

Richard M. Murray Control and Dynamical Systems California Institute of Technology

Outline

- I. CDS Panel Review
- II. Some Grand Challenges (& first steps)
- **III.** Future Directions for Control Theory

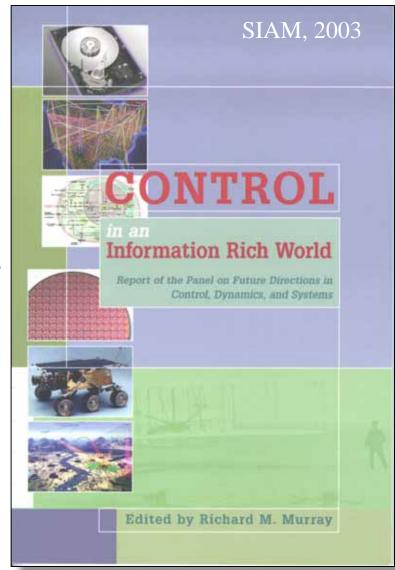
http://www.cds.caltech.edu/~murray/cdspanel

Motivation for the Panel (Apr 00)

Articulate the challenges and opportunities for the field

- Present a vision to inform high level decision makers of the importance of the field to future technological advances
- Identify possible changes in the way that research is funded and organized that may be needed to realize new opportunities
- Provide a compelling view of the field that continues to attract the brightest scientists, engineers, and mathematicians to the field

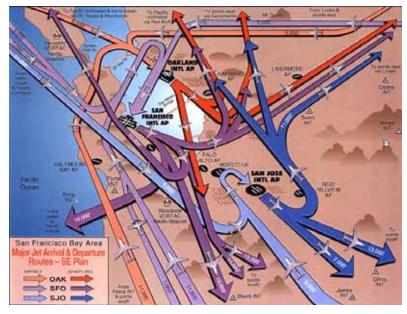
Respond to the changing nature of control, dynamics, and systems research


- Many new application areas where controls is playing a stronger role: biology, environment, materials, information, networks, ...
- Controls engineers taking on a much broader, systems-oriented role, while maintaining a rigorous approach and practical toolset

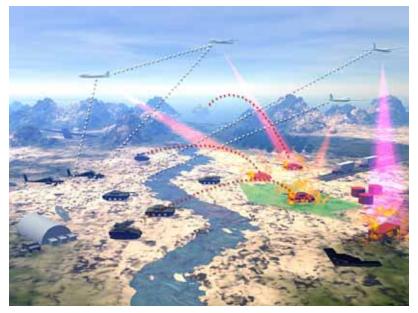
Control in an Information Rich World

- 1. Executive Summary
- 2. Overview of the Field
 - What is Control?
 - Control System Examples
 - Increasing Role of Information-Based Systems
 - Opportunities and Challenges

3. Applications, Opportunities & Challenges


- Aerospace and Transportation
- Information and Networks
- Robotics and Intelligent Machines
- Biology and Medicine
- Materials and Processing
- Other Applications
- 4. Education and Outreach
- 5. Recommendations

Transportation and Aerospace


Themes

- Autonomy
- Real-time, global, dynamic networks
- Ultra-reliable embedded systems
- Multi-disciplinary teams
- Modeling for control
 - more than just k = f(x, u, p, w)
 - analyzable accurate hybrid models

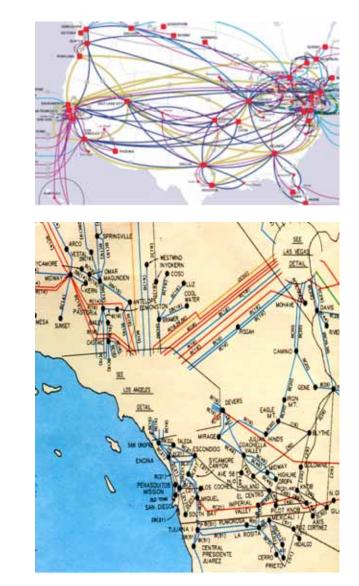
Technology Areas

- Air traffic control, vehicle management
- Mission/multi-vehicle management
- Command & control, human in the loop
- Ground traffic control (air & ground)
- Automotive vehicle & engine control
- Space vehicle clusters
- Autonomous control for deep space

CPC7, 8 Jan 06

R. M. Murray, Caltech

Information and Networks


Pervasive, ubiquitous, convergent networking

- Heterogeneous networks merging communications, computing, transportation, finance, utilities, manufacturing, health, entertainment, ...
- Robustness/reliability are dominant challenges
- Need "unified field theory" of communications, computing, and control

Many applications

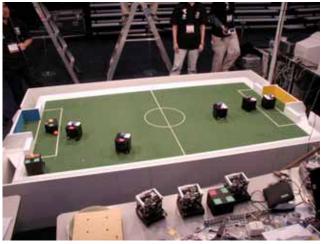
- Congestion control on the internet
- Power and transportation systems
- Financial and economic systems
- Quantum networks and computation
- Biological regulatory networks and evolution
- Ecosystems and global change

Control <u>of</u> the network Control <u>over</u> the network

Robotics and Intelligent Machines

Wiener, 1948: Cybernetics

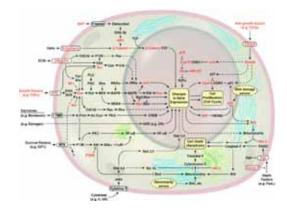
 Goal: implement systems capable of exhibiting highly flexible or ``intelligent" responses to changing circumstances

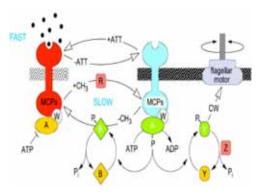

DARPA, 2003: Grand Challenge

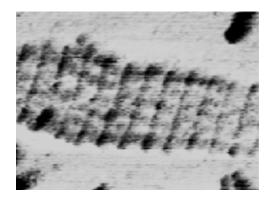
- LA to Las Vegas (400 km) in 10 hours or less
- Goal: implement systems capable of exhibiting highly flexible or ``intelligent" responses to changing circumstances

Biology and Medicine

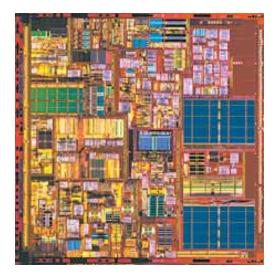
"Systems Biology"


- Many molecular mechanisms for biological organisms are characterized
- Missing piece: understanding of how network interconnection creates robust behavior from uncertain components in an uncertain environment
- Transition from organisms as genes, to organisms as networks of integrated chemical, electrical, fluid, and structural elements

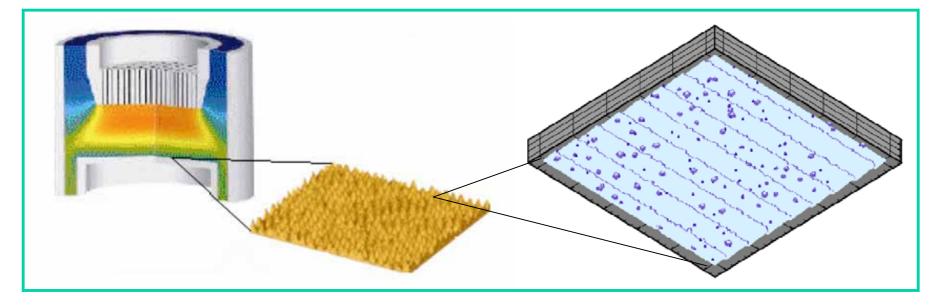

Key features of biological systems


- Integrated control, communications, computing
- Reconfigurable, distributed control, at molecular level

Design and analysis of biological systems


- Apply engineering principles to biological systems
- Systems level analysis is required
- Processing and flow of information is key

Materials and Processing

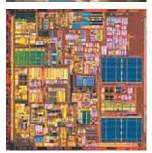


Multi-scale, multi-disciplinary modeling and simulation

- Coupling between macro-scale actuation and microscale physics
- Models suitable for control analysis and design

Increased use of in situ measurements

• Many new sensors available that generate real-time data about microstructural properties


CPC7, 8 Jan 06

CDS Panel Recommendations

- 1. Substantially increase research aimed at the integration of control, computer science, communications, and networking.
- 2. Substantially increase research in control at higher levels of decision making, moving toward enterprise level systems.
- 3. Explore high-risk, long-range applications of control to areas such as nanotechnology, quantum mechanics, electromagnetics, biology, and environmental science.
- 4. Maintain support for theory and interaction with mathematics, broadly interpreted.
- 5. Invest in new approaches to education and outreach for the dissemination of control concepts and tools to non-traditional audiences.

CDS Panel

2002-03

Some Grand Challenges for Control

- 1. Robotic Soccer Team capable of winning the World Cup
- 2. InternetRT[™] real-time control across the Internet
- 3. Dynamically Reconfigurable Air Traffic Control
- 4. Human Life Stabilization Bay (& personalized medicine)
- 5. Redesign the Feedback Control System of a Bacteria
- 6. Control 101 make control accessible to Bi, CS, Ec, ...
- 7. Slow Computing[™] PDA using 1 kHz (1 msec) devices
- 8. Write a 100,000+ line program that works correctly on first execution
- 9. Build a car capable of fully autonomous operations in urban environments

NSF workshop, 2003 NSF workshop, 2006

Example 1: Autonomous Driving (Alice)

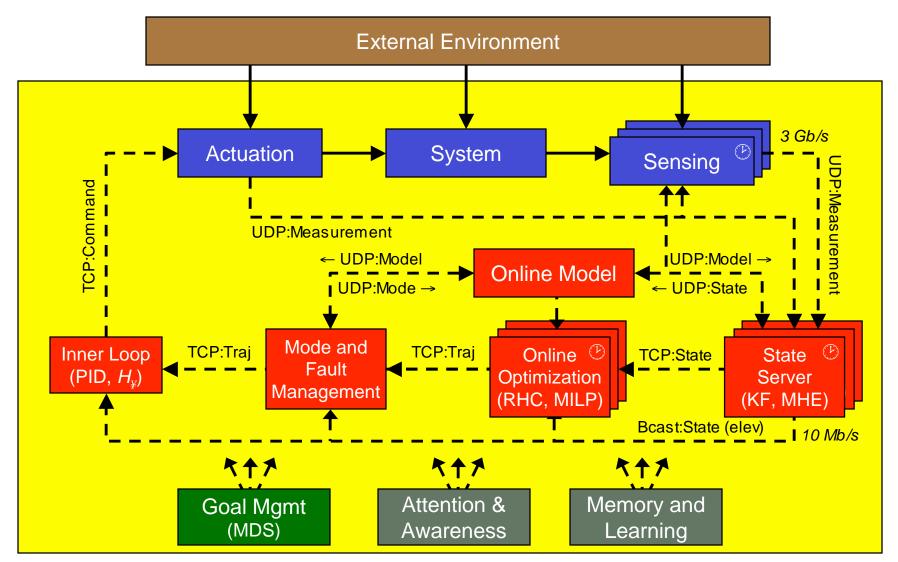
Team Caltech

- 50 students worked on Alice over 1 year
- Course credit through CS/EE/ME 75
- Summer team: 20 SURF students + 6 graduated seniors + 4 work study + 4 grads + 2 faculty + 6 volunteers (= ~40)

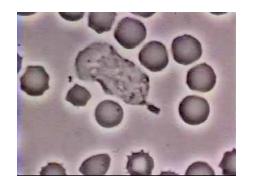
Alice


- 2005 Ford E-350 Van
- Sportsmobile 4x4 offroad package
- 5 cameras: 2 stereo pairs + roadfinding
- 5 LADAR units: long, medium*2, short, bumper
- 2 GPS units + 1 IMU (LN 200)
- 6 Dell 750 PowerEdge Servers (P4, 3GHz, gentoo linux)
- 1 IBM Quad Core AMD64 (fast!)
- 1 Gb/s switched ethernet

Software

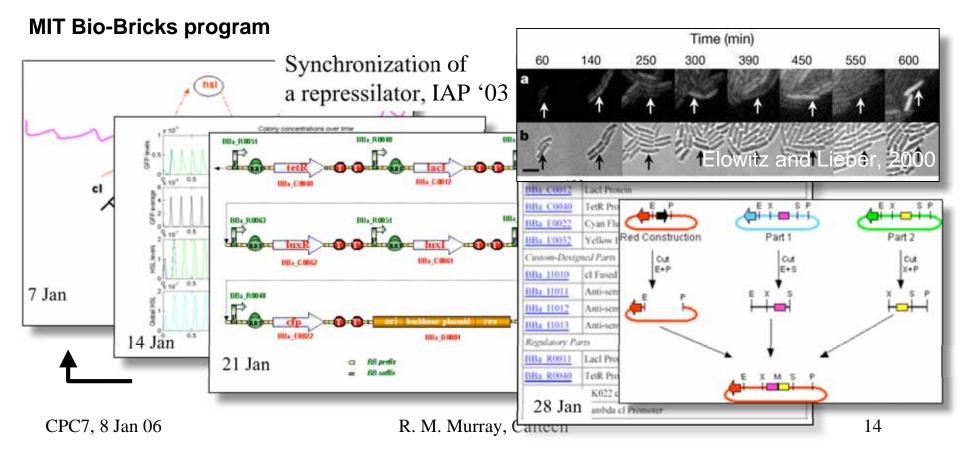

- 15 individual programs with ~50 threads of execution
- FusionMapper: integrate all sensor data into a speed map for planning
- PlannerModule: optimization-based planning over a 10-20 second horizon

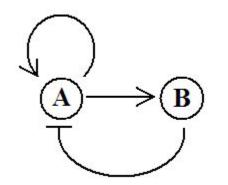
Alice



Networked Control Systems (ala Alice)

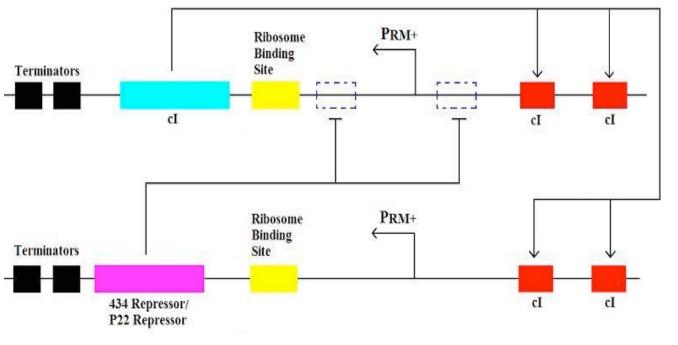
(with thanks to P.R. Kumar)


Example 2: Synthetic Biology


Crawling Neutrophil "Chasing" a Bacterium

- Human polymorphonuclear leukocyte (neutrophil) on blood film
- Red blood cells are dark in color, principally spherical shape.
- Neutrophil is "chasing" Staphylococcus aureus microorganisms, added to film.

Tom Stossel, June 22, 1999 http://expmed.bwh.harvard.edu/projects/motility/neutrophil.html

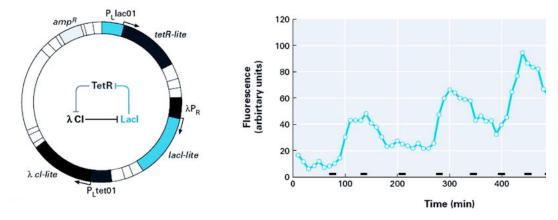


Example: Synthetic Biology Competition 2004

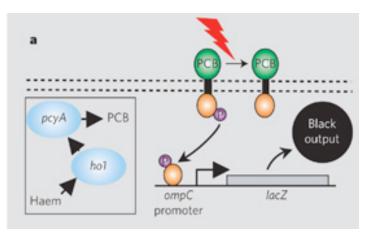
Boston U, Caltech, MIT, Princeton, U Texas

- Caltech: 7 undergrads + 3 grad students + 3 faculty
- Project #1: alternative oscillator designs
- Project #2: serial "adder" (finite state machine)
- Caltech faculty: Elowitz (Bi/APh), Smolke (ChE), M

Status:


- Two gene regulator circuits customed design, relying on simulations
- Two test parts sent out for fabrication; currently being tested
- BBa_I12019 3352 base pairs
- BBa_I12020 5171 base pairs

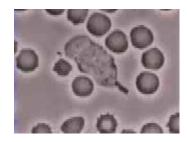
State of the Art: Synthetic Biology


Applications

• Represillator (Elowitz, 2000)

• Biological "polaroid" (UCSF, UT Austin, 2005)

??


- Some modeling, but mainly after the fact
- Only simple circuits are possible
- More progress on modeling existing systems (in nature)

Network Science NRC, 2005 Some Future Directions in Control Theory

- 1. Dynamics, spatial location and information propagation in networks
 - Integrated communications, computation and control
 - Distributed representations and coordinated operations
- 2. Verification and validation of large feedback systems
 - Proof certificates for complex embedded SW sysems
- 3. Design and synthesis of networks and protocols
 - What should the network topology look like (and why)
 - When do I use TCP vs UDP vs broadcast
- 4. Increased rigor and mathematical structure
 - How do we model & analyze Alice? MS Word? E. coli?
- 5. Abstracting common concepts across fields
 - Bio, Ec, CS ...
- 6. Robustness and security of networked control systems

