltech

Acknowledgement and Thanks

CDS Panel Writing Committee

Karl Astrom, Stephen Boyd, Roger Brockett, John Burns, John Doyle, Gunter Stein

Everyone who attend the meetings, sent in comments, publicized the activity

- 50+ participants in the June 2000 panel meeting
- 200+ subscribers to the cdspanel mailing list
- 500+ e-mails with support, criticism, and comments over the last two years

Special thanks to Marc Jacobs for his support of Dynamics and Control Research and encouraging the formation of the Panel.