1. Let V be the vector space of 2×2 matrices over \mathbb{R} with the inner product defined by
$\langle A, B \rangle = \text{trace}(AB^t)$ where B^t is the transpose of B.

(a) Find the norm of the vector $A = \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}$.

(b) Find the projection of A on the subspace spanned by B and C if
$B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

(c) Define a linear transformation $T : V \to V$ by $T(X) = AXC$ (matrix multiplication). Find the adjoint of T.

2. (a) Let $T : V \to V$ be a linear operator on a finite dimensional real inner product space V. We call T orthogonal when it preserves the inner product in the sense that $\langle Tu, Tv \rangle = \langle u, v \rangle$ for all $u, v \in V$. Prove that all of the eigenvalues of T have absolute value 1. Give an example in which there is an eigenvalue that is not 1.

(b) Find the Jordan canonical form of a linear operator $T : \mathbb{R}^3 \to \mathbb{R}^3$ that is both self-adjoint and orthogonal.

3. Let f be real valued and twice continuously differentiable on an interval $[a, b]$ and let \bar{x} be a simple zero of f in (a, b). Show that Newton’s method defined by
$x_{n+1} = g(x_n), \quad g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}$

is a contraction mapping in some neighborhood of \bar{x}. Show that the iterative sequence converges to \bar{x} for any x_0 sufficiently close to \bar{x}.