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Local Topological Equivalence of Dynamical
Systems

Two equilibria xe and ze

ẋ = f (x)

0 = f (xe)

ż = g(z)

0 = g(ze)

are locally topologically equivalent if there is a local
homeomorphism

z = h(x)

ze = h(xe)

which carries x-trajectories to z-trajectories preserving
orientation of time but not exact time.

Weaker than locally diffeomorphic so there are fewer
equivalence classes, e.g.,

ẋ = −x

ż = −z3

are locally topologically equivalent.
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An equilibrium is structurally stable if it is topolog-
ically equivalent to all nearby equilibria of all nearby
systems.

Theorem: (Grobman-Hartman) A hyperbolic equilib-
rium

ẋ = f (x)

0 = f (xe)

is topologically equivalent to its linear part

ż =
∂f

∂x
(xe)z

Corollary: An equilibrium is structurally stable iff it
is hyperbolic.

Theorem: (Poincaré) An equilibrium is formally equiv-
alent to its linear part if there are no resonances.

A normal form is a parameterized family of representa-
tives of the equivalence classes, usually the equivalence
is local diffeomorphic.
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Classical Bifurcation
Parameterized dynamics around an equilibrium

ẋ = f (x, µ)

x ∈ IRn, µ ∈ IR

Parameterized family of equilibria

0 = f (xe(µ), µ)

A classical bifurcation occurs at an equilibrium xe(µc)
which is not topologically conjugate to nearby equilibria
xe(µ).

In practice, a bifurcation occurs when an eigenvalue or
pair of eigenvalues hits the imaginary axis but it doesn’t
have to occur, e.g.,

ẋ = −µ2x− x3

Normal forms (relative to diffeomorphisms) are very
useful in classifying the simplest ways a parameterized
dynamics can bifurcate.
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Local Topological Equivalence of Control Sys-
tems

Two control systems with equilibria

ẋ = f (x, u), 0 = f (xe, ue)

ż = g(z, v), 0 = g(xe, ve)

are locally feedback equivalent if there is a local diffeo-
morphism

z = φ(x)

v = κ(x, u)

between the two systems at the equilibria.

Too fine an equivalence, too many equivalence classes.
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A coarser equivalence; two equilibria are locally, closed
loop, topologically equivalent if there are continuous
feedbacks

u = κ(x)

v = λ(z)

such that the closed loop systems are topologically equiv-
alent.

But this definition is not an equivalence relation (not
transitive) and it ignores the reason for closing the loop,
i.e., to stabilize the system.

Therfore we shall add the requirement that the feed-
backs locally asymptotically stabilize the systems.
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A equilibrium of a control system is structurally sta-
bilizable if it and all nearby equilibria of all nearby
systems are locally asymptotically stabilizable by con-
tinuous feedbacks.

Theorem: An equilibrium xe, ue of a control system
and its linear part

ż =
∂f

∂x
(xe, ue)z +

∂f

∂u
(xe, ue)v

are locally, closed loop, topologically equivalent if the
latter is linearly stabilizable.

Corollary: An equilibrium is structurally stabilizable
iff it is linearly stabilizable.

8



Control Bifurcation
Control systems have parameterized family of equilibria

0 = f (xe(µ), ue(µ))

x ∈ IRn, u ∈ IR

where typically µ = xi or µ = u.

A control system is locally parameterically stabilizable
at xe(µc), ue(µc) if there exists a continuous, parame-
terized feedback

u = k(x, µ)

which locally, asymptotically stabilizes the system to
xe(µ) for all µ near µc.

A control bifurcation occurs at an equilibrium xe, ue

which is not locally parameterically stabilizable.
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Perhaps this should be called ”stabilizability bifurca-
tion” but this is too awkward.

In practice, control bifurcations occur when the linear
part of the system loses stabilizability but not always,
e.g.,

ẋ = −u2x− x3

If a control system is locally parameterically stabilizable
then any other system that is feedback equivalent to it
is also locally parameterically stabilizable.

Normal forms (relative to the smooth feedback group)
are very useful in classifying the simplest ways a control
bifurcation can happen.

There is a close correspondence between the simplest
classical and control bifurcations.
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Classical Fold Bifurcation
aka Saddle Node Bifurcation

This is one of the two generic classical bifurcations when
µ ∈ IR. The other is the Hopf.

Normal Form:

ẋ1 = µ− x2
1 + . . .

ẋ2 = A2x2 + . . .

µ, x1 ∈ IR, x2 ∈ IRn−1, A2 hyperbolic

Equilibria:

x1 = ±√µ + O(µ), µ ≥ 0

x2 = O(µ)

Linearization around µth equilibria in displacement co-
ordinates:

ż1 = (∓√µ + O(µ))z1

ż2 = (A2 + O(µ))z2
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Control Fold Bifurcation
Only generic control bifurcation when u ∈ IR.

Normal Form:

ẋ1 = αx1 + γx1x21 + δx2
21 + O(x, u)3

ẋ2 = A2x2 + B2u + O(x, u)2

x1 ∈ IR, x2 ∈ IRn−1

Without loss of generality,

A2, B2 Brunovsky, α > 0, γ ≥ 0, δ ≥ 0

Equilibria:

x1 = −δ

α
µ2 + O(µ)3

x21 = µ

x2i = O(µ)2, i = 2, . . . , n− 1

u = O(µ)2
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Linearization around µth equilibrium in displacement
coordinates:

ż =



α + γµ 2δµ 0 . . . 0

0 A2

 + O(µ)2
 z

+




0
B2

 + O(µ)2
 v

ż = A(µ)z + Bv + . . .

[
An−1B . . . B

]
=


2δµ 0
0 I



The determinant of the controllability matrix changes
sign at µ = 0.
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Closed Loop leads to Fold Bifurcation

In displacement coordinates the feedback is

v = K1(µ)z1 + K2(µ)z2 + . . .

The linear part of the closed loop system at the µth

equilibrium is

ż =



α + γµ 2δµ 0 . . . 0
B2K1 A2 + B2K2

 + O(µ)2
 z

and so the closed loop system undergoes a classical fold
bifurcation near µ = 0.
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Classical Transcritical Bifurcation

Normal Form:

ẋ1 = µx1 − x2
1 + . . .

ẋ2 = A2x2 + . . .

µ, x1 ∈ IR, x2 ∈ IRn−1, A2 hyperbolic

Equilibria:

x1 = 0 or x1 = µ + O(µ)2

x2 = O(µ) x2 = O(µ)

Linearization around µth equilibria in displacement co-
ordinates:

ż1 = µz1 ż1 = (−µ + O(µ))z1
ż2 = (A2 + O(µ))z2 ż2 = (A2 + O(µ))z2
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Control Transcritical Bifurcation

Normal Form:

ẋ1 = βx2
1 + γx1x21 + δx2

21 + O(x, u)3

ẋ2 = A2x2 + B2u + O(x, u)2

x1, u ∈ IR, x2 ∈ IRn−1, A2, B2 Brunovsky

Equilibria:
Assume βx2

1 + γx1x21 + δx2
21 is nondegenerate.

If it is sign definite then x1 = 0, x2 = 0, u = 0 is an
isolated equilibrium.
Otherwise there are two curves of equilibria crossing at
x1 = 0, x2 = 0, u = 0.

Example: β = 1, γ = 0, δ = −1.

x1 = ±µ + O(µ)2

x21 = µ

x2i = O(µ)2, i = 2, . . . , n− 1

u = O(µ)2
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Linearization around µth equilibria in displacement co-
ordinates:

ż =



±2µ −2µ 0 . . . 0

0 A2

 + O(µ)2
 z

+




0
B2

 + O(µ)2
 v

[
An−1B . . . B

]
=


∓2µ 0

0 I



This could be called a ”Transcontrollable Bifurcation”
as the determinant of the controllability matrix changes
sign at µ = 0 on each of the branches of equilibria.
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Closed Loop leads to Transcritical Bifurcation

In displacement coordinates around the branch
x1 = µ + O(µ)2

v = K1(µ)z1 + K2(µ)z2 + . . .

ż =




2µ −2µ 0 . . . 0
B2K1 A2 + B2K2

 + O(µ)2
 z

Changes stability at µ = 0.
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Assume |K1| 6= |K21| then there is a second branch of
closed loop equilibria,

x1 = −κµ + O(µ)2

x21 = κµ

x2i = O(µ)2, i = 2, . . . , n− 1

u = O(µ)2

κ =
K21 + K1

K21 −K1

ż =



−2κµ 2κµ 0 . . . 0
B2K1 A2 + B2K2

 + O(µ)2
 z
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Classical Hopf Bifurcation

Normal Form:

ẋ1 =


µ −ν
ν µ

 x1 + λ|x1|2x1 + . . .

ẋ2 = A2x2 + . . .

µ ∈ IR, x1 ∈ IR2, x2 ∈ IRn−2, A2 hyperbolic, ν 6= 0

Equilibria:

x1 = 0

x2 = 0

λ is called the first Lyapunov coefficient.

The bifurcation is supercritical if λ < 0
and is subcritical if λ > 0.
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Control Hopf Bifurcation

Normal Form:

ẋ1 = A1x1 + Γx1x21 + ∆x2
21 . . .

ẋ2 = A2x2 + B2u + O(x, u)2

u ∈ IR, x1 ∈ IR2, x2 ∈ IRn−2, A2, B2 Brunovsky

A1 =


α −ν
ν α

 , Γ =


γ1

1 γ2
1

γ1
2 γ2

2

 , ∆ =


δ1
δ2

 , ν 6= 0

This is a control bifurcation if α > 0.

Equilibria:

x1 = −µ2A−1
1 ∆ + O(µ)3

x21 = µ

x2i = O(µ)2, i = 2, . . . , n− 1

u = O(µ)2
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Linearization around µth equilibrium in displacement
coordinates:

ż =



A1 + Γµ 2∆µ 0 . . . 0

0 A2

 + O(µ)2
 z

+




0
B2

 + O(µ)2
 v

ż = A(µ)z + Bv + . . .

[
An−1B . . . B

]
=


2A1∆µ 2∆µ 0

0 0 I


Exchange of controllability at µ = 0.

Closing the loop can lead to a classical fold, transcritical
or Hopf bifurcation.
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Control via Invariant Manifolds

Just as the center manifold theorem allows a reduction
of dimension, one can use feedback to linearly stabi-
lize the linearly controllable coordinates and also use
feedback to nonlinearly stabilize the uncontrollable co-
ordinates.

Example: Fold Bifurcation

ẋ1 = αx1 + γx1x21 + δx2
21 + O(x, u)3

ẋ2 = A2x2 + B2u + O(x, u)2

Since there is an exchange of controllability at µ = 0
we choose the piecewise linear feedback

u = K1|x1| + K2x2

where A2 + B2K2 is Hurwitz. We seek an invariant
manifold of the piecewise linear part of the closed loop
dynamics

x2 = G|x1| =



g1
...

gn−1


|x1|
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so that
d

dt
x2 = G

d

dt
|x1| + O(x)2

(A2 + B2K2) G|x1| + B2K1|x1| = Gα|x1|

This reduces to

gi = g1α
i−1, i = 1, . . . , n− 1

K1 = g1p2(α)

where p2(s) is the characteristic polynomial of
A2 + B2K2.

Since α > 0, p2(α) 6= 0 so we can parameterize the
first part of the feedback by g1 instead of K1.
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The dynamics on this manifold is

ẋ1 = αx1 + γg1x1|x1| + δg2
1|x1|2 + O(x)3

For α = 0 and small g1 < 0 we have stability.
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For small α > 0 and small g1 < 0 we have practical
stability. There are three critical points,

x1 ≈
±α

γg1 ∓ δg2
1
, x0

1 = 0
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Concluding Remarks

• Most of the above control bifurcations occur in the
various versions of the Moore-Greitzer equations for an
axial flow compressor.

• The above theory arose in abstracting and generaliz-
ing Moore-Greitzer.

• The theory of control bifurcations goes beyond the
paradigms of linear control theory by incorporating
paradigms from nonlinear dynamics.

• This theory of control bifurcations is a local theory.
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