

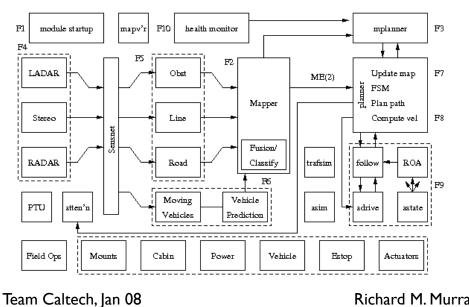
Specification, Design and Verification of Distributed Embedded Systems

Mani Chandy John Doyle Richard Murray (PI) California Institute of Technology

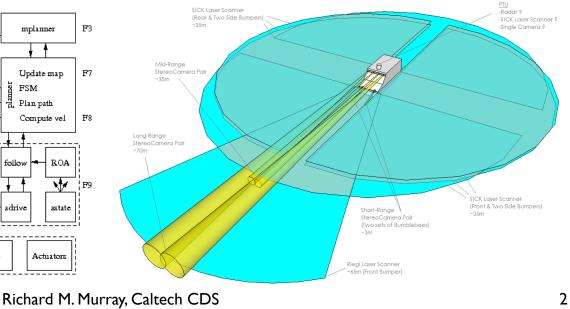
Eric Klavins U. Washington Pablo Parrilo MIT

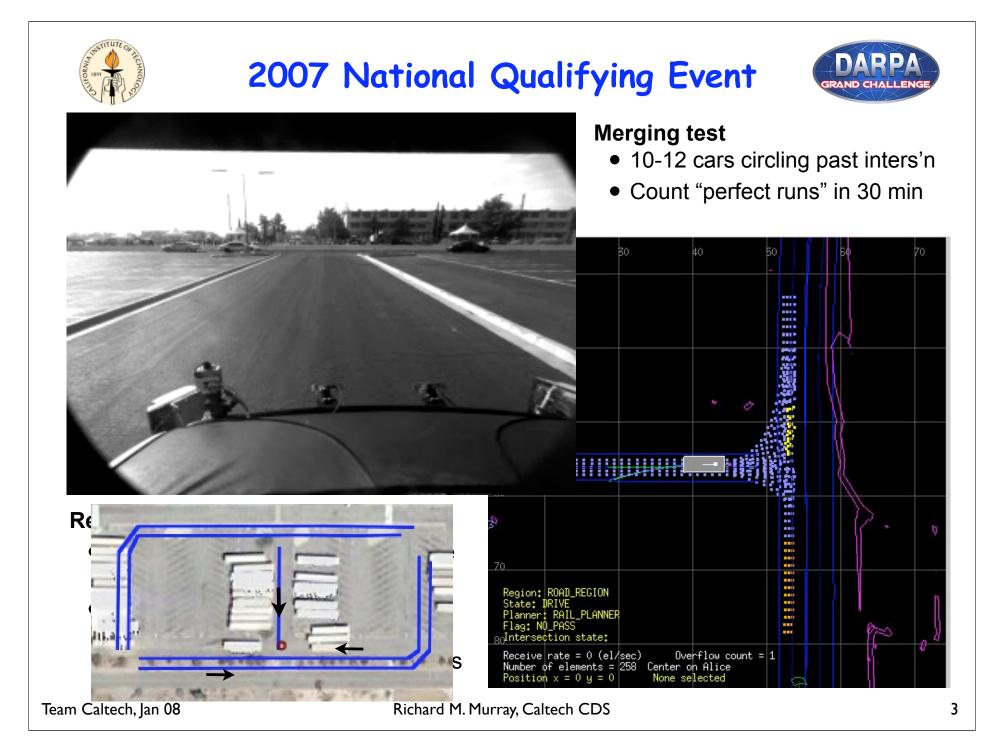
AFOSR Dynamics and Control Meeting 5 August 2008

Motivating Example: Alice (DGC07)



Alice


- 300+ miles of fully autonomous driving
- 8 cameras, 8 LADAR, 2 RADAR
- 12 Core 2 Duo CPUs + Quad Core
- ~75 person team over 18 months


Software

- 25 programs with ~200 exec threads
- 237,467 lines of executable code

<image>

MURI Goals + Talk Outline

Overall Goal: Develop methods and tools for designing control policies, specifying the properties of the resulting distributed embedded system and the physical environment, and proving that the specifications are met

Specification

• How does the user specify---in a single formalism--continuous and discrete control policies, communications protocols and environment models (including faults)?

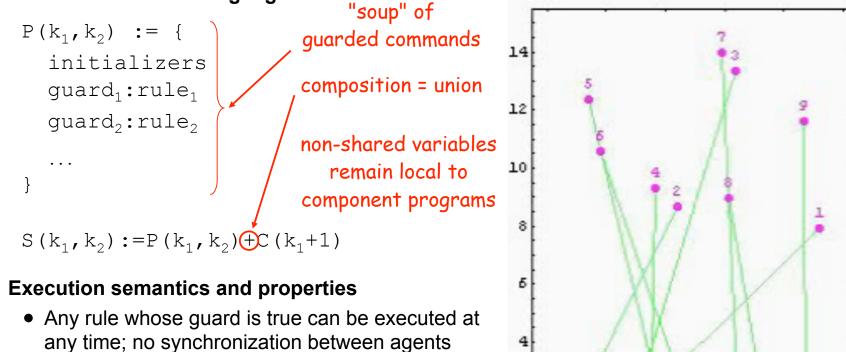
Design and reasoning

- How can engineers reason that their designs satisfy the specifications?
- In particular, can engineers reason about the performance of computations and communication, and incorporate real-time constraints, dynamics, and uncertainty into that reasoning?

Implementation (joint with Boeing, JPL, AFRL)

• What are the best ways of mapping detailed designs to hardware artifacts, running on specific operating systems? What languages are suitable for specifying systems so that the specifications can be verified more easily?

<u>Outline</u>


- I. Embedded Graph Grammars (EGGs)
- II. SOS extensions for hybrid and networked systems
- III. Combining temporal logic and dynamics
- IV. Reasoning about stochastic & adversarial environments
- V. Summary

Klavins and M IEEE PC, 2004

CCL: Computation and Control Language

Formal Language for Provably Correct Control Protocols

Guarded command language:

- Specify desired properties using temporal logic
 - $\Box p =$ **always** p (invariance)
 - $\Diamond p =$ **eventually** *p* (guarantee)
 - $p \rightarrow q \ \mathcal{U} r = p$ implies q until r (precedence)
 - $\Box \Diamond p =$ **always eventually** p (progress)
 - $\Diamond \Box p =$ **eventually always** p (stability)

Caltech, August 2008

Richard M. Murray, Caltech CDS

2

Ū.

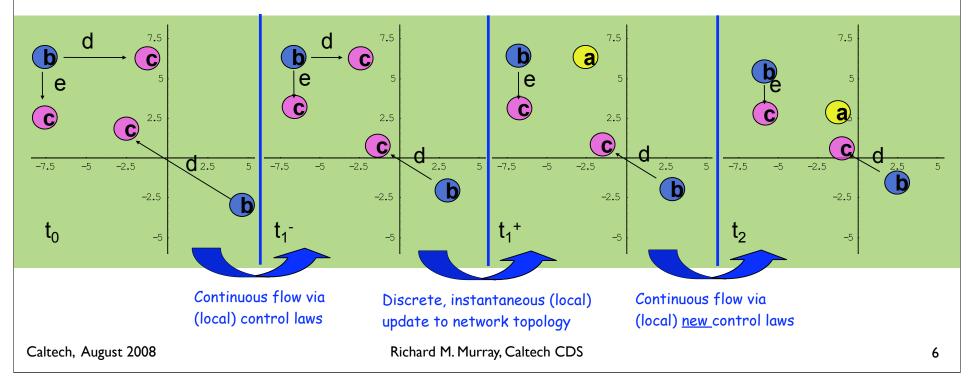
4

б

8

10

Embedded Graph Grammars (McNew et al)


Defn An *embedded graph* is a tuple G = (V, E, z, e) such that

- V is a set of vertices (agents)
- E is a set of edges representing agents that can communicate with each other
- z is a set of vertex variables (properties; eg, location)
- e is a set of edge variables (properties; eg, relationship)

Defn An *embedded graph grammar* is a pair (F, u) where

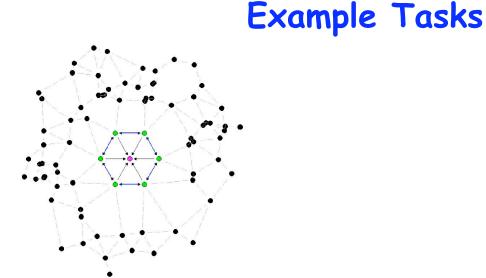
- F is a set of local rules (for each agent)
- u is a set of local controllers (for each agent)

Design problem: find (F, u) such that the dynamics $g(t) \in G$ have desired set of properties under asynchronous execution

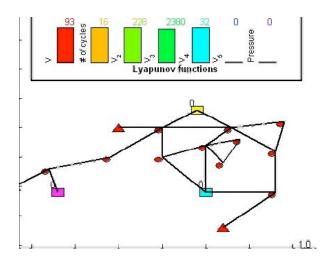
Lexicographically Ordered Lyapunov Functions

Defn Let $A \subset G$ be closed under a graph grammar Φ and let \leq be an ordering on \mathbb{R}^k with a unique zero element. A function $U:A \to \mathbb{R}^k$ is a *discrete Lyapunov function* for the graph grammer Φ if

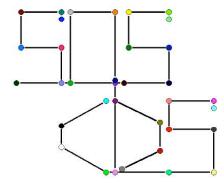
- U(G) > 0 implies at least one rule is applicable
- U(G) = 0 implies no rule is applicable
- When U(G) > 0, ever applicable rule decreases U


Theorem (McNew et al) Suppose (G_0, Φ) is a system, *P* is a set of desired final graphs, *A* is a set of Φ invariant graphs and *U* is a discrete Lyapunov function so that $A \cap U^{-1}(0) \subset P$. If $G_0 \in A$, then every trajectory converges to a final graph in *P*.

Defn The *lexicographic ordering* (\mathbb{R}^n , \leq) is defined as $(a_1, a_2, \dots, a_n) < (b_1, b_2, \dots, b_n)$ if $a_1 < b_1$ or there exists a k such that $a_i = b_i$ for all $i \leq k$ and $a_{k+1} < b_{k+1}$.


Corollary Suppose Φ_1 , Φ_2 are two grammars with invariant sets *A* and *B* and discrete Lyapunov functions *U* and *V*. If $A \cap B$ is closed under applications of rules in $\Phi_1 \cup \Phi_2$, and there exists a lexicographic order of elements of *U*, *V* with respect to $\Phi_1 \cup \Phi_2$ then every trajectory converges to a final graph in $A \cap B \cap U^{-1}(0) \cap V^{-1}(0)$.

Remark Allows constructive techniques for combining basic behaviors...


Caltech, August 2008

Triangulation: Vehicles achieve uniform coverage from arbitrary initial conditions (HSCC 07).

Load Balancing: Vehicles cover targets in equal numbers while maintaining connectivity (CDC 06).

Reconfiguration: Vehicles change formations while maintaining network connectivity (ACC 08).

- Each task <u>requires</u> mode-switching and communication.
- Solutions are completely decentralized.
- Each solution comes with safety and progress guarantees.
- More tasks and proof methodologies in J.M. McNew's thesis (Ph.D. in Sept. 2008).

Caltech, August 2008

Richard M. Murray, Caltech CDS

Proof Certificates for Stability and Sum of Squares

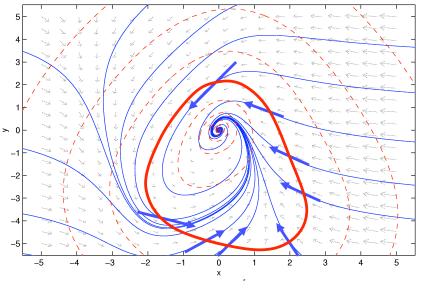
Certifying stability for dynamical systems

• Given a (controlled) dynamical system,

$$\dot{x} = f(x, \mu)$$

determine whether the system is stable and estimate the region of attraction

• Traditional technique: find a Lyapunov function that serves as a "proof certificate" for stability and gives a set that is guaranteed to be in region of attraction


$$V(x) \succ 0, \quad \frac{\partial V}{\partial x} f(x) \preceq 0, \quad x \in \mathcal{S}$$

Sum-of-squares approach

- Approximate the Lyapunov certificate with a sum of squares; solve a convex programming problem
- Constructive algorithm for finding Lyapunov functions; rapidly becoming a standard computational approach

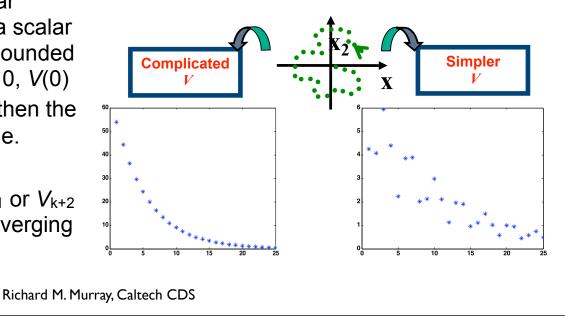
Extensions

- SOSTOOLS MATLAB package for finding SOS certificates
- Proof certificates for hybrid dynamica systems (barrier certificates)
- Incorporating stochastic inputs (noise, disturbances)
- Current work: incorporating temporal logic specifications (focus of MURI)

Caltech/MIT/UW V&V MURI

Non-Monotonic Lyapunov Functions (Ahmadi et al)

Goal: easier conditions for stability and performance of hybrid systems


- Traditional Lyapunov-based analysis relies on monotone invariants (e.g., energy)
- This often forces descriptions requiring high algebraic complexity
- Is it possible to relax the monotonicity assumption?

Thm Consider a discrete-time linear system $x_{k+1} = f(x_k)$. If there exists a scalar $\tau \ge 0$ and a continuous radially unbounded function *V* such that $V(x) \ge 0 \forall x \ne 0$, V(0)= 0 and $\tau(V_{k+2} - V_k) + V_{k+1} - V_k < 0$ then the origin is global asymptotically stable.

Pf Show that for any V_k , either V_{k+1} or V_{k+2} is less than V_k and construct a converging subsequence

Remarks

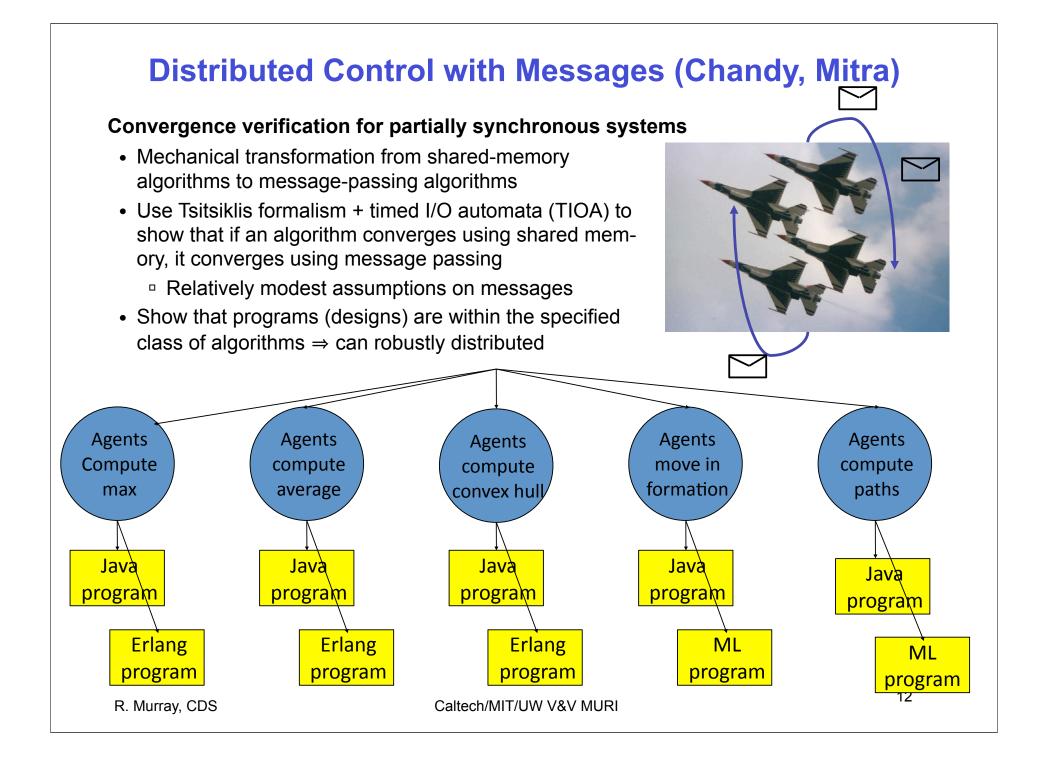
- Can reformulate results as convexitybased conditions, checkable by SOS/ semidefinite programming
- Easy to apply, more powerful than standard conditions
- Connections with other techniques (e.g., vector Lyapunov functions)
- Many extensions to discrete/ continuous/hybrid/switched, etc.

Formal Reasoning for Dynamics + Protocols

Asynchronous Iterative Processes (Tsitsiklis, 1987)

- S = states, $S_0 =$ starting states (mixed continuous and discrete)
- A = set of actions, E = enabling predicate, T = transition function
- *E*(*s*, *a*) holds if an only if the transition labeled by *a* can be applied to *s*
- *s*' = *T*(*a*, *s*) if *a* is enabled at *s* or *s*' = *s*
- d = distance function on $S^* \subseteq S$: $\forall s \in S^*$, $s' \in S^*$, $d(S^*, s) > d(S^*, s')$

Defn Let $A = (S, A, S_0, E, T)$ be an automaton, s^* a state in S and d a distance function for s^* . The automaton A is (s^*, d) -stable if $\forall \epsilon > 0, \exists \delta > 0$ such that $\forall s \in S, a^{\omega} \in A^{\omega}, n \in$ N, $s \in B_{\delta}(s^*) \Rightarrow$ Trans $(s, a^{\omega}, n) \in B_{\epsilon}(s^*)$.


Thm Let S* be a nonempty subset of S and let d be a distance function for S*. Suppose there exists a totally ordered set (T, <) with sublevel sets L_p and a function $f:S \to T$ that satisfies the following conditions

- $\forall \epsilon \geq 0, \exists p \in T \text{ such that } L_p \subseteq B_{\epsilon}(S^*)$
- $\forall p \in \mathsf{T}, \exists \epsilon \geq 0$ such that $\mathsf{B}_{\epsilon} \subseteq L_{\rho}$
- $\forall s \in S, a \in A, E(a, s) \Rightarrow f(T(a, s)) \leq f(s)$

Then A is (S*, d)-stable

Proof via PVS metatheory ⇒ allows reasoning in theoremproving environment

Caltech, August 2008

Stochastic Systems

Increased interest in stochastic behavior

- Need to eason about probability of events and stochastic performance measures
- Formal reasoning systems allow non-determinism (in events), but often don't include random variables and processes

Model reduction using Wasserstein pseudometrics (Thorsley et al)

- Define a formal distance between stochastic processes
- Enables reasoning about complicated systems by producing simpler models
- Details: Thorsely & Klavins (ACC, 2008)

Polynomial stochastic games via sum of squares optimization (Shah et al)

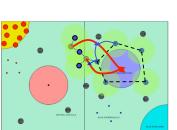
- Generalize Markov decision processes to game theoretic settings
- Can show that equilibria for certain classes of two-player, zero-sum, infinite strategy games can be solved via SDPs (eg, SOS-tools)
- Provides possible method to extend current results to adversarial environments
- Details: Shah & Parrilo (CDC, 2008)

http://www.cds.caltech.edu/~murray/VaVMURI

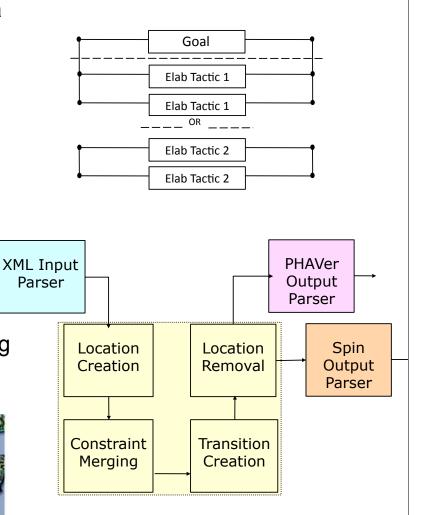
Implementation Tools

Mission Data System (MDS) \rightarrow Hybrid Automata

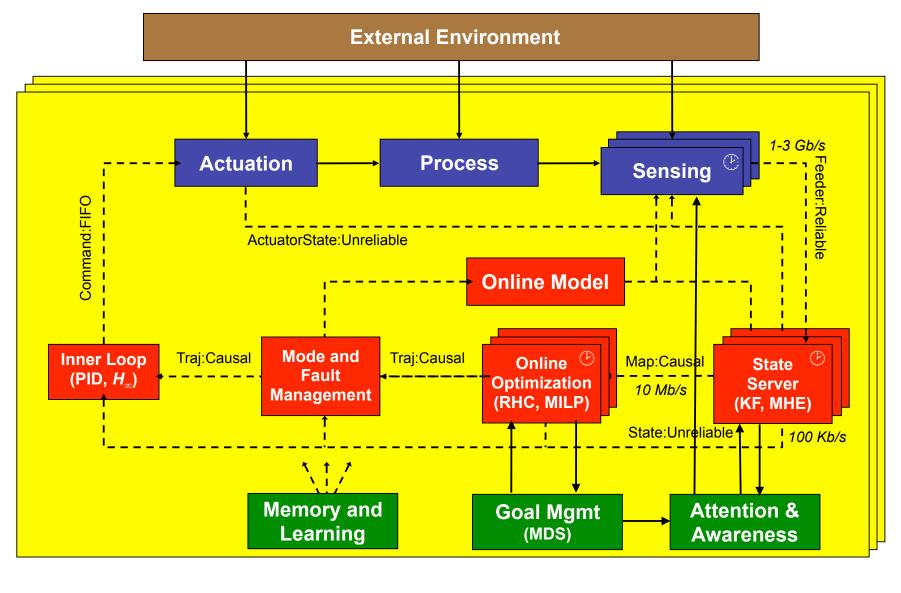
- Conversion of goal network to hybrid automata that can be verified using PHAVer, SPIN, etc
- Joint work with JPL, applying to Titan mission


PVS metatheory for asynchronous iterative processes

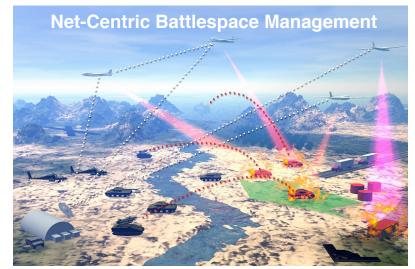
- "Library" for reasoning about stability in PVS
- Being used for verifying multi-robot protocols


Applications to Alice, MVWT

• Applying tools to verify behavior of Alice (starting with fixing DGC07 failure mode!)



Caltech, August 2008


Richard M. Murray, Caltech CDS

Networked Control Systems

(following P. R. Kumar)

Specification, Design and Verification of Distributed Embedded Systems Caltech/MIT/UW, Murray (PI)/Chandy/Doyle/Klavins/Parrilo

Long-Term PAYOFF: Rigorous methods for design and verification of distributed systems-of-systems in dynamic, uncertain, adversarial environments

OBJECTIVES

Specification language for continuous & discrete control policies, communications protocols and environment models (including faults)
Analysis tools to reason about designs and provide proof certificates for correct operation

Implementation on representative testbeds

APPROACH/TECHNICAL CHALLENGES	FUNDING (\$K)—Show all funding contributing to this project							
Specification and reasoning using graph	grammars		<u>FY06</u>	<u>FY07</u>	<u>FY08</u>	<u>FY09</u>	<u>FY10</u>	
• Sum of squares analysis for certificates, i	-	AFOSR Funds	417	1000	1000	1000	1000	
• Extensions to probabalistic, adversarial a		Boeing	310	390	390	390	390	
networked operations	anu	DARPA GC		1200				
		TRANSITIONS						
ACCOMPLISHMENTS/RESULTS		Application to autonomous driving (DGC07)						
• Embedded graph grammars for cooperative	l properties ogramming /brid FSM				arrenig	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
• Lyapunov-based verification of temporal p		STUDENTS, POST-DOCS						
 Stochastic games using semidefinite pro Tools for converting goal networks to hy 		1 2006-08. 1.2 araquista studente 7 nostance 7 undergradustas						
		LABORATORY	POINT	OF C	ONTA	CT		
• Applications examples with DARPA GC +		Dr. Siva Banda, AFRL/RBCA, WPAFB, OH						
R. Murray, CDS	Caltech/MIT/I	JW V&V MURI						16
11. Manay, 000								