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Motivating Example: Alice (DGC07)
Alice
• 300+ miles of fully autonomous driving
• 8 cameras, 8 LADAR, 2 RADAR
• 12 Core 2 Duo CPUs + Quad Core
• ~75 person team over 18 months

Software
• 25 programs with ~200 exec threads
• 237,467 lines of executable code
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V&V focus: planning “stack”
• Hourglass architecture: reasoning at interconnected layers of abstraction
• Apply different tools to verify different aspects of the design
• Evolution from verification ➞ design for verification ➞ proof by construction

System Architecture
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Specifying Behavior with Temporal Logic
Description
• State of the system is a snapshot of values of all 

variables

• Reason about behaviors σ: sequence of states of 
the system

• No strict notion of time, just ordering of events

• Actions are relations between states: state s is 
related to state t by action a if a takes s to t (via 
prime notation: x’ = x + 1)

• Formulas (specifications) describe the set of 
allowable behaviors

• Safety specification: what actions are allowed

• Fairness specification: when can a component 
take an action (eg, infinitely often)

Example
• Action: a ≡ x’ = x + 1

• Behavior: σ ≡ x := 1, x := 2, x:= 3, ...

• Safety: x > 0 (true for this behavior)

• Fairness: (x’ = x + 1 ∨ x’ = x) ∧ ◊ (x’ ≠ x)

Properties
• Can reason about time by adding 

“time variables” (t’ = t + 1)

• Specifications and proofs can be 
difficult to interpret by hand, but 
computer tools existing (eg, TLC, 
Isabelle, PVS, etc)
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 p ≡ always p (invariance)
 ◊p ≡ eventually p (guarantee)
 p → ◊q ≡ p implies eventually q 

(response)
 p → q U r ≡ p implies q until r 

(precedence)
 ◊p ≡ always eventually p 

(progress)
 ◊p ≡ eventually always p 

(stability)
 ◊p → ◊q ≡ eventually p implies 

eventually q (correlation)
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DGC Example: Changing Gear
Verify that we can’t drive while shifting or drive in the wrong gear
• Five component: follower Control, gcdrive Arbiter, gcdrive Control, actuators and network

• Construct temporal logic models for each component (including network)
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Asynchronous operation
• Notation: Messagemod,dir - message to/from 

a module; Len = length of message queue

• Verify: follower has the right knowledge of 
the gear that we are currently in, or it 
commands a full brake.

-  ((Len(TransRespf,r) = Len(Transf,s)) 
∧ TransRespf,r[Len(TransRespf,r)] = 
COMPLETED ⇒ Transf = Trans))

-  (Transf = Trans ∨ Accf,s = -1)

• Verify: at infinitely many instants, follower 
has the right knowledge of the gear that we 
are currently in, or we have hardware 
failure.

- ◊ (Transf = Trans = 
Transf,s[Len(Transf,s)]  ∨  HW failure)

Wongpiromsarn and M
CDC 2008
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Verification of Periodically Controlled Hybrid Systems
Hybrid system: continuous dynamics + discrete updates
• Vehicle

- Captures the state (position, orientation and velocity) of the 
vehicle.

- Specifies the dynamics of the autonomous ground vehicle 
with respect to the acceleration and the angle of the 
steering wheel.

- Limits the magnitude of the steering input to ϕmax.
• Controller

- Receives the state of the vehicle, a path and an externally 
triggered brake input.

- Periodically computes the input steering 
- Restricts the steering angle to δv for mechanical protection 

of the steering.
- Sampling period: Δ ∈ R+.

• Desired properties
- (Safety) At all reachable states, the deviation of the vehicle 

from the current path is upper-bounded by emax.
- (Progress) The vehicle reaches successive waypoints.
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Periodically Controlled Hybrid Automata (PCHA)
PCHA setup
• Continuous dynamics with piecewise constant inputs

• Controller executes with period T ∈ [Δ1, Δ2]

• Input commands are received asynchronously
• Execution consists of trajectory segments + discrete updates
• Verify safety (avoid collisions) + performance (turn corner)

Proof technique: verify invariant (safe) set via barrier functions
• Let I be an (safe) set specified by a set of functions Fi(x) ≥ 0
• Step 1: show that the control action renders I invariant
• Step 2: show that between updates we can bound the continuous

trajectories to live within appropriate sets
• Step 3: show progress by moving between nested collection of

invariant sets I1 → I2, etc

Remarks
• Can use this to show that settings in Alice were not properly chosen; modified 

settings lead to proper operation (after the fact)
• Very difficult to find invariant sets (barrier functions) for given control system...
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Moving up the Planning Stack

Extending RHC to planning is tricky
• Modes as integers => MILP (slow)
• Hard to encode temporal logic 

specifications as cost functions
- Eg, intersection operations

Approach: rapidly explore feasible paths
• Enumerate all executions, then elim-

inate executions that violate LTL specs
• Issue: state space explosion, especially 

due to environment

8

Path
Planner

Path
Follower

Actuation
Interface

Traffic
Planner

Mission
Planner

Vehicle

Δ

Plant
P

Local
Control

noise
Trajectory
Generation

ref

output

Local designNonlinear design
• global nonlinearities
• input saturation
• state space constraints

“RHC”

LQR/PIDOptimal Control



Richard M. Murray, Caltech CDSV&V MURI, Sep 09

Receding Horizon Control for Linear Temporal Logic
Find planner (logic + path) to solve general control problem

• Can find automaton to satisfy this formula in O((nm|Σ|3) time (!)

Basic idea
• Discretize state space into regions {    } + interconnection graph
• Organize regions into a partially ordered set {     }; 
⇒ if state starts in      , must transition through      on way to goal

• Find a finite state automaton      satisfying

- Φ describes receding horizon invariants (eg, no collisions)
- Automaton states describe sequence of regions we transition 

through;                      is intermediate (fixed horizon) goal
- Planner generates trajectory for each discrete transition
- Partial order condition guarantees that we move closer to goal

Properties
• Provably correct behavior according to spec
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(ϕinit ∧ !ϕe) =⇒ (!ϕs ∧ ♦ϕg)
• φinit = init conditions

• φe = envt description
• φs = safety property

• φg = planning goal

Ψi =((v ∈Wi) ∧ Φ ∧ !ϕe) =⇒ (!ϕs ∧ ♦(v ∈Wgi) ∧ !Φ)
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Comments and Example
Comments and caveats
• Automaton synthesis is basically searching thru all feasible trajectories (efficiently)
• Complexity is polynomial, but can still get large ⇒ receding horizon is a huge help!

• Discretization of the state space is important and non-trivial

Example: driving down a lane with unknown obstacles

• Model dynamics in each directions as simple second order systems (F = m a)

• Specs: avoid obstacles, stay in lane when possible, reach the goal

• Assumptions: we can detect obstacles far enough away; obstacles don’t disappear

• State space discretization: get 11 cells for each direction (x vs vx)

• Automaton: horizon = 3 meters -> 2845 nodes (of 100k gen’d)
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• Demonstrates basic 
feasibility of approach

• Lots of tuning required 
to get everything to work

• Clever discretization + 
RHC are key enablers...
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Summary and Next Steps
Specification, Design and Verification for Alice
• Most of the actual design was ad hoc; with lots of testing
• Starting to develop tools for systematic design, verification

Analysis techniques based on invariants & model checking
• Specify desired behavior in terms of temporal logic
• Model checking using existing tools (TLA+, TLC, SPIN, ...)
• Theorem proving techniques using Lyapunov fcns, lattices

Synthesis techniques for LTL specifications using 
receding horizon planning
• Convert the specification into a design criterion
• Use fast solvers to find trajectories that satisfy constraints

(including temporal logic specifications)
• Manage complexity using receiding horizon approach

Next steps
• More systematic design of regions, lattices, invariants
• Better integration of trajectory planning and logic planning
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