
Chapter 5

Linear Systems

Few physical elements display truly linear characteristics. For example the
relation between force on a spring and displacement of the spring is always
nonlinear to some degree. The relation between current through a resistor and
voltage drop across it also deviates from a straight-line relation. However, if
in each case the relation is ?reasonably? linear, then it will be found that the
system behavior will be very close to that obtained by assuming an ideal, linear
physical element, and the analytical simplification is so enormous that we
make linear assumptions wherever we can possibly to so in good conscience.

R. Cannon, Dynamics of Physical Systems, 1967 [Can03].

In Chapters 2–4 we considered the construction and analysis of differen-
tial equation models for physical systems. We placed very few restrictions
on these systems other than basic requirements of smoothness and well-
posedness. In this chapter we specialize our results to the case of linear,
time-invariant, input/output systems. This important class of systems is
one for which a wealth of analysis and synthesis tools are available, and
hence it has found great utility in a wide variety of applications.

5.1 Basic Definitions

We have seen several examples of linear differential equations in the ex-
amples of the previous chapters. These include the spring mass system
(damped oscillator) and the operational amplifier in the presence of small
(non-saturating) input signals. More generally, many physical systems can
be modeled very accurately by linear differential equations. Electrical cir-
cuits are one example of a broad class of systems for which linear models can
be used effectively. Linear models are also broadly applicable in mechani-
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144 CHAPTER 5. LINEAR SYSTEMS

cal engineering, for example as models of small deviations from equilibria in
solid and fluid mechanics. Signal processing systems, including digital filters
of the sort used in CD and MP3 players, are another source of good exam-
ples, although often these are best modeled in discrete time (as described in
more detail in the exercises).

In many cases, we create systems with linear input/output response
through the use of feedback. Indeed, it was the desire for linear behav-
ior that led Harold S. Black, who invited the negative feedback amplifier,
to the principle of feedback as a mechanism for generating amplification.
Almost all modern single processing systems, whether analog or digital, use
feedback to produce linear or near-linear input/output characteristics. For
these systems, it is often useful to represent the input/output characteristics
as linear, ignoring the internal details required to get that linear response.

For other systems, nonlinearities cannot be ignored if one cares about
the global behavior of the system. The predator prey problem is one exam-
ple of this; to capture the oscillatory behavior of the coupled populations
we must include the nonlinear coupling terms. However, if we care about
what happens near an equilibrium point, it often suffices to approximate
the nonlinear dynamics by their local linearization, as we already explored
briefly in Section 4.3. The linearization is essentially an approximation of
the nonlinear dynamics around the desired operating point.

Linearity

We now proceed to define linearity of input/output systems more formally.
Consider a state space system of the form

dx

dt
= f(x, u)

y = h(x, u),
(5.1)

where x ∈ R
n, u ∈ R

p and y ∈ R
q. As in the previous chapters, we will

usually restrict ourselves to the single input, single output case by taking
p = q = 1. We also assume that all functions are smooth and that for a
reasonable class of inputs (e.g., piecewise continuous functions of time) that
the solutions of equation (5.1) exist for all time.

It will be convenient to assume that the origin x = 0, u = 0 is an
equilibrium point for this system (ẋ = 0) and that h(0, 0) = 0. Indeed, we
can do so without loss of generality. To see this, suppose that (xe, ue) 6= (0, 0)
is an equilibrium point of the system with output ye = h(xe, ue) 6= 0. Then
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we can define a new set of states, inputs, and outputs

x̃ = x− xe ũ = u− ue ỹ = y − ye

and rewrite the equations of motion in terms of these variables:

d

dt
x̃ = f(x̃+ xe, ũ+ ue) =: f̃(x̃, ũ)

ỹ = h(x̃+ xe, ũ+ ue) − ye =: h̃(x̃, ũ).

In the new set of variables, we have that the origin is an equilibrium point
with output 0, and hence we can carry our analysis out in this set of vari-
ables. Once we have obtained our answers in this new set of variables, we
simply have to remember to “translate” them back to the original coordi-
nates (through a simple set of additions).

Returning to the original equations (5.1), now assuming without loss of
generality that the origin is the equilibrium point of interest, we write the
output y(t) corresponding to initial condition x(0) = x0 and input u(t) as
y(t;x0, u). Using this notation, a system is said to be a linear input/output
system if the following conditions are satisfied:

(i) y(t;αx1 + βx2, 0) = αy(t;x1, 0) + βy(t;x2, 0)

(ii) y(t;αx0, δu) = αy(t;x0, 0) + δy(t; 0, u)

(iii) y(t; 0, δu1 + γu2) = δy(t; 0, u1) + γy(t; 0, u2).

Thus, we define a system to be linear if the outputs are jointly linear in the
initial condition response and the forced response. Property (ii) is the usual
decomposition of a system response into the homogeneous response (u = 0)
and the particular response (x0 = 0). Property (iii) is the formal definition
of the the principle of superposition illustrated in Figure 5.1.

Example 5.1 (Scalar system). Consider the first order differential equation

dx

dt
= ax+ u

y = x

with x(0) = x0. Let u1 = A sinω1t and u2 = B cosω2t. The homogeneous
solution the ODE is

xh(t) = eatx0
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Figure 5.1: Illustration of the principle of superposition. The output corresponding
to u1 + u2 is the sum of the outputs y1 and y2 due to the individual inputs.

and the two particular solutions are

x1(t) = −A−ω1e
at + ω1 cosω1t+ a sinω1t

a2 + ω2
1

x2(t) = B
aeat − a cosω2t+ ω2 sinω2t

a2 + ω2
2

.

Suppose that we now choose x(0) = αx0 and u = u1+u2. Then the resulting
solution is

x(t) = eat

(

αx(0) +
Aω1

a2 + ω2
1

+
Ba

a2 + ω2
2

)

−A
ω1 cosω1t+ a sinω1t

a2 + ω2
1

+B
−a cosω2t+ ω2 sinω2t

a2 + ω2
2

(5.2)

(to see this, substitute the equation in the differential equation). Thus, the
properties of a linear system are satisfied for this particular set of initial
conditions and inputs. ∇

We now consider a differential equation of the form

dx

dt
= Ax+Bu

y = Cx+Du,
(5.3)

where A ∈ R
n×n is a square matrix, B ∈ R

n is a column vector of length
n, C is a row vector of width n and D is a scalar. (In the case of a multi-
input systems, B, C and D becomes a matrices of appropriate dimension.)
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Equation (5.3) is a system of linear, first order, differential equations with
input u, state x and output y. We now show that this system is a linear
input/output system, in the sense described above.

Proposition 5.1. The differential equation (5.3) is a linear input/output
system.

Proof. Let xh1(t) and xh2(t) be the solutions of the linear differential equa-
tion (5.3) with input u(t) = 0 and initial conditions x(0) = x01 and x02,
respectively, and let xp1(t) and xp2(t) be the solutions with initial condition
x(0) = 0 and inputs u1(t), u2(t) ∈ R. It can be verified by substitution that
the solution of equation (5.3) with initial condition x(0) = αx01 + βx02 and
input u(t) = δu1 + γu2 and is given by

x(t) =
(
αxh1(t) + βxh2(t)

)
+
(
δxp1(t) + γxp2(t)

)
.

The corresponding output is given by

y(t) =
(
αyh1(t) + βyh2(t)

)
+
(
δyp1(t) + γyp2(t)

)
.

By appropriate choices of α, β, δ and γ, properties (i)–(iii) can be verified.

As in the case of linear differential equations in a single variable, we
define the solution xh(t) with zero input as the homogeneous solution and
the solution xp(t) with zero initial condition as the particular solution. Fig-
ure 5.2 illustrates how these the homogeneous and particular solutions can
be superposed to form the complete solution.

It is also possible to show that if a system is input/output linear in the
sense we have described, that it can always be represented by a state space
equation of the form (5.3) through appropriate choice of state variables.

Time Invariance

Time invariance is another important concept that is can be used to describe
a system whose properties do not change with time. More precisely, if
the input u(t) gives output y(t), then if we shift the time at which the
input is applied by a constant amount a, u(t + a) gives the output y(t +
a). Systems that are linear and time-invariant, often called LTI systems,
have the interesting property that their response to an arbitrary input is
completely characterized by their response to step inputs or their response
to short “impulses”.
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Figure 5.2: Superposition of homogeeous and particular solutions. The first row
shows the input, state and output corresponding to the initial condition response.
The second row shows the same variables corresponding to zero initial condition,
but nonzero input. The third row is the complete solution, which is the sume of
the two individual solutions.

We will first compute the response to a piecewise constant input. Assume
that the sytem is initially at rest and consider the piecewise constant input
shown in Figure 5.3a. The input has jumps at times tk and its values after
the jumps are u(tk). The input can be viewed as a combination of steps:
the first step at time t0 has amplitude u(t0), the second step at time t1 has
amplitude u(t1) − u(t0), etc.

Assuming that the system is initially at an equilibrium point (so that
the initial condition response is zero), the response to the input can then be
obtained by superimposing the responses to a combination of step inputs.
Let H(t) be the response to a unit step applied at time t. The response
to the first step is then H(t − t0)u(t0), the response to the second step is
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Figure 5.3: Response to piecewise constant inputs: (a) a piecewise constant signal
can be represented as a sum of step signals; (b) the resulting output is the sum of
the individual outputs.

H(t− t1)
(
u(t1)−u(t0)

)
, and we find that the complete response is given by

y(t) = H(t− t0)u(t0) +H(t− t1)
(
u(t1) − u(t0)

)
+ · · ·

=
(
H(t) −H(t− t1)

)
u(t0) +

(
H(t− t1) −H(t− t2)

)
u(t1)

=
∞∑

n=0

(
H(t− tn) −H(t− tn+1)

)
u(tn)

=
∞∑

n=0

H(t− tn) −H(t− tn+1)

tn+1 − tn

(
tn+1 − tn

)
u(tn).

An example of this computation is shown in Figure 5.3b.
The response to a continuous input signal is obtained by taking the limit

as tn+1 − tn → 0, which gives

y(t) =

∫
∞

0
H ′(t− τ)u(τ)dτ, (5.4)

where H ′ is the derivative of the step response, which is also called the im-
pulse response. The response of a linear time-invariant system to any input
can thus be computed from the step response. We will derive equation (5.4)
in a slightly different way in the next section.

5.2 The Convolution Equation

Equation (5.4) shows that the input response of a linear system can be
written as an integral over the inputs u(t). In this section we derive a more
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general version of this formula, which shows how to compute the output of
a linear system based on its state space representation.

The Matrix Exponential

Although we have shown that the solution of a linear set of differential equa-
tions defines a linear input/output system, we have not fully computed the
solution of the system. We begin by considering the homogeneous response
corresponding to the system

dx

dt
= Ax. (5.5)

For the scalar differential equation

ẋ = ax x ∈ R, a ∈ R

the solution is given by the exponential

x(t) = eatx(0).

We wish to generalize this to the vector case, where A becomes a matrix.

We define the matrix exponential as the infinite series

eX = I +X +
1

2
X2 +

1

3!
X3 + · · · =

∞∑

k=0

1

k!
Xk, (5.6)

where X ∈ R
n×n is a square matrix and I is the n× n identity matrix. We

make use of the notation

X0 = I X2 = XX Xn = Xn−1X,

which defines what we mean by the “power” of a matrix. Equation (5.6) is
easy to remember since it is just the Taylor series for the scalar exponential,
applied to the matrix X. It can be shown that the series in equation (5.6)
converges for any matrix X ∈ R

n×n in the same way that the normal expo-
nential is defined for any scalar a ∈ R.

Replacing X in equation (5.6) by At where t ∈ R we find that

eAt = I +At+
1

2
A2t2 +

1

3!
A3t3 + · · · =

∞∑

k=0

1

k!
Aktk,
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and differentiating this expression with respect to t gives

d

dt
eAt = A+At+

1

2
A3t2 + · · · = A

∞∑

k=0

1

k!
Aktk = AeAt. (5.7)

Multiplying by x(0) from the right we find that x(t) = eAtx(0) is the solution
to the differential equation (5.5) with initial condition x(0). We summarize
this important result as a theorem.

Theorem 5.2. The solution to the homogeneous system of differential equa-
tion (5.5) is given by

x(t) = eAtx(0).

Notice that the form of the solution is exactly the same as for scalar
equations.

The form of the solution immediately allows us to see that the solution
is linear in the initial condition. In particular, if xh1 is the solution to
equation (5.5) with initial condition x(0) = x01 and xh2 with initial condition
x02, then the solution with initial condition x(0) = αx01 + βx02 is given by

x(t) = eAt
(
αx01 + βx02

)
=
(
αeAtx01 + βeAtx02) = αxh1(t) + βxh2(t).

Similarly, we see that the corresponding output is given by

y(t) = Cx(t) = αyh1(t) + βyh2(t),

where yh1 and yh2 are the outputs corresponding to xh1 and xh2.

We illustrate computation of the matrix exponential by three examples.

Example 5.2 (Double integrator). A very simple linear system that is useful
for understanding basic concepts is the second order system given by

q̈ = u

y = q.

This system system is called a double integrator because the input u is
integrated twice to determine the output y.

In state space form, we write x = (q, q̇) and

dx

dt
=




0 1
0 0



x+




0
1



u.
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The dynamics matrix of a double integrator is

A =




0 1
0 0





and we find by direct calculation that A2 = 0 and hence

eAt =




1 t
0 1



 .

Thus the homogeneous solution (u = 0) for the double integrator is given
by

x(t) =




x1(0) + tx2(0)

x2(0)





y(t) = x1(0) + tx2(0).

∇

Example 5.3 (Undamped oscillator). A simple model for an oscillator, such
as the spring mass system with zero damping, is

mq̈ + kq = u.

Putting the system into state space form, the dynamics matrix for this
system is

A =




0 1

− k
m 0





We have

eAt =




cosω0t

1
ω0

sinω0t

−ω0 sinω0t cosω0t



 ω0 =

√

k

m
,

and the solution is then given by

x(t) = eAtx(0) =




cosω0t

1
ω0

sinω0t

−ω0 sinω0t cosω0t








x1(0)
x2(0)



 .

This solution can be verified by differentiation:

d

dt
x(t) =




−ω0 sinω0t cosω0t
−ω2

0 cosω0t −ω0 sinω0t








x1(0)
x2(0)



 .

=




0 1

−ω2
0 0








cosω0t

1
ω0

sinω0t

−ω0 sinω0t cosω0t








x1(0)
x2(0)



 = Ax(t).
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If the damping c is nonzero, the solution is more complicated, but the matrix
exponential can be shown to be

eAt = e
−ct

2m





eωdt + e−ωdt

2
+
eωdt − e−ωdt

2
√
c2 − 4km

eωdt − e−ωdt

√
c2 − 4km

−ke
ωdt − ke−ωdt

√
c2 − 4km

eωdt + e−ωdt

2
− ceωdt − ce−ωdt

2
√
c2 − 4km

,





where ωd =
√
c2 − 4km/2m. Note that ωd can either be real or complex,

but in the case it is complex the combinations of terms will always yield a
positive value for the entry in the matrix exponential. ∇

Example 5.4 (Diagonal system). Consider a diagonal matrix

A =





λ1 0
λ2

. . .

0 λn





The kth power of At is also diagonal,

(At)k =





λk
1t

k 0
λk

2t
k

. . .

0 λk
nt

k





and it follows from the series expansion that the matrix exponential is given
by

eAt =





eλ1t 0
eλ2t

. . .

0 eλnt





.

∇

Eigenvalues and Modes

The initial condition response of a linear system can be written in terms of a
matrix exponential involving the dynamics matrix A. The properties of the
matrix A therefore determine the resulting behavior of the system. Given a
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matrix A ∈ R
n×n, recall that λ is an eigenvalue of A with eigenvector v if λ

and v satisfy
Av = λv.

In general λ and v may be complex valued, although if A is real-valued then
for any eigenvalue λ, its complex conjugate λ∗ will also be an eigenvalue
(with v∗ as the corresponding eigenvector).

Suppose first that λ and v are a real-valued eigenvalue/eigenvector pair
for A. If we look at the solution of the differential equation for x(0) = v, it
follows from the definition of the matrix exponential that

eAtv =
(
I +At+

1

2
A2t2 + · · ·

)
v = (v + λtv +

λ2t2

2
v + · · ·

)
v = eλtv.

The solution thus lies in the subspace spanned by the eigenvector. The
eigenvalue λ describes how the solution varies in time and is often called a
mode of the system. If we look at the individual elements of the vectors x
and v, it follows that

xi(t)

xj(t)
=
vi

vk
,

and hence the ratios of the components of the state x are constants. The
eigenvector thus gives the “shape” of the solution and is also called a mode
shape of the system.

Figure 5.4 illustrates the modes for a second order system. Notice that
the state variables have the same sign for the slow mode λ = −0.08 and
different signs for the fast mode λ = −0.62.

The situation is a little more complicated when the eigenvalues of A are
complex. Since A has real elements, the eigenvalues and the eigenvectors
are complex conjugates

λ = σ ± jω and v = u± jw,

which implies that

u =
v + v∗

2
w =

v − v∗

2j
.

Making use of the matrix exponential, we have

eAtv == eλt(u+ jw) = eσt
(
(u cosωt− w sinωt) + j(u sinωt+ w cosωt)

)
,

which implies

eAtu =
1

2

(

eAtv + eAtv∗
)

= ueσt cosωt− weσt sinωt

eAtw =
1

2j

(

eAtv − eAtv∗
)

= ueσt sinωt+ weσt cosωt.
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Figure 5.4: Illustration of the notion of modes for a second order system with real
eigenvalues. The left figure (a) shows the phase plane and the modes corresponds
to solutions that start on the eigenvectors. The time functions are shown in (b).
The ratios of the states are also computed to show that they are constant for the
modes.

A solution with initial conditions in the subspace spanned by the real part
u and imaginary part v of the eigenvector will thus remain in that subspace.
The solution will be logarithmic spiral characterized by σ and ω. We again
call λ a mode of the system and v the mode shape.

If a matrix A has a n distinct eigenvalues λ1, . . . , λn, then the initial con-
dition response can be written as a linear combination of the modes. To see
this, suppose for simplicity that we have all real eigenvalues with correspond-
ing unit eigenvectors v1, . . . , vn. From linear algebra, these eigenvectors are
linearly independent and we can write the initial condition x(0) as

x(0) = α1v1 + α2v2 + · · ·αnvn.

Using linearity, the initial condition response can be written as

x(t) = α1e
λ1tv1 + α2e

λ2tv2 + · · · + αne
λntvn.

Thus, the response is a linear combination the modes of the system, with
the amplitude of the individual modes growing or decaying as eλit. The case
for distinct complex eigenvalues follows similarly (the case for non-distinct
eigenvalues is more subtle and is described in the section on the Jordan
form, below).
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Linear Input/Output Response

We now return to the general input/output case in equation (5.3), repeated
here:

dx

dt
= Ax+Bu

y = Cx+Du.
(5.8)

Using the matrix exponential, the solution to equation (5.8) can be written
as follows.

Theorem 5.3. The solution to the linear differential equation (5.8) is given
by

x(t) = eAtx(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ. (5.9)

Proof. To prove this, we differentiate both sides and use the property (5.7)
of the matrix exponential. This gives

dx

dt
= AeAtx(0) +

∫ t

0
AeA(t−τ)Bu(τ)dτ +Bu(t) = Ax+Bu,

which proves the result. Notice that the calculation is essentially the same
as for proving the result for a first order equation.

It follows from equations (5.8) and (5.9) that the input/output relation
for a linear system is given by

y(t) = CeAtx(0) +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t). (5.10)

It is easy to see from this equation that the output is jointly linear in both
the initial conditions and the state: this follows from the linearity of ma-
trix/vector multiplication and integration.

Equation (5.10) is called the convolution equation and it represents the
general form of the solution of a system of coupled linear differential equa-
tions. We see immediately that the dynamics of the system, as characterized
by the matrix A, play a critical role in both the stability and performance
of the system. Indeed, the matrix exponential describes both what hap-
pens when we perturb the initial condition and how the system responds to
inputs.

Another interpretation of the convolution equation can be given using the�
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Figure 5.5: (a) Pulses of width 5, 2 and 1, each with total area equal to 1. (b)
The pulse responses (solid) and impulse response (dashed) for a linear system with
eigenvalues λ = {−0.08,−0.62}.

concept of the impulse response of a system. Consider the application of an
input signal u(t) given by the following equation:

u(t) = pǫ(t) =







0 t < 0

1/ǫ 0 ≤ t < ǫ

0 t ≥ ǫ.

(5.11)

This signal is a “pulse” of duration ǫ and amplitude 1/ǫ, as illustrated in
Figure 5.5a. We define an impulse, δ(t), to be the limit of this signal as
ǫ→ 0:

δ(t) = lim
ǫ→0

pǫ(t). (5.12)

This signal, sometimes called a delta function, is not physically achievable
but provides a convenient abstraction for understanding the response of
a system. Note that the integral of an impulse is a unit step function,
sometimes written as 1(t):

1(t) =

∫ t

0
δ(τ) dτ =

∫ t

0
lim
ǫ→0

pǫ(t) dτ t > 0

= lim
ǫ→0

∫ t

0
pǫ(t) dτ = lim

ǫ→0

∫ ǫ

0
1/ǫ dτ = 1 t > 0

In particular, the integral of an impulse over an arbitrarily short period of
time is identically 1.
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We define the impulse response of a system, h(t), to be the output cor-
responding to an impulse as its input:

h(t) =

∫ t

0
CeA(t−τ)Bδ(τ) dτ = CeAtB, (5.13)

where the second equality follows from the fact that δ(t) is zero everywhere
except the origin and its integral is identically one. We can now write
the convolution equation in terms of the initial condition response and the
convolution of the impulse response and the input signal,

y(t) = CeAtx(0) +

∫ t

0
h(t− τ)u(τ) dτ. (5.14)

One interpretation of this equation, explored in Exercise 6, is that the re-
sponse of the linear system is the superposition of the response to an infinite
set of shifted impulses whose magnitude is given by the input, u(t). Note
that the second term in this equation is identical to equation (5.4) and it can
be shown that the impulse response is formally equivalent to the derivative
of the step response.

The use of pulses as an approximation of the impulse response provides a
mechanism for identifying the dynamics of a system from data. Figure 5.5b
shows the pulse responses of a system for different pulse widths. Notice that
the pulse responses approaches the impulse response as the pulse width goes
to zero. As a general rule, if the fastest eigenvalue of a stable system has
real part −λmax, then a pulse of length ǫ will provide a good estimate of
the impulse response if ǫλmax < 1. Note that for Figure 5.5, a pulse width
of ǫ = 1 s gives ǫλmax = 0.62 and the pulse response is very close to the
impulse response.

Coordinate Changes

The components of the input vector u and the output vector y are unique
physical signals, but the state variables depend on the coordinate system
chosen to represent the state. The choice of coordinates affects the values
of the matrices A, B and C that are used in the model. (The direct term D
is not affecting since it maps inputs to outputs.) We now investigate some
of the consequences of changing coordinate systems.

Introduce new coordinates z by the transformation z = Tx, where T is
an invertible matrix. It follows from equation (5.3) that

dz

dt
= T (Ax+Bu) = TAT−1z + TBu = Ãz + B̃u

y = Cx+DU = CT−1z +Du = C̃z +Du.
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The transformed system has the same form as equation (5.3) but the ma-
trices A, B and C are different:

Ã = TAT−1, B̃ = TB, C̃ = CT−1, D̃ = D. (5.15)

As we shall see in several places later in the text, there are often special
choices of coordinate systems that allow us to see a particular property
of the system, hence coordinate transformations can be used to gain new
insight into the dynamics.

We can also compare the solution of the system in transformed coordi-
nates to that in the original state coordinates. We make use of an important
property of the exponential map,

eTST−1

= TeST−1,

which can be verified by substitution in the definition of the exponential
map. Using this property, it is easy to show that

x(t) = T−1z(t) = T−1eÃtTx(0) + T−1

∫ t

0
eÃ(t−τ)B̃u(τ) dτ.

From this form of the equation, we see that if it is possible to transform
A into a form Ã for which the matrix exponential is easy to compute, we
can use that computation to solve the general convolution equation for the
untransformed state x by simple matrix multiplications. This technique is
illustrated in the next section.

Example 5.5 (Modal form). Suppose that A has n real, distinct eigenval-
ues, λ1, . . . , λn. It follows from matrix linear algebra that the corresponding
eigenvectors v1, . . . vn are linearly independent and form a basis for R

n. Sup-
pose that we transform coordinates according to the rule

x = Mz M =


v1 v2 · · · vn



 .

Setting T = M−1, it is easy to show that

Ã = TAT−1 = M−1AM =





λ1 0
λ2

. . .

0 λn





.
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Figure 5.6: Coupled spring mass system.

To see this, note that if we multiple M−1AM by the basis elements

e1 =





1
0
0
...
0





e2 =





0
1
0
...
0





. . . en =





0
0
...
0
1





we get precisely λiei, which is the same as multiplying the diagonal form by
the canonical basis elements. Since this is true for each ei, i = 1, . . . , n and
since the these vectors form a basis for R

n, the transformed matrix must be
in the given form. This is precisely the diagonal form of Example 5.4, which
is also called the modal form for the system. ∇

Example 5.6 (Coupled mass spring system). Consider the coupled mass
spring system shown in Figure 5.6. The input to this system is the sinusoidal
motion of the end of rightmost spring and the output is the position of each
mass, q1 and q2. The equations of motion for the system are given by

m1q̈1 = −2kq1 − cq̇1 + kq2

m2q̈2 = kq1 − 2kq2 − cq̇2 + ku

In state-space form, we define the state to be x = (q1, q2, q̇1, q̇2) and we can
rewrite the equations as

ẋ =





0 0 1 0
0 0 0 1

−2k
m

k
m − c

m 0

k
m −2k

m 0 − c
m





x+





0
0

0

k
m





u.

This is a coupled set of four differential equations and quite difficult to solve
in analytical form.
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We now define a transformation z = Tx that puts this system into a
simpler form. Let z1 = 1

2(q1 + q2), z2 = ż1, z3 = 1
2(q1 − q2) and z4 = ż3, so

that

z = Tx =
1

2





1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1





x.

Using the coordinate transformations described above (or simple substitu-
tion of variables, which is equivalent), we can write the system in the z
coordinates as

ż =





0 1 0 0

− k
m − c

m 0 0
0 0 0 1

0 0 −3k
m − c

m





x+





0
k

2m
0

− k
2m





u.

Note that the resulting matrix equations are are block diagonal and hence
decoupled. We can thus solve for the solutions by computing the two sets of
second order system represented by the states (z1, z2) and (z3, z4). Indeed,
the functional form of each set of equations is identical to that of a single
spring mass system (Section 2.1).

Once we have solved the two sets of independent second order equations,
we can recover the dynamics in the original coordinates by inverting the state
transformation and writing x = T−1z. We can also determine the stability
of the system by looking at the stability of the independent second order
systems (Exercise 1). ∇

5.3 Stability and Performance

The special form of a linear system and its solution through the convolution
equation allow us to analytically solve for the stability of equilibrium points
and input/output performance properties.

Stability of Linear Systems

For a linear system, the stability of the equilibrium point at the origin can
be determined by looking at the eigenvalues of the stability matrix A:

λ(A) = {s ∈ C : det(sI −A) = 0}.

We use the notation λi for the ith eigenvalue of A, so that λi ∈ λ(A).
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The easiest class of linear systems to analyze are those whose system
matrices are in diagonal form. In this case, the dynamics have the form

dx

dt
=





λ1 0
λ2

. . .

0 λn





x+





β1

β2
...
βn





u

y =


γ1 γ2 · · · γn



x+Du.

Using Example 5.4, it is easy to show that the state trajectories for this
system are independent of each other, so that we can write the solution in
terms of n individual systems

ẋi = λixi + βiu.

Each of these scalar solutions is of the form

xi(t) = eλitx(0) +

∫ t

0
eλ(t−τ)u(t) dt.

If we consider the stability of the system when u = 0, we see that the
equilibrium point xe = 0 is stable if λi ≤ 0 and asymptotically stable if
λi < 0.

Very few systems are diagonal, but some systems can be transformed
into diagonal form via coordinate transformations. One such class of sys-
tems is those for which the dynamics matrix has distinct (non-repeating)
eigenvalues, as outlined in Example 5.5. In this case it is possible to find
a matrix T such that the matrix TAT−1 and the transformed system is in
diagonal form, with the diagonal elements equal to the the eigenvalues of the
original matrix A. We can reason about the stability of the original system
by noting that x(t) = T−1z(t) and so if the transformed system is stable (or
asymptotically stable) then the original system has the same type stability.

For more complicated systems, we make use of the following theorem,
proved in the next section:

Theorem 5.4. The system

ẋ = Ax

is asymptotically stable if and only if all eigenvalues of A all have strictly
negative real part and is unstable if any eigenvalue of A has strictly positive
real part.
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Figure 5.7: Active filter circuit using an operational amplifier.

Example 5.7 (Active filter). Consider the op amp circuit shown in Fig-
ure 5.7. There are two energy storage elements, the capacitors C1 and C2.
We choose their voltages, v2 and v3, as states. The dynamics for the system
(Chapter 3, Exercise 5) are given by

ẋ =





− 1
R1C1

− 1
RaC1

0

Rb

Ra

1
R2C2

− 1
R2C2




x+





1
R1C1

0



u

y =


0 1


x,

where u = v1 and y = v3. The eigenvalues of the dynamics matrix, A, are

λ1 = − 1

R1C1
− 1

RaC1
λ2 = − 1

R2C2
.

Assuming all capacitances and resistances are positive, these eigenvalues
are both real and negative, and hence the equilibrium point at x = 0 is
asymptotically stable. This implies, in particular, that if no input voltage is
applied, the voltages around the system will all converge to zero as t→ ∞.

∇

Jordan Form
�

Some matrices with equal eigenvalues cannot be transformed to diagonal
form. They can however be transformed to the Jordan form. In this form
the dynamics matrix has the eigenvalues along the diagonal. When there
are equal eigenvalues there may be ones appearing in the super diagonal
indicating that there is coupling between the states.

More specifically, we define a matrix to be in Jordan form if it can be
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written as

J =





J1 0 . . . 0
0 J2 0

0 . . .
. . . 0

0 . . . Jk





where Ji =





λi 1 0 . . . 0
0 λi 1 0
...

. . .
. . .

...
0 . . . 0 λi 1
0 . . . 0 0 λi





.

(5.16)
Each matrix Ji is called a Jordan block and λi for that block corresponds to
an eigenvalue of J .

Theorem 5.5 (Jordan decomposition). Any matrix A ∈ R
n×n can be trans-

formed into Jordan form with the eigenvalues of A determining λi in the
Jordan form.

Proof. See any standard text on linear algebra, such as Strang [Str88].

Converting a matrix into Jordan form can be very complicated, although
MATLAB can do this conversion for numerical matrices using the Jordan

function. The structure of the resulting Jordan form is particularly inter-
esting since there is no requirement that the individual λi’s be unique, and
hence for a given eigenvalue we can have one or more Jordan blocks of dif-
ferent size. We say that a Jordan block Ji is trivial if Ji is a scalar (1 × 1
block).

Once a matrix is in Jordan form, the exponential of the matrix can be
computed in terms of the Jordan blocks:

eJ =





eJ1 0 . . . 0
0 eJ2 0

0 . . .
. . . 0

0 . . . eJk .





(5.17)

This follows from the block diagonal form of J . The exponentials of the
Jordan blocks can in turn be written as

eJit =





eλit t eλit t2

2! e
λit . . . tn−1

(n−1)! e
λit

0 eλit t eλit . . . tn−2

(n−2)! e
λit

eλit
. . .
. . . t eλit

0 eλit





(5.18)
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When there are multiple eigenvalues, the invariant subspaces represent-
ing the modes correspond to the Jordan blocks of the matrix A . Note that λ
may be complex, in which case the transformation T that converts a matrix
into Jordan form will also be complex. When λ has a non-zero imaginary
component, the solutions will have oscillatory components since

eσ+jωt = eσt(cosωt+ j sinωt).

We can now use these results to prove Theorem 5.4.

Proof of Theorem 5.4. Let T ∈ C
n×n be an invertible matrix that trans-

forms A into Jordan form, J = TAT−1. Using coordinates z = Tx, we can
write the solution z(t) as

z(t) = eJtz(0).

Since any solution x(t) can be written in terms of a solution z(t) with z(0) =
Tx(0), it follows that it is sufficient to prove the theorem in the transformed
coordinates.

The solution z(t) can be written as a combination of the elements of
the matrix exponential and from equation (5.18) these elements all decay
to zero for arbitrary z(0) if and only if Reλi < 0. Furthermore, if any λi

has positive real part, then there exists an initial condition z(0) such that
the corresponding solution increases without bound. Since we can scale this
initial condition to be arbitrarily small, it follows that the equilibrium point
is unstable if any eigenvalue has positive real part.

The existence of a canonical form allows us to prove many properties of
linear systems by changing to a set of coordinates in which the A matrix is
in Jordan form. We illustrate this in the following proposition, which follows
along the same lines as the proof of Theorem 5.4.

Proposition 5.6. Suppose that the system

ẋ = Ax

has no eigenvalues with strictly positive real part and one or more eigenval-
ues with zero real part. Then the system is stable if and only if the Jordan
blocks corresponding to each eigenvalue with zero real part are scalar (1× 1)
blocks.

Proof. Exercise 3.
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Input/Output Response

So far, this chapter has focused on the stability characteristics of a system.
While stability is often a desirably feature, stability alone may not be suf-
ficient in many applications. We will want to create feedback systems that
quickly react to changes and give high performance in measurable ways.

We return now to the case of an input/output state space system

dx

dt
= Ax+Bu

y = Cx+Du,
(5.19)

where x ∈ R
n is the state and u, y ∈ R are the input and output. The

general form of the solution to equation (5.19) is given by the convolution
equation:

y(t) = CeAtx(0) +

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t).

We see from the form of this equation that the solution consists of an initial
condition response and an input response.

The input response, corresponding to the second term in the equation
above, itself consists of two components—the transient response and steady
state response. The transient response occurs in the first period of time after
the input is applied and reflects the mismatch between the initial condition
and the steady state solution. The steady state response is the portion of
the output response that reflects the long term behavior of the system under
the given inputs. For inputs that are periodic, the steady state response will
often also be periodic. An example of the transient and steady state response
is shown in Figure 5.8.

Step Response

A particularly common form of input is a step input, which represents an
abrupt change in input from one value to another. A unit step is defined as

u = 1(t) =

{

0 t = 0

1 t > 0.

The step response of the system (5.3) is defined as the output y(t) starting
from zero initial condition (or the appropriate equilibrium point) and given
a step input. We note that the step input is discontinuous and hence is not
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Figure 5.8: Transient versus steady state response. The top plot shows the input to
a linear system and the bottom plot the corresponding output. The output signal
initially undergoes a transient before settling into its steady state behavior.

physically implementable. However, it is a convenient abstraction that is
widely used in studying input/output systems.

We can compute the step response to a linear system using the convo-
lution equation. Setting x(0) = 0 and using the definition of the step input
above, we have

y(t) =

∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

=

∫ t

0
CeA(t−τ)Bdτ +D t > 0.

If A has eigenvalues with negative real part (implying that the origin is a
stable equilibrium point in the absence of any input), then we can rewrite
the solution as

y(t) = CA−1eAtB
︸ ︷︷ ︸

transient

+D − CA−1B
︸ ︷︷ ︸

steady state

t > 0. (5.20)
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Figure 5.9: Sample step response

The first term is the transient response and decays to zero as t → ∞. The
second term is the steady state response and represents the value of the
output for large time.

A sample step response is shown in Figure 5.9. Several terms are used
when referring to a step response:

Steady state value The steady state value, yss, of a step response is the final
level of the output, assuming it converges.

Rise time The rise time, Tr, is the amount of time required for the signal to
go from 10% of its final value to 90% of its final value. It is possible
to define other limits as well, but in this book we shall use these
percentages unless otherwise indicated.

Overshoot The overshoot, Mp, is the percentage of the final value by which
the signal initially rises above the final value. This usually assumes
that future values of the signal do not overshoot the final value by
more than this initial transient, otherwise the term can be ambiguous.

Settling time The settling time, Ts, is the amount of time required for the
signal to stay within 5% of its final value for all future times. The
settling time is also sometimes defined as reaching 1% or 2% of the
final value (see Exercise 5).

In general these performance measures can depend on the amplitude of the
input step, but for linear systems it can be shown that the quantities defined
above are independent of the size of the step.
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Frequency Response

The frequency response of an input/output system measures the way in
which the system responds to a sinusoidal excitation on one of its inputs.
As we have already seen for linear systems, the particular solution associated
with a sinusoidal excitation is itself a sinusoid at the same frequency. Hence
we can compare the magnitude and phase of the output sinusoid to the
input. More generally, if a system has a sinusoidal output response at the
same frequency as the input forcing, we can speak of the frequency response
of the system.

To see this in more detail, we must evaluate the convolution equa-
tion (5.10) for u = cosωt. This turns out to be a very messy computation,
but we can make use of the fact that the system is linear to simplify the
derivation. In particular, we note that

cosωt =
1

2

(

ejωt + e−jωt
)

.

Since the system is linear, it suffices to compute the response of the system
to the complex input u(t) = est and we can always reconstruct the input to a
sinusoid by averaging the responses corresponding to s = jωt and s = −jωt.

Applying the convolution equation to the input u = est, we have

y(t) =

∫ t

0
CeA(t−τ)Besτdτ +Dest

=

∫ t

0
CeA(t−τ)+sIτBdτ +Dest

= eAt

∫ t

0
Ce(sI−A)τBdτ +Dest.

If we assume that none of the eigenvalues of A are equal to s = ±jω, then
the matrix sI −A is invertible and we can write (after some algebra)

y(t) = CeAt
(

x(0) − (sI −A)−1B
)

︸ ︷︷ ︸

transient

+
(

D + C(sI −A)−1B
)

est

︸ ︷︷ ︸

steady state

.

Notice that once again the solution consists of both a transient component
and a steady state component. The transient component decays to zero
if the system is asymptotically stable and the steady state component is
proportional to the (complex) input u = est.
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Figure 5.10: Frequency response, showing gain and phase. The phase lag is given
by θ = −2π∆T/T .

We can simplify the form of the solution slightly further by rewriting the
steady state response as

yss = Mejθest = Me(st+jθ)

where
Mejθ = C(sI −A)−1B +D (5.21)

and M and θ represent the magnitude and phase of the complex number
D + C(sI − A)−1B. When s = jω, we say that M is the gain and θ is
the phase of the system at a given forcing frequency ω. Using linearity and
combining the solutions for s = +jω and s = −jω, we can show that if we
have an input u = Au sin(ωt+ ψ) and output y = Ay sin(ωt+ ϕ), then

gain(ω) =
Ay

Au
= M phase(ω) = ϕ− ψ = θ.

If the phase is positive, we say that the output “leads” the input, otherwise
we say it “lags” the input.

A sample frequency response is illustrated in Figure 5.10. The solid
line shows the input sinusoid, which has amplitude 1. The output sinusoid
is shown as a dashed line, and has a different amplitude plus a shifted
phase. The gain is the ratio of the amplitudes of the sinusoids, which can be
determined by measuring the height of the peaks. The phase is determined
by comparing the ratio of the time between zero crossings of the input and
output to the overall period of the sinusoid:

θ = −2π · δT
T
.
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Figure 5.11: Frequency response for the active filter from Example 5.7. The upper
plot shows the magnitude as a function of frequency (on a log-log scale) and the
lower plot shows the phase (on a log-linear scale).

Example 5.8 (Active filter). Consider the active filter presented in Ex-
ample 5.7. The frequency response for the system can be computed using
equation (5.21):

Mejθ = C(sI −A)−1B +D =
Rb/Ra

(1 +R2C2s)(
R1+Ra

Ra
+R1C1s)

s = jω.

The magnitude and phase are plotted in Figure 5.11 for Ra = 1kΩ, Rb =
100 kΩ, R1 = 100Ω, R2 = 5kΩ and C1 = C2 = 100 µF. ∇

The gain at frequency ω = 0 is called the zero frequency gain of the
system and corresponds to the ratio between a constant input and the steady
output:

M0 = CA−1B +D.

Note that the zero frequency gain is only well defined if A is invertible (and,
in particular, if it does has not eigenvalues at 0). It is also important to note
that the zero frequency gain is only a relevant quantity when a system is
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stable about the corresponding equilibrium point. So, if we apply a constant
input u = r then the corresponding equilibrium point

xe = −A−1Br

must be stable in order to talk about the zero frequency gain. (In electrical
engineering, the zero frequency gain is often called the “DC gain”. DC
stands for “direct current” and reflects the common separation of signals
in electrical engineering into a direct current (zero frequency) term and an
alternating current (AC) term.)

5.4 Second Order Systems

One class of systems that occurs frequently in the analysis and design of
feedback systems is second order, linear differential equations. Because of
their ubiquitous nature, it is useful to apply the concepts of this chapter to
that specific class of systems and build more intuition about the relationship
between stability and performance.

The canonical second order system is a differential equation of the form

q̈ + 2ζω0q̇ + ω2
0q = ku

y = q.
(5.22)

In state space form, this system can be represented as

ẋ =




0 1

−ω2
0 −2ζω0



x+




0
k



u

y =


1 0


x

(5.23)

The eigenvalues of this system are given by

λ = −ζω0 ±
√

ω2
0(ζ

2 − 1)

and we see that the origin is a stable equilibrium point if ω0 > 0 and
ζ > 0. Note that the eigenvalues are complex if ζ < 1 and real otherwise.
Equations (5.22) and (5.23) can be used to describe many second order
systems, including a damped spring mass system and an active filter, as
shown in the examples below.

The form of the solution depends on the value of ζ, which is referred to
as the damping factor for the system. If ζ > 1, we say that the system is
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overdamped and the natural response (u = 0) of the system is given by

y(t) =
βx10 + x20

β − α
e−αt − αx10 + x20

β − α
e−βt

where α = ω0(ζ +
√

ζ2 − 1) and β = ω0(ζ −
√

ζ2 − 1). We see that the
response consists of the sum of two exponentially decaying signals. If ζ = 1
then the system is critically damped and solution becomes

y(t) = e−ζω0t
(
x10 + (x20 + ζω0x10)t

)
.

Note that this is still asymptotically stable as long as ω0 > 0, although the
second term in the solution is increasing with time (but more slowly than
the decaying exponential that multiplies it).

Finally, if 0 < ζ < 1, then the solution is oscillatory and equation (5.22)
is said to be underdamped. The parameter ω0 is referred to as the natural
frequency of the system, stemming from the fact that for small ζ, the eigen-
values of the system are approximately λ = −ζ± jω0. The natural response
of the system is given by

y(t) = e−ζω0t

(

x10 cosωdt+
(ζω0

ωd
x10 +

1

ωd
x20

)

sinωdt

)

,

where ωd = ω0

√

1 − ζ2. For ζ ≪ 1, ωd ≈ ω0 defines the oscillation frequency
of the solution and ζ gives the damping rate relative to ω0.

Because of the simple form of a second order system, it is possible to
solve for the step and frequency responses in analytical form. The solution
for the step response depends on the magnitude of ζ:

y(t) =
k

ω2
0

(

1 − e−ζω0t cosωdt+
ζ

√

1 − ζ2
e−ζω0t sinωdt

)

ζ < 1

y(t) =
k

ω2
0

(
1 − e−ω0t(1 + ω0t)

)
ζ = 1

y(t) =
k

ω2
0

(

1 − e−ω0t − 1

2(1 + ζ)
eω0(1−2ζ)t

)

ζ > 1,

(5.24)
where we have taken x(0) = 0. Note that for the lightly damped case
(ζ < 1) we have an oscillatory solution at frequency ωd, sometimes called
the damped frequency.

The step responses of systems with k = ω2 and different values of ζ are
shown in Figure 5.12, using a scaled time axis to allow an easier comparison.
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Figure 5.12: Normalized step responses h for the system (5.23) for ζ = 0 (dashed),
0.1, 0.2, 0.5, 0.707 (dash dotted), 1, 2, 5 and 10 (dotted).

The shape of the response is determined by ζ and the speed of the response
is determined by ω0 (including in the time axis scaling): the response is
faster if ω0 is larger. The step responses have an overshoot of

Mp =

{

e−πζ/
√

1−ζ2

for |ζ| < 1

0 for ζ ≥ 1.
(5.25)

For ζ < 1 the maximum overshoot occurs at

tmax =
π

ω0

√

1 − ζ2
. (5.26)

The maximum decreases and is shifted to the right when ζ increases and it
becomes infinite for ζ = 1, when the overshoot disappears.

The frequency response can also be computed explicitly and is given by

Mejθ =
ω2

0

(jω)2 + 2ζω0(jω) + ω2
0

=
ω2

0

ω2
0 − ω2 + 2jζω0ω

.

A graphical illustration of the frequency response is given in Figure 5.13.
Notice the resonance peak that increases with decreasing ζ. The peak is
often characterized by is Q-value, defined as Q = 1/2ζ.

Example 5.9 (Damped spring mass). The dynamics for a damped spring
mass system are given by

mq̈ + cq̇ + kq = u,

where m is the mass, q is the displacement of the mass, c is the coefficient
of viscous friction, k is the spring constant and u is the applied force. We
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can convert this into the standard second order for by dividing through by
m, giving

q̈ +
c

m
q̇ +

k

m
q =

1

m
u.

Thus we see that the spring mass system has natural frequency and damping
ratio given by

ω0 =

√

k

m
ζ =

c

2
√
km

(note that we have use the symbol k for the stiffness here; it should not be
confused with the gain term in equation (5.22)). ∇

One of the other reasons why second order systems play such an important �
role in feedback systems is that even for more complicated systems the
response is often dominated by the “dominant eigenvalues”. To define these
more precisely, consider a system with eigenvalues λi, i = 1, . . . , n. We
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define the damping factor for a complex eigenvalue λ to be

ζ =
−Reλ

|λ|

We say that a complex conjugate pair of eigenvalues λ, λ∗ is a dominant
pair if it has the lowest damping factor compared with all other eigenvalues
of the system.

Assuming that a system is stable, the dominant pair of eigenvalues tends
to be the most important element of the response. To see this, assume that
we have a system in Jordan form with a simple Jordan block corresponding
to the dominant pair of eigenvalues:

ż =





λ
λ∗

J2

. . .

Jk





z +Bu

y = Cz.

(Note that the state z may be complex due to the Jordan transformation.)
The response of the system will be a linear combination of the responses
from each of the individual Jordan subsystems. As we see from Figure 5.12,
for ζ < 1 the subsystem with the slowest response is precisely the one with
the smallest damping factor. Hence when we add the responses from each
of the individual subsystems, it is the dominant pair of eigenvalues that will
be dominant factor after the initial transients due to the other terms in the
solution. While this simple analysis does not always hold (for example, if
some non-dominant terms have large coefficients due to the particular form
of the system), it is often the case that the dominant eigenvalues dominate
the (step) response of the system. The following example illustrates the
concept.

5.5 Linearization

As described in the beginning of the chapter, a common source of linear
system models is through the approximation of a nonlinear system by a linear
one. These approximations are aimed at studying the local behavior of a
system, where the nonlinear effects are expected to be small. In this section
we discuss how to locally approximate a system by its linearization and what
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can be said about the approximation in terms of stability. We begin with
an illustration of the basic concept using the speed control example from
Chapter 2.

Example 5.10 (Cruise control). The dynamics for the cruise control system
are derived in Section 3.1 and have the form

m
dv

dt
= αnuT (αnv) −mgCr − 1

2ρCvAv
2 −mg sin θ, (5.27)

where the first term on the right hand side of the equation is the force gen-
erated by the engine and the remaining three terms are the rolling friction,
aerodynamic drag and gravitational disturbance force. There is an equilib-
rium (ve, ue) when the force applied by the engine balances the disturbance
forces.

To explore the behavior of the system near the equilibrium we will lin-
earize the system. A Taylor series expansion of equation (5.27) around the
equilibrium gives

d(v − ve)

dt
= a(v − ve) − bg(θ − θe) + b(u− ue) (5.28)

where

a =
ueα

2
nT

′(αnve) − ρCvAve

m
bg = g cos θe b =

αnT (αnve)

m
(5.29)

and terms of second and higher order have been neglected. For a car in
fourth gear with ve = 25 m/s, θe = 0 and the numerical values for the car
from Section 3.1, the equilibrium value for the throttle is ue = 0.1687 and
the model becomes

d(v − ve)

dt
= −0.0101(v − ve) + 1.3203(u− ue) − 9.8(θ − θe) (5.30)

This linear model describes how small perturbations in the velocity about
the nominal speed evolve in time.

Figure 5.14, which shows a simulation of a cruise controller with linear
and nonlinear models, indicates that the differences between the linear and
nonlinear models is not visible in the graph. ∇

Linear Approximation

To proceed more formally, consider a single input, single output nonlinear
system

dx

dt
= f(x, u) x ∈ R

n, u ∈ R

y = h(x, u) y ∈ R

(5.31)
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Figure 5.14: Simulated response of a vehicle with PI cruise control as it climbs a
hill with a slope of 4◦. The full lines is the simulation based on a nonlinear model
and the dashed line shows the corresponding simulation using a linear model. The
controller gains are kp = 0.5 and ki = 0.1.

with an equilibrium point at x = xe, u = ue. Without loss of generality,
we assume that xe = 0 and ue = 0, although initially we will consider the
general case to make the shift of coordinates explicit.

In order to study the local behavior of the system around the equilib-
rium point (xe, ue), we suppose that x − xe and u − ue are both small, so
that nonlinear perturbations around this equilibrium point can be ignored
compared with the (lower order) linear terms. This is roughly the same type
of argument that is used when we do small angle approximations, replacing
sin θ with θ and cos θ with 1 for θ near zero.

In order to formalize this idea, we define a new set of state variables z,
inputs v, and outputs w:

z = x− xe v = u− ue w = y − h(xe, ue).

These variables are all close to zero when we are near the equilibrium point,
and so in these variables the nonlinear terms can be thought of as the higher
order terms in a Taylor series expansion of the relevant vector fields (assum-
ing for now that these exist).

Example 5.11. Consider a simple scalar system,

ẋ = 1 − x3 + u.
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The point (xe, ue) = (1, 0) is an equilibrium point for this system and we
can thus set

z = x− 1 v = u.

We can now compute the equations in these new coordinates as

ż =
d

dt
(x− 1) = ẋ

= 1 − x3 + u = 1 − (z + 1)3 + v

= 1 − z3 − 3z2 − 3z − 1 + v = −3z − 3z2 − z3 + v.

If we now assume that x stays very close to the equilibrium point, then
z = x− xe is small and z ≪ z2 ≪ z3. We can thus approximate our system
by a new system

ż = −3z + v.

This set of equations should give behavior that is close to that of the original
system as long as z remains small. ∇

More formally, we define the Jacobian linearization of the nonlinear sys-
tem (5.31) as

ż = Az +Bv

w = Cz +Dv,
(5.32)

where

A =
∂f(x, u)

∂x

∣
∣
∣
∣
(xe,ue)

B =
∂f(x, u)

∂u

∣
∣
∣
∣
(xe,ue)

C =
∂h(x, u)

∂x

∣
∣
∣
∣
(xe,ue)

D =
∂h(x, u)

∂u

∣
∣
∣
∣
(xe,ue)

(5.33)

The system (5.32) approximates the original system (5.31) when we are near
the equilibrium point that the system was linearized about.

It is important to note that we can only define the linearization of a sys-
tem about an equilibrium point. To see this, consider a polynomial system

ẋ = a0 + a1x+ a2x
2 + a3x

3 + u,

where a1 6= 0. There are a family of equilibrium points for this system given
by (xe, ue) = (xe,−a0−a1xe−a2x

2
e −a3x

3
e) and we can linearize around any

of these. Suppose that we try to linearize around the origin of the system,
x = 0, u = 0. If we drop the higher order terms in x, then we get

ẋ = a0 + a1x+ u,
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which is not the Jacobian linearization if a0 6= 0. The constant term must
be kept and this is not present in (5.32). Furthermore, even if we kept the
constant term in the approximate model, the system would quickly move
away from this point (since it is “driven” by the constant term a0) and
hence the approximation could soon fail to hold.

Software for modeling and simulation frequently has facilities for per-
forming linearization symbolically or numerically. The MATLAB command
trim finds the equilibrium and linmod extracts linear state-space models
from a SIMULINK system around an operating point.

Example 5.12 (Vehicle steering). Consider the vehicle steering system in-
troduced in Section 2.8. The nonlinear equations of motion for the system
are given by equations (2.21)–(2.23) and can be written as

d

dt





x
y
θ




=





v0
cos (α+θ)

cos α

v0
sin (α+θ)

cos α

v0

b tan δ





,

where x, y and θ are the position and orientation of the center of mass of
the vehicle, v0 is the velocity of the rear wheel, δ is the angle of the front
wheel and α is the anglular devitation of the center of mass from the rear
wheel along the instantaneous circle of curvature determined by the front
wheel:

α(δ) = arctan
(a tan δ

b

)

.

We are interested in the motion of the vehicle about a straight line path
(θ = θ0) with fixed velocity v0 6= 0. To find the relevant equilibrium point,
we first set θ̇ = 0 and we see that we must have δ = 0, corresponding to the
steering wheel being straight. This also yields α = 0. Looking at the first
two equations in the dynamics, we see that the motion in the xy direction
is by definition not at equilibrium since ẋ2 + ẏ2 = v2

0 6= 0. Therefore we
cannot formally linearize the full model.

Suppose instead that we are concerned with the lateral deviation of the
vehicle from a straight line. For simplicity, we let θ0 = 0, which corresponds
to driving along the x axis. We can then focus on the equations of motion
in the y and θ directions, for which we have

d

dt




y
θ



 =





v0
sin (α+θ)

cos α

v0

b tan δ




.
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Abusing notation, we write x = (y, θ) and u = δ so that

f(x, u) =





v0
sin(α(u)+x2)

cos α(u)
v0

b tanu,





where the equilibrium point of interest is now given by x = (0, 0) and u = 0.
To compute the linearization the model around the equilibrium point,

we make use of the formulas (5.33). A straightforward calculation yields

A =
∂f(x, u)

∂x

∣
∣
∣
∣
x=0
u=0

=




0 v0
0 0



 δ B =
∂f(x, u)

∂u

∣
∣
∣
∣
x=0
u=0

=





v0
a
b

v0

b





and the linearized system
ż = Az +Bv (5.34)

thus provides an approximation to the original nonlinear dynamics.
A model can often be simplified further by introducing normalized di-

mension free variables. For this system, we can normalize lengths by the
wheel base b and introduce a new time variable τ = v0t/b. The time unit is
thus the time is takes for the vehicle to travel one wheel base. We similarly
normalize the lateral position and write w1 = y/b, w2 = θ. The model (5.34)
then becomes

dw

dτ
=




w2 + αv

v



 =




0 1
0 0



w +




α
1



 v

y =


1 0


w

(5.35)

The normalized linear model for vehicle steering with non-slipping wheels is
thus a linear system with only one parameter α = a/b. ∇

Feedback Linearization

Another type of linearization is the use of feedback to convert the dynamics
of a nonlinear system into a linear one. We illustrate the basic idea with an
example.

Example 5.13 (Cruise control). Consider again the cruise control system
from Example 5.10, whose dynamics is given in equation (5.27). If we choose
u as a feedback law of the form

u =
1

αnT (αnv)

(

u′ +mgCr +
1

2
ρCvAv

2

)

(5.36)
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then the resulting dynamics become

m
dv

dt
= u′ + d (5.37)

where d = mg sin θ is the disturbance force due the slope of the road. If
we now define a feedback law for u′ (such as a PID controller), we can use
equation (5.36) to compute the final input that should be commanded.

Equation (5.37) is a linear differential equation. We have essentially
“inverted out” the nonlinearity through the use of the feedback law (5.36).
This requires that we have an accurate measurement of the vehicle velocity
v as well as an accurate model of the torque characteristics of the engine,
gear ratios, drag and friction characteristics and mass of the car. While such
a model is not generally available (remembering that the parameter values
can change), if we design a good feedback law for u′, then we can achieve
robustness to these uncertainties. ∇

More generally, we say that a system of the form

dx

dt
= f(x, u)

y = h(x)

is feedback linearizable if we can find a control law u = α(x, v) such that
the resulting closed loop system is input/output linear with input v and
output u. To fully characterize such systems is beyond the scope of this
text, but we note that in addition to changes in the input, we must also
allow for (nonlinear) changes in the states that are used to describe the
system, keeping only the input and output variables fixed. More details
of this process can be found in the the textbooks by Isidori [Isi89] and
Khalil [Kha92].

One case the comes up relatively frequently, and is hence worth special�
mention, is the set of mechanical systems of the form

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = B(q)u.

Here q ∈ R
n is the configuration of the mechanical system, M(q) ∈ R

n×n

is the configuration-dependent inertia matrix, C(q, q̇)q̇ ∈ R
n represents the

Coriolis forces, N(q, q̇) ∈ R
n are additional nonlinear forces (such as stiffness

and friction) and B(q) ∈ R
n×p is the input matrix. If p = n then we have

the same number of inputs and configuration variables and if we further
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have that B(q) is an invertible matrix for all configurations q, then we can
choose

u = B−1(q) (M(q)v − C(q, q̇)q̇ −N(q, q̇)) . (5.38)

The resulting dynamics become

M(q)q̈ = M(q)v =⇒ q̈ = v,

which is a linear system. We can now use the tools of linear systems theory
to analyze and design control laws for the linearized system, remembering
to apply equation (5.38) to obtain the actual input that will be applied to
the system.

This type of control is common in robotics, where it goes by the name
of computed torque, and aircraft flight control, where it is called dynamic
inversion.

Local Stability of Nonlinear Systems
�

Having constructed a linearized model around an equilibrium point, we can
now ask to what extent this model predicts the behavior of the original
nonlinear system. The following theorem gives a partial answer for the case
of stability.

Theorem 5.7. Consider the system (5.31) and let A ∈ R
n×n be defined as

in equations (5.32) and (5.33). If the real part of the eigenvalues of A are
strictly less than zero, then xe is a locally asymptotically stable equilibrium
point of (5.31).

This theorem shows that global asymptotic stability of the linearization
implies local asymptotic stability of the original nonlinear system. The esti-
mates provided by the proof of the theorem can be used to give a (conserva-
tive) bound on the domain of attraction of the origin. Systematic techniques
for estimating the bounds on the regions of attraction of equilibrium points
of nonlinear systems is an important area of research and involves searching
for the “best” Lyapunov functions.

The proof of this theorem is the beyond the scope of this text, but can
be found in [Kha92].

5.6 Further Reading

The idea to characterize dynamics by considering the responses to step in-
puts is due to Heaviside. The unit step is therefore also called the Heaviside
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step function. The majority of the material in this chapter is very classical
and can be found in most books on dynamics and control theory, includ-
ing early works on control such as James, Nichols and Phillips [JNP47], and
more recent textbooks such as Franklin, Powell and Emami-Naeni [FPEN05]
and Ogata [Oga01]. The material on feedback linearization is typically pre-
sented in books on nonlinear control theory, such as Khalil [Kha92]. Tracer
methods are described in [She62].

5.7 Exercises

1. Compute the full solution to the couple spring mass system in Ex-
ample 5.6 by transforming the solution for the block diagonal system
back into the original set of coordinates. Show that the system is
asymptotically stable if m, b and k are all greater than zero.

2. Using the computation for the matrix exponential, show that equa-
tion (5.18) holds for the case of a 3×3 Jordan block. (Hint: decompose
the matrix into the form S +N where S is a diagonal matrix.)

3. Prove Proposition 5.6.�

4. Show that the step response for an asymptotically stable linear system
is given by equation (5.20).

5. Consider a first order system of the form

ẋ = −τx+ u

y = x.

We say that the parameter τ is the time constant for the system since
the zero input system approaches the origin as eτt. For a first order
system of this form, show that the rise time of the system is approxi-
mately 2τ , a 5% settling time corresponds to approximately 3τ and a
2% settling time corresponds to approximately 4τ .

6. Show that a signal u(t) can be decomposed in terms of the impulse�
function δ(t) as

u(t) =

∫ t

0
δ(t− τ)u(τ) dτ

and use this decomposition plus the principle of superposition to show
that the response of a linear system to an input u(t) (assuming zero
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initial condition) can be written as

y(t) =

∫ t

0
h(t− τ)u(τ) dτ,

where h(t) is the impulse response of the system.

7. Consider a linear discrete time system of the form

xk+1 = Axk +Buk

yk = Cxk +Duk.

(a) Show that the general form of the output of a discrete time linear
system is given by the discrete time convolution equation:

yk = CAkx0 +
k∑

i=0

CAiBui +Duk

(b) Show that a discrete time linear system is asymptotically stable if
and only if all eigenvalues of A have magnitude strictly less than
1.

(c) Let uk = A sin(ωk) represent an oscillatory input with frequency
ω < π (to avoid “aliasing”). Show that the steady state compo-
nent of the response has gain M and phase θ where

Mejθ = C(jωI −A)−1B +D.

(d) Show that if we have a nonlinear discrete time system

xk = f(xk, uk) xk ∈ R
n, u ∈ R

yk = h(xk, u)k) y ∈ R

then we can linearize the system around an equilibrium point
(xe, ue) by defining the matrices A, B, C and D as in equa-
tion (5.33).

8. Consider the consensus protocol introduced in Example 2.13. Show
that if the connectivity graph of the sensor network is connected, then
we can find a gain γ such that the agent states converge to the average
value of the measure quantity.



186 CHAPTER 5. LINEAR SYSTEMS


