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“Recent” Developments...

•Proliferation of actuators and sensors
•“Moore’s Law”
•Embedded systems, CAN, Bluetooth

MORE PERFORMANCE!!!



What is, and will be, needed:

•LARGE numbers of actuators and sensors
•Distributed computation
•Limited connectivity

•Robustness
•Performance
•Flexibility
•Etc.

NEW CONTROL TOOLS:



Modeling Interconnected Systems
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x(t),d(t), and z(t) live in a Hilbert space:
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Restrict the model class:  
local interconnection

WHY?

•Large class of systems, non-trivial behavior:
•vehicle platoons
•finite difference approximations of PDEs
•cellular automata, artificial life, etc.
•behavior of groups, swarm intelligence, etc.



Case Study: Formation Flight

• “satellite” type of applications
(Wolfe, Chichka and Speyer ‘96)

• MAVs and UAVs, extend range 

MOTIVATION

Use upwash created by neighbouring craft to provide extra lift
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EFFICIENCY OF FORMATION, ELLIPTICAL DISTRIBUTION

3 WINGS
5 WINGS
21 WINGS
101 WINGS

Lissaman and Shollenberger ‘70:  Formation Flight of Birds



Formation Flight Test-Bed
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Student: 
Jeff Fowler (ME)



Define shift operator S:

( )( , ) : ( , 1)u t s u t s= +S yields
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In general:

d(t,s), x(t, s), z(t, s) are FD,
F and H NL functions on FD space
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Special cases... ( , ) ( ( , ), ( , ), )
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“CONVENIENT” FRAMEWORK FOR CAPTURING STRUCTURE



Recent Related Work

Siljak et al:  Decentralized control of complex systems

Bamieh, Paganini, Dahleh:  Spatially Invariant Systems

Cheng, Yang, Zhai, Peterson, Savkin, …: Decentralized
Control of IC systems.

Stewart, Gorinevski, Dumont: Cross directional control



Control Design and Analysis: 
Spatially Invariant Systems
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d(t,s): disturbances
z(t,s): errors
y(t,s): sensors
u(t,s): actuators

Stable:

Contractive:

1( ) exists  and  is  bounded A −−∆
1( ) 1D C A B−+ − <∆

x Ax Bd
z Cx Dd
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Analysis
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Stable and Contractive if there exists XT>0 and structured XS s.t.
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Theorem:  There exists a controller such that the
analysis LMI is satisfied if and only if there exists 
structured Y and X such that
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Controller implementation:
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Control Architecture



Decentralized Control



Decentralized Control

Distributed Control



COMPARISON OF SPATIAL 2-NORM, ROLL ANGLE



STRONG NONLINEAR COUPLING

Nonlinear Spatially Interconnected Systems:
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•Backstepping
•etc.



Spatially and Time Varying Systems:
•non-homogeneous properties
•finite boundary conditions

• LTI to LTV machinery (GEIR DULLERUD, UIUC)
• method of images, etc.
• LPV tools

TOOLS:

Other ongoing work
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Framework for Robust Control of IC systems
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Delta contains temporal operators, spatial operators, AND uncertainty.

Model Reduction (CAROLYN BECK, UIUC)

Cross-Directional Control (GREG STEWART, HONEYWELL)

Student:  Ramu Chandra (AE)



Phased Array Antennas for AFV 
Communication

High data rate comms between AFVs and base station/satellite (video, etc.)

Difficult to put a high gain antenna on an AFV (size constraint)

Since it may be advantageous to use groups of AFVs anyway, why not 
investigate whether a formation of AFVs, each carrying a low gain antenna, 
could form a high gain phased array?

Student: Sean Breheny (ECE)



What is a Phased Array Antenna?
Exploit EM wave interference among several antennas.

For the simplest case (where array elements are not strongly coupled to 
each other), gain increases roughly linearly in N, the number of elements.

Channel capacity increases linearly when the maximum bandwidth is 
used. 



Example: Endfire Array


