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Abstract— We relax the monotonicity requirement of Lya-
punov’s theorem to enlarge the class of functions that can
provide certificates of stability. To this end, we propose two
new sufficient conditions for global asymptotic stability that
allow the Lyapunov functions to increase locally, but guarantee
an average decrease every few steps. Our first condition is
non-convex, but allows an intuitive interpretation. The second
condition, which includes the first one as a special case, is convex
and can be cast as a semidefinite program. We show that when
non-monotonic Lyapunov functions exist, one can construct a
more complicated function that decreases monotonically.

We demonstrate the strength of our methodology over stan-
dard Lyapunov theory through examples from three different
classes of dynamical systems. First, we consider polynomial
dynamics where we utilize techniques from sum-of-squares
programming. Second, analysis of piecewise affine systems
is performed. Here, connections to the method of piecewise
quadratic Lyapunov functions are made. Finally, we examine
systems with arbitrary switching between a finite set of matri-
ces. It will be shown that tighter bounds on the joint spectral
radius can be obtained using our technique.

I. INTRODUCTION
A. Background

Consider the discrete time dynamical system:

xk+1 = f(xk) (1)

where the map f : Rn → Rn can be in general nonlinear,
non-smooth, or even uncertain. Starting from an initial con-
dition x0, what can be said about the asymptotic behavior
of the state, xk, as k →∞? Questions of this flavor play a
central role in control theory and engineering, as well as, in
sciences such as ecology and economics. More specifically,
this paper will focus on the notion of global asymptotic
stability (GAS). If we take the unique equilibrium point
of (1) to be the origin (i.e., f(0) = 0), then we have the
following formal definition:

Definition 1: The origin is a globally asymptotically sta-
ble equilibrium of (1) if:

• ∀ε > 0 ∃δ > 0 such that ‖x0‖ < δ ⇒ ‖xk‖ < ε ∀k
• limk→∞ xk = 0 ∀x0 ∈ Rn

In general, the question of determining whether the equi-
librium of a nonlinear dynamics is GAS can be extremely
difficult. Even for special classes of systems several unde-
cidability and NP-hardness results exist in the literature; see
e.g. [1] and [2]. Currently, the primary tool for establishing
stability of nonlinear systems is the well-known Lyapunov’s
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direct method, first published in 1892. Lyapunov’s theorem
comes in many variants. Below, we state the version that
establishes GAS:

Theorem 1.1: [3] Consider the dynamical system (1).
If there exists a continuous radially unbounded function
V : Rn → R such that V (x) > 0 ∀x (= 0, V (0) = 0,
and

V (xk+1) < V (xk) (2)

then, the origin is a GAS equilibrium of (1).
The significance of this criterion is that it allows stability

of the system to be verified without explicitly solving the
difference equation. Lyapunov’s theorem, in effect, turns the
question of determining stability into a search for a so-called
Lyapunov function, a function of the state that decreases
monotonically along trajectories. Unfortunately, the theorem
offers no systematic way of performing this search. Although
converse theorems [3] guarantee the existence of a Lya-
punov function for every stable system, the results assume
knowledge of the solution of (1) and are therefore useless
in practice. Moreover, little is known about the connection
of the dynamics f to the Lyapunov function V . Among the
few results in this direction, the case of linear systems is
well settled since a stable linear system always admits a
quadratic Lyapunov function. It is also known that stable and
smooth homogeneous systems always have a homogeneous
Lyapunov function [4].

In the past few decades, advances in the theory of convex
programming along with efficient numerical algorithms for
solving them have rejuvenated Lyapunov theory. The ap-
proach is to parameterize a class of Lyapunov functions with
restricted complexity (e.g., quadratics or polynomials) and
then pose the search as a convex feasibility problem. For
example, it is well-known that the search for a quadratic
Lyapunov function for a linear system is a semidefinite
program (SDP) (also referred to as a linear matrix inequality
(LMI) problem) [5]. In [6], the methodology was extended to
piecewise linear systems and piecewise quadratic Lyapunov
functions. In 2000, the method of sum-of-squares (SOS)
programming was introduced [7], which allowed for compu-
tation of SOS polynomial Lyapunov functions for polynomial
dynamics [8], [9]. The methodology was extended to handle
hybrid systems in [10]. One valuable common feature among
the techniques based on convex programming is that if a
Lyapunov function of a certain class exists, it will be found.
If the problem is infeasible, the variables of the dual program
provide a certificate of nonexistence of a Lyapunov function
of that class. We will make use of this fact several times in
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Fig. 1. Motivation for relaxing monotonicity. Level curves of a standard
Lyapunov function can be complicated. Simpler functions can decrease on
average every few steps.

our examples.

B. Motivation
Despite all the positive progress, it is not too difficult to

find stable systems where most of the techniques fail to
find a Lyapunov function. Even if one is found, in many
situations, the structure of the Lyapunov function can be
very complicated. This setback encourages one to think
whether the conditions of Lyapunov’s theorem are overly
conservative.

This paper addresses the following natural question: if it
is enough to show V → 0 as k → ∞, why should we
require V to decrease monotonically? In fact, there has been
earlier work in the literature, mostly in continuous time, on
relaxing this condition. Butz in [11] replaces V̇ < 0 with a
condition on V̇ , V̈ , and

...
V and establishes GAS. However,

his condition cannot be verified by a convex program. In a
dynamical systems context, Yorke gives a Lyapunov theorem
using V̈ , but the theorem does not establish GAS [12].

It is perhaps not immediate to see whether relaxing
monotonicity would help simplify the structure of Lyapunov
functions. Figure 1 explains why we would conceptually
expect this to happen. In the top, a hypothetical trajectory
is plotted along with a level curve of a candidate Lyapunov
function. The problem is that a simple dynamics f (e.g.,
polynomial of low degree) can produce such trajectory.
However, a Lyapunov function V with such level curve must
be very complicated (e.g., polynomial of high degree). On the
other hand, much simpler functions (maybe even a quadratic)
can decrease in a non-monotonic fashion as plotted in the
bottom right. Later in the paper, we will verify this intuition
with specific examples.

In order to relax monotonicity, two questions need to
be answered. (i) Are we able to replace inequality (2)
by a condition that allows Lyapunov functions to increase
locally but yet guarantee their convergence to zero in the

limit? (ii) Can the search for a Lyapunov function with
the new condition be cast as a convex program, so that
earlier techniques can be readily applied? The contribution of
this paper is to give an affirmative answer to both of these
questions. Our answer will also illuminate the connection
of non-monotonic Lyapunov functions to standard Lyapunov
functions.

C. Notation and Organization of the Paper
Our notation is mostly standard. We use superscripts

V 1, V 2 to refer to different functions. Some of our Lyapunov
functions will decrease monotonically and some will not.
Whenever confusion may arise, we refer to a function satis-
fying Lyapunov’s original theorem as a standard Lyapunov
function. For simplicity, we denote V (xk) by Vk. Often, we
refer to Vk+i−Vk as the improvement in i steps, which can
either be negative (a decrease in V ) or positive (an increase
in V ). Finally, by f i, we mean composition of f with itself
i times.

The organization of the paper is as follows. In Section II
we present our theorems and give some interpretations. In
Section III-A, we apply our results to polynomial systems
by using SOS programming. Section III-B analyzes stability
of piecewise affine systems. In Section III-C, we use non-
monotonic Lyapunov functions to find upper bounds on the
joint spectral radius of a finite set of matrices. Throughout
Section III, we draw comparisons with earlier techniques. Fi-
nally, we present our conclusions and some future directions
in Section IV.

II. NON-MONOTONIC LYAPUNOV FUNCTIONS
In this section we state our main results which are com-

prised of two sufficient conditions for global asymptotic
stability. Both theorems impose conditions on higher order
differences of Lyapunov functions. For clarity, we state our
theorems with formulations that only use up to a two-
step difference. The generalized versions are presented as
corollaries.

A. The Non-Convex Theorem
Our first theorem has a non-convex formulation and it will

turn out to be a special case of our second theorem. On
the other hand, it allows for an intuitive interpretation of
relaxing the monotonicity requirement of (2). For this reason,
we present it as a motivation.

Theorem 2.1: Consider the dynamical system (1). If there
exists a scalar τ ≥ 0, and a continuous radially unbounded
function V : Rn → R, such that

V (x) > 0 ∀x (= 0
V (0) = 0

τ(Vk+2 − Vk) + (Vk+1 − Vk) < 0 (3)

then the origin is a GAS equilibrium of (1).
Note that we have a product of decision variables V and

τ in (3). Therefore, this condition cannot be checked via an
SDP. We shall overcome this problem in the next subsection.
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But for now, our approach will be to fix τ through a binary
search, and then search for V .

Before we provide a proof of the theorem, we shall give
an interpretation of condition (3). When τ = 0, we recover
Lyapunov’s theorem. For τ > 0, condition (3) requires a
weighted average of the improvement in one step and the
improvement in two steps to be negative. Meaning that V
has to decrease on average every two steps. This allows the
Lyapunov function to increase in one step (i.e. Vk+1 > Vk),
as long as the improvement in two steps is negative enough.
Similarly, at some other points in space, we may have
Vk+2 > Vk when there is enough decrease in the first step.
The special case of τ = 1 has a nice interpretation. In this
case (3) reduces to

Vk >
1
2
(Vk+1 + Vk+2),

i.e., at every point in time, the value of the Lyapunov function
should be more than the average of the value at the next two
future steps. It should intuitively be clear that condition (3)
should imply Vk → 0 as k → ∞. The formal proof is as
follows.

Proof: (of Theorem 2.1) Consider the sequence {Vk}.
For any given Vk, (3) and the fact that τ ≥ 0 imply that either
Vk+1 or Vk+2 should be strictly less than Vk. Therefore,
there exists a subsequence of {Vk} that is monotonically
decreasing. Since the subsequence is lower bounded by zero,
it must converge to some c ≥ 0. It can be shown (for e.g.
by contradiction) that because of continuity of V (x), c must
be zero. This part of the proof is similar to the proof of
standard Lyapunov theory (see e.g. [3]). Now that we have
established a converging subsequence, for any ε > 0, we can
find k̄ such that Vk̄ < min{ ε

1+τ , τε
1+τ }. Because of positivity

of V and condition (3), we have Vk < ε ∀k > k̄. Therefore,
Vk → 0, which implies x → 0.

We shall provide an alternative proof in Section II-B
for the more general theorem. Note that by construction,
Theorem 2.1 should work better than requiring Vk+1 < Vk

(τ = 0) and Vk+2 < Vk (τ large). The following example
illustrates that the improvement can be significant.

Example 2.1: (piecewise linear system in one dimension)
Consider the piecewise linear dynamical system:

xk+1 = f(xk)

with

f =






A1x |x| ∈ R1 = [9,∞)
A2x |x| ∈ R2 = [7, 9)
A3x |x| ∈ R3 = [6, 7)
A4x |x| ∈ R4 = [0, 6)

where A1 = 2
5 , A2 = 3

4 , A3 = 3
2 , and A4 = 1

2 .
We would like to establish global asymptotic stability

using Lyapunov theory. Since f is odd, it suffices to find
a Lyapunov function for half of the space (e.g., x ≥ 0) and
use its mirror image on the other half space. Figure 2(a)
illustrates the possible switchings among the four regions.
Note that A3 > 1 and A3A2 > 1. We claim that no
quadratic Lyapunov function exists. Moreover, no quadratic

(a) transition graph (b) standard Lyapunov function

(c) non-monotonic Lyapunov function (d) standard Lyapunov function

(e) τ(Vk+2−Vk)+(Vk+1−Vk) < 0 (f) Wk+1 < Wk

Fig. 2. Comparison between non-monotonic and standard Lyapunov
functions for Example 2.1. The non-monotonic Lyapunov function has a
simpler structure and therefore less decision variables.

function can satisfy Vk+2 < Vk. These facts can easily be
seen by noting that any positive definite quadratic function
will increase if the trajectory moves away from the origin.
Therefore, transitions A3 and A3A2 respectively reject the
existence of a quadratic Lyapunov function that would de-
crease monotonically in one or two steps.

In order to satisfy the monotonic decrease of Lyapunov’s
theorem, we should search for functions that are more
complicated than quadratics. Figure 2(b) and 2(d) illustrate
two such functions. The first function, U , is a polynomial
of degree 4 (on the nonnegative half-space) found through
SOS programming. The second function, W , is a piecewise
quadratic with four pieces that is obtained by solving an
SDP. Figure 2(f) shows the value of W on a trajectory that
starts in R1, visits R2, R3, R1, R4, and stays in R4 before
it converges to the origin. The corresponding plot for U is
omitted to save space.

Next, we apply Theorem 2.1 to prove stability. As shown
in Figure 2(c), we can simply take V to be a linear function
with slope of 1 on the positive half-space. This V along with
any τ ∈ (1.25, 2) satisfies (3). Figure 2(e) shows the value
of V on the same trajectory described before. Even though
from k = 2 to k = 4 V is increasing, at any point in time
condition (3) is satisfied.
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This example clearly demonstrates that relaxing mono-
tonicity can simplify the structure of Lyapunov functions.
From a computational point of view, the search for the non-
monotonic Lyapunov function only had 2 decision variables:
the slope of the line in V and the value of τ . On the other
hand, each of the four quadratic pieces of W have three
free parameters. If we take advantage of the fact that the
piece containing the origin should have no constant or linear
terms, we end up with a total of 10 decision variables. As
we shall see in Section III-B, both methods will have the
same number of constraints. The quartic polynomial U has
no constant or linear terms and therefore has 3 decision
parameters. However, as the dimension of the space goes up,
the difference between the number of free parameters of a
quadratic and a quartic grows quadratically in the dimension.
We will make many more similar comparisons in Section III
for different types of dynamical systems.
We end this section by stating the general version of Theo-
rem 2.1, which requires the Lyapunov function to decrease
on average every m steps.

Corollary 2.1: Consider the dynamical system (1). If there
exists m−1 nonnegative scalars τi, and a continuous radially
unbounded function V : Rn → R, such that

V (x) > 0 ∀x (= 0
V (0) = 0

τm−1(Vk+m − Vk) + · · · + (Vk+1 − Vk) < 0
(4)

then the origin is a GAS equilibrium of (1).
Proof: The proof is a straightforward generalization of

the proof of Theorem 2.1.

B. The Convex Theorem
In this section we present our main theorem, which will

be used throughout Section III.
Theorem 2.2: Consider the dynamical system (1). If there

exists two continuous functions V 1, V 2 : Rn → R such that

V 2 and V 1 + V 2 are radially unbounded
V 2(x) > 0 ∀x (= 0

V 1(x) + V 2(x) > 0 ∀x (= 0
V 1(0) + 2V 2(0) = 0

(V 2
k+2 − V 2

k ) + (V 1
k+1 − V 1

k ) < 0 (5)

then the origin is a GAS equilibrium of (1).
The inequality (5) is linear in the decision variables V 1

and V 2. This will alow us to check condition (5) via a
semidefinite program. Note that Theorem 2.1 is a special
case of Theorem 2.2, when V 1 = V and V 2 = τV . Unlike
Theorem 2.1, Theorem 2.2 maps the state into two Lyapunov
functions instead of one. In this fashion, the improvement
in one and two steps are measured using two different
metrics. The theorem states that as long as the sum of the
two improvements is negative at any point in time, stability
is guaranteed and both V 1 and V 2 will converge to zero.
Figure 3 illustrates the trajectory of a hypothetical dynamical
system at three consecutive instances of time. Here, V 1 and
V 2 ar taken to be quadratics and therefore have ellipsoidal

Fig. 3. Interpretation of Theorem 2.2. On the left, three consecutive
instances of the trajectory are plotted along with level sets of V 1 and
V 2. V 1 measures the improvement in one step, and V 2 measures the
improvement in two steps. The plot on the right shows that inequality (5)
is satisfied.

level sets. Since the decrease in the horizontal ellipsoid in
two steps is larger than the increase of the vertical ellipsoid
in the first step, inequality (5) is satisfied.

The following proof will use the conditions of Theo-
rem 2.2 to explicitly construct a standard Lyapunov function.
Proof: (of Theorem 2.2) We start by rewriting (5) in the form

V 2
k+2 + V 1

k+1 < V 2
k + V 1

k .

Adding V 2
k+1 to both sides and rearranging terms we get

V 1
k+1 + V 2

k+1 + V 2
k+2 < V 1

k + V 2
k + V 2

k+1.

If we define W (x) = V 1(x) + V 2(x) + V 2(f(x)), the last
inequality implies that Wk+1 < Wk. It is easy to check from
the assumptions of the theorem that W will be continuous,
radially unbounded, and will satisfy W (x) > 0 ∀x (= 0, and
W (0) = 0. Therefore, W is a standard Lyapunov function
for (1).

The explicit construction of a standard Lyapunov function
in this proof suggests that non-monotonic Lyapunov func-
tions are equivalent to standard Lyapunov functions of a very
specific structure. The function W (x) is parameterized not
only with the value of the current state x, but also with
the future value of the state f(x). We will demonstrate
in Section III that parameterizing W in this fashion and
searching for V 1 and V 2 can often be advantageous over
a direct search for a standard Lyapunov function of similar
complexity. The reason is that depending on f itself, W (x)
will have a more complicated structure than V 1(x) and
V 2(x). For example, if f is a polynomial of degree d and
V 1 and V 2 are polynomials of degree q, then W will be
of higher degree dq. As a second example, suppose f is
piecewise linear with R pieces. If two smooth quadratic
functions V 1 and V 2 satisfy the conditions of Theorem 2.2,
then there will be a standard Lyapunov function W which
is piecewise quadratic with R pieces. From a computational
point of view, this additional complexity directly translates
into more decision variables. These facts will become more
clear in Section III, where we compare standard Lyapunov
techniques to our methodology for specific examples.

Next, we generalize Theorem 2.2 to m-step differences.
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Corollary 2.2: Consider the dynamical system (1). If there
exists continuous functions V 1, · · · , V m : Rn → R such
that

m∑

i=j

V i radially unbounded for j = 1, · · · , m

m∑

i=j

V i(x) > 0 ∀ x (= 0 for j = 1, · · · , m

m∑

i=1

iV i(0) = 0

(V m
k+m − V m

k ) + · · · + (V 1
k+1 − V 1

k ) < 0 (6)

then the origin is a GAS equilibrium of (1).
Proof: Similar to the proof of Theorem 2.2, it can be

shown that
∑m

j=1

∑m
i=j V i(f j−1) is a standard Lyapunov

function.

III. APPLICATIONS AND EXAMPLES
In this section, we apply our results to polynomial systems,

piecewise affine systems, and linear systems with arbitrary
switching. In all of the examples, our approach will be as
follows. We fix a certain class of Lyapunov functions (e.g.,
quadratics) and we show that no function within that class
satisfies Vk+1 < Vk or Vk+2 < Vk. Then, we find functions
V 1 and V 2 of the same class that prove stability based on
Theorem 2.2. In most cases, we will write out the LMIs
explicitly to provide guidelines for the users. Throughout, the
reader should keep in mind that Corollary 2.2 with m > 2
can lead to better results than Theorem 2.2 at the expense
of computing higher order differences.

A. Polynomial Systems
Conditions of Lyapunov’s theorem for polynomial systems

reduce to checking nonnegativity of certain polynomials on
the whole space. This problem is known to be NP-hard. A
tractable sufficient condition for global nonnegativity of a
polynomial function is the existence of a sum of squares
(SOS) decomposition.

A multivariate polynomial p(x1, ..., xn) := p(x) is a sum
of squares, if there exist polynomials q1(x), ..., qm(x) such
that

p(x) =
m∑

i=1

q2
i (x).

Notice that p(x) being SOS implies p(x) ≥ 0. The converse
is not true, except for special cases [7]. However, unlike
nonnegativity, the search for an SOS decomposition of a
polynomial can be cast as an SDP, which can be solved
efficiently in polynomial time. The conversion step is fully
algorithmic, and has been implemented in the SOSTOOLS
[13] software package. Over the past few years, SOS
programming has shown to be a powerful technique for
construction of Lyapunov functions [8], [9], [10]. Luckily,
we can readily apply the same methodology to find non-
monotonic Lyapunov functions. More specifically, we will
search for V 1 and V 2 that satisfy

V 2(x) SOS
V 1(x) + V 2(x) SOS

−{V 2(f(f(x)))− V 2(x) + V 1(f(x))− V 1(x)} SOS.
(7)

Example 3.1: Consider the discrete time polynomial dy-
namics in dimension two:

f =
(

3
10x1

x1 + 1
2x2 + 7

18x2
2

)
.

One can check that no quadratic SOS function V can satisfy

−{V (f(x))− V (x)} SOS.

Since there is no gap between SOS and nonnegativity in
dimension two and degree up to four [7], we can be certain
that in fact no quadratic Lyapunov function exists for this
system. We can also check that no quadratic SOS function
will satisfy

−{V (f(f(x)))− V (x)} SOS.

On the other hand, from SOSTOOLS and the SDP solver
SeDuMi [14] we get that condition (7) is satisfied with

V 1 = 0.063x2
1 − 0.123x1x2 − 1.027x2

2

V 2 = 0.731x2
1 + 0.095x1x2 + 1.756x2

2.

Stability follows from Theorem 2.2. It is easy to check that
W (x) = V 1(x) + V 2(x) + V 2(f(x)) will be a standard
Lyapunov function of degree four. Alternatively, we could
have directly searched for a standard Lyapunov function
of degree four. However, a polynomial of degree d in n
variables has

(n+d
d

)
coefficients. Therefore, as the dimension

goes up, one quartic will have significantly more decision
parameters than two quadratics.

B. Piecewise Affine Systems

Piecewise affine (PWA) systems are systems of the form

xk+1 = Aixk + ai, for xk ∈ Ri (8)

where Ri’s are polyhedral partitions of the state space.
There has been much recent interest in systems of this
type because, among other reasons, they provide a practical
framework for modeling and approximation of hybrid
and nonlinear systems. In [6], the method of piecewise
quadratic (PWQ) Lyapunov functions was introduced to
analyze stability of continuous time PWA systems. Discrete
time analogs of this technique have also been studied
(see e.g. [15], [16]). A detailed comparison of different
stability techniques for discrete time PWA systems is
presented in [17]. In this section, we compare the strength
of non-monotonic Lyapunov functions to some of the other
techniques through an example. It will be shown that,
in some cases, instead of a standard piecewise quadratic
Lyapunov function, smooth non-monotonic Lyapunov
functions can prove stability.

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 47th IEEE Conference on Decision and Control.

Received March 13, 2008.



Example 3.2: (Discretized flower dynamics) Consider the
the following PWA system

xk+1 =
{

A1xk, xT
k Hxk > 0

A2xk, xT
k Hxk ≤ 0

where A1 = λe2ACT
1 , and A2 = 1

λe2ACT
2 .

The matrices ACT
1 , ACT

2 , and H are as in [6] (with a minor
correction)

ACT
1 =

[
−0.1 5
−1 −0.1

]
, ACT

2 =
[
−0.1 1
−5 −0.1

]
,

H =
[
1 0
0 −1

]
,

and λ ≥ 1 will be a scaling parameter in this problem. We
will compare different techniques based on the range of λ
for which they can prove stability.

If we search for a smooth1 quadratic Lyapunov function
satisfying Vk+1 < Vk, the problem will be infeasible even
for λ = 1. As a second attempt, we search for a smooth
quadratic function that satisfies Vk+2 < Vk. Stability is
proven for λ ∈ [1, 1.114]. Our next purpose is to show
that by combining the improvement in one step and the
improvement in two steps using quadratic non-monotonic
Lyapunov functions, better results will be obtained. By taking
V i to be xT Pix, the conditions of Theorem 2.2 reduce to
the following set of LMIs

P2 , 0
P1 + P2 , 0

(AT
i AT

j P2AjAi − P2) + (AT
i P1Ai − P1) ≺ 0

when x ∈ Ri and Aix ∈ Rj , ∀i, j ∈ {1, 2}.
(9)

In order to impose the last inequality in (9) only on regions
of space where AjAi is a possible future transition, we use
the S-procedure technique [5]. The LMIs in (9) will prove
stability for λ ∈ [1, 1.221), which is a strictly larger range
than what was obtained before.
Next, we shall comment on the connection of this approach
to piecewise quadratic Lyapunov functions, which we denote
by xT Qix.

A search for a PWQ Lyapunov function can be posed by
the following set of LMIs [17]

Q1 , 0
Q2 , 0

(AT
i QjAi −Qi) ≺ 0

when x ∈ Ri and Aix ∈ Rj , ∀i, j ∈ {1, 2}.
(10)

If we ignore the positivity conditions, (9) and (10) show that
the two methods have the same number of constraints. It is
relatively straightforward to check that whenever P1 and P2

satisfy (9),

Qi = P1 + P2 + AT
i P2Ai i = 1, 2 (11)

1Reference [17] refers to this as a common quadratic Lyapunov function.
This is not to be confused with common quadratic in the context of
arbitrary switching. We avoid using this terminology to emphasize that the
S-procedure relaxation is used on the regions.

will satisfy the LMIs in (10). This is in agreement with
the standard Lyapunov function that we constructed in the
proof of Theorem 2.2. On the other hand, existence of PWQ
Lyapunov functions does not in general imply feasibility of
the LMIs in (9). However, for the example discussed above,
piecewise quadratic Lyapunov functions also prove stability
for λ ∈ [1, 1.221).
We should point out that the method of smooth non-
monotonic Lyapunov functions is searching only for two
functions P1 and P2 independent of the number of regions.
On the other hand, PWQ Lyapunov functions have to find as
many quadratic functions as the number of regions. This in
turn results in more decision variables and more positivity
constraints.

To obtain a method that works at least as well as (and most
likely strictly better than) standard PWQ Lyapunov functions,
one can take V 1, V 2, or both in Theorem 2.2 to be piecewise
quadratic.

C. Approximation of the Joint Spectral Radius

In this section, we consider a dynamical system of the
type

xk+1 = Aσ(k)xk (12)

where σ is a mapping from the integers to a finite set
of indices {1, ...,m}. The question of interest is to de-
termine whether the discrete inclusion (12) is absolutely
asymptotically stable (AAS), i.e., asymptotically stable for
all switching sequences.

It turns out [18] that (12) is AAS if and only if the
joint spectral radius (JSR) of the matrices A1, ..., Am is
strictly less than one. The joint spectral radius represents the
maximum growth rate obtained by taking arbitrary products
of the matrices Ai. It is formally defined as [19]:

ρ(A1, · · · , Am) := lim
k→∞

max
σ∈{1,··· ,m}k

‖Aσk · · ·Aσ2Aσ1‖
1
k

(13)
where the value of ρ is independent of the norm used in
(13). For a given set of matrices, testing whether ρ < 1 is
undecidable [20]. Moreover, computation and even approxi-
mation of the JSR is difficult [21]. Here, we will be interested
in providing bounds on the JSR. Clearly, the spectral radius
of any finite product of matrices gives a lower bound on ρ.
Computing upper bounds is a much more challenging task.
We explain our technique for a pair of matrices A1, A2. The
generalization to a finite set of matrices is straightforward.

Because of the scaling property of the JSR, for any
λ ∈ (0,∞), if we can prove AAS of (12) for the scaled
pair of matrices λA1 and λA2, then 1

λ is an upper bound on
ρ(A1, A2). References [22] and [23] have respectively used
common quadratic and common SOS polynomial Lyapunov
functions to prove upper bounds on ρ. Here, we will use com-
mon non-monotonic Lyapunov functions for this purpose.
For the special case where V 1 and V 2 are quadratics (i.e.
V i = xT Pix), Theorem 2.2 suggests that the following LMIs
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have to be satisfied to get an upper bound of 1
λ on ρ(A1, A2).

P2 , 0
P1 + P2 , 0

(λ4AT
i AT

j P2AjAi − P2) + (λ2AT
i P1Ai − P1) ≺ 0
∀i, j ∈ {1, 2}.

(14)
When P2 is set to zero, the method of common quadratics
is recovered. Similarly, when P1 is set to zero, the LMIs
will find a common quadratic that satisfies Vk+2 < Vk. It
is easy to see that the existence of a common quadratic in
one step implies the existence of a common quadratic in
two steps, but the converse is not true. Therefore, setting
P1 = 0 will produce upper bounds that are at least as tight
as those obtained from setting P2 = 0. Below, we show
with two examples that when we use both P1 and P2 in (14)
to combine the improvement in one and two steps, we can
provide strictly tighter bounds on the JSR.

Example 3.3: ( [23], Example 2) We consider the problem
of finding an upper bound for the JSR of the following pair
of matrices:

A1 =
[
1 0
1 0

]
, A2 =

[
0 1
0 −1

]

It is not difficult to show that ρ(A1, A2) = 1. Using common
quadratic standard Lyapunov functions, one would obtain an
upper bound of

√
2 ≈ 1.41. A common quadratic standard

Lyapunov function for A1A1, A2A1, A1A2, and A2A2 would
produce an upper bound of 4

√
2 ≈ 1.19. On the other hand,

common quadratic non-monotonic Lyapunov functions can
achieve an upper bound of 1+ ε for any ε > 0. Given ε, the
LMIs (14) will be feasible with

P1 =
[
−α 0

0 −α

]
, P2 =

[
β 0
0 β

]

with any β > 0, 1− 4ε
1+ε < α

β < 1.
We should mention that in [23], it is shown that a common

SOS quartic Lyapunov function also achieves an upper bound
of 1 + ε, ∀ε > 0.

Example 3.4: ( [23], Example 4) We consider the follow-
ing three randomly generated 4× 4 matrices:

A1 =





0 1 7 4
1 6 −2 −3
−1 −1 −2 −6

3 0 9 1



 , A2 =





−3 3 0 −2
−2 1 4 9

4 −3 1 1
1 −5 −1 −2





A3 =





1 4 5 10
0 5 1 −4
0 −1 4 6
−1 5 0 1





A lower bound on the JSR is ρ(A1A3)
1
2 ≈ 8.91 [23].

Method of common quadratic satisfying Vk+1 < Vk, com-
mon quadratic satisfying Vk+2 < Vk, and common non-
monotonic quadratic satisfying Theorem 2.2 respectively
produce upper bounds equal to 9.77, 9.19, and 8.98. A
common SOS quartic satisfying Vk+1 < Vk produces an
upper bound of 8.92 [23]. This bound is tighter than what we

obtained from quadratic non-monotonic functions. However,
the latter technique will have 20 decision parameters for this
example in contrast with 35 needed to find a homogeneous
quartic function.

Even though, throughout Section III we have used
quadratic non-monotonic Lyapunov functions, the reader
should keep in mind that better results can be obtained by
taking V 1 and V 2 of Theorem 2.2 to be SOS polynomials.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we addressed the following natural question:
why should we require a Lyapunov function to decrease
monotonically at every step? We gave a sufficient condition
for GAS that allows the Lyapunov functions to increase
locally while guaranteeing their convergence to zero in the
limit. The conditions of our main theorem were convex.
Therefore, all the techniques developed for finding Lyapunov
functions based on convex programming can readily be ap-
plied. We showed that whenever a non-monotonic Lyapunov
function is found, one can construct a standard Lyapunov
function from it. However, the standard Lyapunov function
will have a more complicated structure. The nature of this
additional complexity depends on the dynamics itself. We
demonstrated the advantages of our methodology over stan-
dard Lyapunov theory through examples from polynomial
systems, and linear systems with constrained and arbitrary
switching.

Our work leaves three future directions to be explored.
First, it would be interesting to see if continuous time analogs
of non-monotonic Lyapunov functions can be established
by imposing a convex condition on higher derivatives of
Lyapunov functions. Second, the connection of our method-
ology to vector Lyapunov functions (e.g. [24]) needs to be
clarified. Since our main theorem measures the improvement
in different steps with different Lyapunov functions, we
suspect that our non-monotonic functions may be a special
type of vector Lyapunov functions. Finally, other control
applications such as synthesis, or robustness and performance
analysis can be explored using non-monotonic Lyapunov
functions.
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