
Towards NeuroML: Model Description Methods
for Collaborative Modelling in Neuroscience

Nigel H. Goddard1*, Michael Hucka2, Fred Howell1,
Hugo Cornelis3, Kavita Shankar2 and David Beeman4

1Institute for Adaptive and Neural Computation, Division of Informatics, University of Edinburgh, 5 Forrest Hill,
Edinburgh EH1 2QL, Scotland

2Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
3Theoretical Neurobiology, Born^Bunge Foundation, University of Antwerp, Universteitsplein 1, 2610 Wilrijk, Belgium

4Department of Electrical and Computer Engineering 425 UCB, University of Colorado, 425 UCB, Boulder, CO 80309, USA

Biological nervous systems and the mechanisms underlying their operation exhibit astonishing complexity.
Computational models of these systems have been correspondingly complex. As these models become ever
more sophisticated, they become increasingly di¤cult to de¢ne, comprehend, manage and communicate.
Consequently, for scienti¢c understanding of biological nervous systems to progress, it is crucial for
modellers to have software tools that support discussion, development and exchange of computational
models. We describe methodologies that focus on these tasks, improving the ability of neuroscientists to
engage in the modelling process. We report our ¢ndings on the requirements for these tools and discuss the
use of declarative forms of model descriptionöequivalent to object-oriented classes and database
schemaöwhich we call templates. We introduce NeuroML, a mark-up language for the neurosciences
which is de¢ned syntactically using templates, and its speci¢c component intended as a common format for
communication between modelling-related tools. Finally, we propose a template hierarchy for this
modelling component of NeuroML, su¤cient for describing models ranging in structural levels from
neuron cell membranes to neural networks. These templates support both a framework for user-level
interaction with models, and a high-performance framework for e¤cient simulation of the models.

Keywords: NeuroML; computational models; simulation; databases; interoperability

1. INTRODUCTION

The complexity of neural systems induces corresponding
complexity in the models created to describe and explain
them. We are interested in developing methodologies
which will improve the ability of neuroscientists to
collaborate in the modelling process. There are two key
technical requirements for supporting this. First, we must
have technologies that enable the exchange of simulation
software components, and we have been developing such
methods over the last few years (Goddard et al. 2001).
Second, it is crucial for modellers to have access to soft-
ware tools that support discussion, development and
exchange of computational models and their components,
including databases of models (Beeman et al. 1997). In this
paper, we report our ¢ndings on the requirements for
these tools and our proposals for organizing their devel-
opment. The key result we report is a mark-up language
for describing models of neural systems and processes in a
form suitable for use by simulation software tools. This
mark-up language is a component of a larger collab-
orative e¡ort to produce NeuroML, the Neural Open
Mark-up Language, an open standard for describing
models, data, literature, methods and other aspects of
neuroscience.

(a) Barriers to discussing and sharing models
What is the fundamental problem confronting designers

of methods for describing computational models in
neuroscience? A computational model of a physical
system, whether it is a synapse, a neuron or a network of
neurons, is in principle a concretization of a conceptual
structure held by a scientist or group of scientists. To enable
simulation by a computational engine, the model must
¢rst be elaborated and expressed in a formalized way,
usually in a computer program. This process of elabora-
tion and formalization often produces a description which
obscures a model’s essential components and structure.

Researchers would be better served by means of
expression that expose the important structural compo-
nents of a model, as well as support discussion and
exchange of models. But to date, several factors have been
barriers to this goal. (i) The often ad hoc nature of the
mapping from conceptualization to formalization can
render the textual description opaque: it can be di¤cult
to understand which aspects of the model’s concrete
manifestation (e.g. which elements in a given simulation
script) express the important conceptual structures.
(ii) Many di¡erent programming and scripting languages
can be used to express a given model. Di¡erent
simulation engines with di¡erent capabilities are often
restricted to using their own single expressive language
whose form is substantially di¡erent from those used by

Phil. Trans. R. Soc. Lond. B (2001) 356, 1209^1228 1209 © 2001 The Royal Society

doi 10.1098/rstb.2001.0910

*Author for correspondence (nigel.goddard@ed.ac.uk).

other simulation engines. A consequence of this is that
modellers familiar with one simulation environment ¢nd
the formalizations of another environment too obscure.
(iii) Di¡erent formalizations do not usually mix well, and
support for multiple formalizations is rarely present in
existing simulation environments.

These are some of the factors that have led to a
situation which mitigates against discussion, shared devel-
opment and exchange of models.

(b) Overcoming the barriers
To begin addressing the problems listed above, we

propose a set of conceptual schemas for constructing
model descriptions. A novel aspect of our approach is to
push model descriptions in the direction of a declarative
form, enabling models to be described by database
schemas and simulated by encapsulated code modules.
This has a number of bene¢cial implications. First, it
permits models composed of well-understood and
accepted structures to be described simply by naming
these structures. Second, it enables the creation of data-
base schemas that correspond to the named structures.
Third, it enables simulation code modules that generate
and execute these structures to be invoked using the
names. And ¢nally, it permits purely declarative descrip-
tions of such models (e.g. `there exists an X of type Y
with parameters P1, P2, . . . Pn’).

While adoption of a declarative form of model descrip-
tion is an important step, it is not su¤cient. Research
models often incorporate novel structures which cannot
be described by an existing schema. Novel structures
must be described in complete detail. Often the most
e¡ective way to do this is to use a programming language
which has the imperative programming concepts of
sequentiality (A then B then C), iteration (while . . . do
. . .), and conditional branches (if . . . then . . .). However,
imperative descriptions are undesirable from the stand-
point of model exchange: they require much greater
e¡ort to understand than declarative forms, and database
search engines can make no e¡ective inferences about
imperative program behaviour.

We avoid this con£ict by ensuring that imperative
forms of description (i.e. programming languages) are
available in the representation framework, but that these
imperative forms are encapsulated in code modules which
have well-de¢ned interfaces. An interface takes the form
of a declarative description, and can therefore be used as
part of a database schema.

(c) Overview
In ½ 2, we examine some of the requirements for model

descriptions which have motivated this work. In ½ 3, we
review previous forms of model descriptions, and in ½ 4,
we elaborate on the desirability for the separation of
declarative and imperative forms. We discuss in ½ 5 the
relationships between declarative model descriptions,
database schemas and object-oriented classes, using the
term template to refer to these concepts, and we introduce
the model component of NeuroML as the declarative
form of model descriptions which can be generated from
templates ; this can serve as a medium of information
exchange between software components. In ½ 6, we
describe in detail the templates which structure generic,

neuronal network, single-neuron and cellular mechan-
isms, respectively. Finally, in ½ 7 we summarize two soft-
ware frameworks that are currently being implemented
using NeuroML: NEOSIM for simulation, and Modeler’s
Workspace for databases and user interfaces.

2. MODEL DESCRIPTION REQUIREMENTS

Computational modelling in neuroscience is carried out
for a variety of reasons. In our view, the most fundamental
purpose is elaborating and testing hypotheses derived
from conceptualizations of neural system functions. The
development of conceptual structures lies at the heart of
the scienti¢c process. This development usually proceeds
using a combination of introspection, discussion with
other scientists, and experimentation. Discussion tradi-
tionally involves an iterative cycle of informal meetings,
workshops, conferences and, ¢nally, the published litera-
ture. Experimentation usually involves testing predictions
(hypotheses) generated from a conceptual structure
(theory) by gathering empirical evidence.

Computer simulations may be useful in cases where the
consequences of a particular conceptualization are not
immediately apparent or the goal is to test rigorously
whether the conceptualization produces a particular
prediction. Creating simulations requires scientists to
express their conceptualizations in a form su¤ciently
rigorous and concrete that the results can be executed as
computer programs. (This is itself a highly illuminating
exercise which can shed light on de¢ciencies in the
conceptualizations.)

We refer to these concrete forms as model descriptions,
and have identi¢ed three key characteristics that we
believe are required for a model description language to
be viable.

(i) Clarity. The process of concretization is often di¤cult,
with the consequence that the technical di¤culties of
expressing the ideas concretely (e.g. in a program-
ming language) can obscure the structure being
expressed. To be e¡ective, the concrete form must be
easy to work with, so that these technical di¤culties
do not dominate the process and so that the concep-
tualization being expressed is clear to humans.

(ii) Portability. Simulation by computer is only possible if
the concrete form is expressed in a programming
language or can be translated into programming
language form. Concretizations are sometimes
expressed at the level of a traditional programming
language (e.g. Fortran or C), but often, in an attempt
to render the concrete form more transparent and
easier to work with, it is not a full programming
language but something which can still be translated
into a program. These have often been simple script
languages or descriptive forms. For a variety of
reasons, some discussed below, a large number of
such concrete representation formats have come into
existence (one per simulation environment) in the
domain of computational neuroscience. This makes it
di¤cult to transfer or share models outside the
community that uses a particular simulator. Port-
ability is therefore an important requirement for the
usefulness of a model description language.

1210 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

(iii) Modularity. As theoretical work in neuroscience
grows, it is clear that simulations will continue to
play an increasingly signi¢cant role. The systems we
deal with in neuroscience are complex, structured,
heterogeneous and often poorly understood, leading
to the same qualities in the conceptualizations we
develop to explain these systems. A huge range of
spatial and temporal scales are involved: perhaps six
orders of magnitude in the spatial dimension
(microns to metres) and ¢fteen in the temporal
dimension (microseconds to decades). Researchers
focus on di¡erent phenomena observable at a variety
of spatial and temporal scales. The need to place
their models in a broader context and examine inter-
actions with phenomena at other spatial and
temporal scales pushes researchers to collaborate and
share modelling e¡orts. Model description methods
can only support this kind of collaborative, distrib-
uted work if they are truly modular.

In the course of over 15 years of developing simulation
environments for various levels of modelling in the
neurosciences (Goddard 1994; Goddard & Hood 1997;
Hines & Carnevale 1997; Bower & Beeman 1998), we
have come to regard these three requirements as key for a
model description framework to be able to support the
evolving needs of computational neuroscientists. Recent
interest in creating databases of models (Peterson et al.
1996; Mirsky et al. 1998; Shepherd et al. 1998) and in
using models to organize information in databases
(Beeman et al. 1997) has led us to re¢ne these ideas. The
following section describes how some previous and
current modelling environments address these require-
ments, and the subsequent sections describe our proposals
for the next generation of tools.

3. MODEL DESCRIPTIONS PAST

Computational modelling environments for neuroscience
typically evolve from the needs of an individual research
project; it is rare that these environments are designed
from the beginning with the intention of addressing a
wide variety of modelling needs. Rather, the environment
is greatly conditioned by the research project it supports.
When the time comes to extend the capabilities of the
simulation environment, the original design is often
found to preclude certain desirable options.

Most environments eschew general-purpose program-
ming languages in favour of domain-speci¢c script
languages for model description. There are three reasons
for this. First, most programming languages that are
considered for the task must be compiled, whereas script
languages are interpreted. Compilation usually increases
the time required to make and evaluate a small change in
the model, so the compilation step itself introduces some
delay. For all but the smallest models, the more signi¢cant
factor is that compilation without dynamic linking
requires that the model be reconstructed in the computer.
Because model construction can take as much time as
running a simulation, this can be very costly. For
example, in a large-scale simulation of the cerebellar
network (Howell et al. 2000), we found that use of a
parallel computer was essential merely to accommodate

the size of the model. At the degree of parallelism used in
that study (128-way), with execution of the model
running much faster than on a single processor, we found
that model construction took as long as the model run-
time, even though model construction itself was being
performed in parallel.

The second reason to avoid general-purpose program-
ming languages is that they have both too much textual
baggage in their descriptions (at least to the non-expert)
and too little expressive support for concepts considered
basic by computational neuroscientists (e.g. `ion channel’).
This applies to general-purpose script languages as much
as to compiled languages. The preferred solution is to
design a script language that is closely tied to the domain
under study and that has enough expressive power to
support the range of model descriptions considered likely
(e.g. the HOC language used in NEURON (Hines &
Carnevale 1997) or the SLI language used in
GENESIS (Bower & Beeman 1998)). The third, related
reason to avoid general-purpose languages is that it is
often unclear to the developers of simulation environ-
ments which languages will continue to gain support and
be maintained in the future.

For these and other reasons, there now exist a number
of special-purpose script languages. Unfortunately,
because most simulation environments originated in rela-
tively small, focused projects, attempts to extend the
special-purpose languages to handle larger and more
diverse projects has not been easy. Most of them provide
neither the range of neuroscience-speci¢c constructs
needed, nor the expressive power (e.g. object-orientation)
that larger and more diverse projects require. This has
typically led to modifying the script languages to add
extensions, rather than replacing the languages outright,
in order to support existing and legacy models. But this is
often impossible to accomplish cleanly, with the result
that the script language turns into a not-quite-general
programming language with some, but not all, of the
required neuroscience-speci¢c constructs.

4. MODEL DESCRIPTIONS FUTURE

Our understanding of the role of a model description
language in the modelling process and the design of
computational tools has evolved over many years of
experience in modelling and software design. We now
think of the description language as primarily a medium
for exchange of information between software compo-
nents in a computational system, but with the crucial
caveat that it must directly support the software compo-
nents that allow the scientist to describe, visualize and
interrogate the model under study.

The kind of software architecture we envisage to
support computational modelling is shown in ¢gure 1. An
example of a system employing this architecture is the
Systems Biology Workbench (Hucka et al. 2001a). In this
approach, a core plug-in manager loads software compo-
nents on demand. Components may include interfaces to
databases, simulation environments, model-speci¢cation
user interfaces, visualization interfaces, and others. While
some components may exchange specialized information
in private forms, and some may implement their own plug-
in capability for specialized purposes (e.g. the NEOSIM

Collaborative Modelling with NeuroML N. H. Goddard and others 1211

Phil. Trans. R. Soc. Lond. B (2001)

framework for simulation plug-ins), the main medium of
exchange of information between components is the
description language (e.g. NeuroML). The main di¡er-
ence, then, between our current view of model description
languages and previous model description languages is
that we do not anticipate direct manipulation by modellers
of the textual form of the language. Rather, we expect that
user-interface components will provide graphical and
other means for model description, and that this will be
translated into the model-description language. Thus, the
model-description language need not be easily readable by
modellers, but it must support the components with which
modellers interact, and must support extensions that
enable additional components describing new conceptuali-
zations. What, then, are the speci¢c requirements for this
kind of model-description language?

(a) Requirements
Let us go back and re-examine the arguments for and

against domain-speci¢c script languages versus general-
purpose programming languages for model descriptions,
and evaluate them in light of the three requirements laid
out earlier: clarity, portability, and modularity.

(i) Requirement 1. Clarity
Clarity in a description language involves a balance

between three objectives. First, the description language
should support, as closely as possible, the language that
neuroscientists use in verbal, textual and graphical
descriptions during scienti¢c discourse. Second, the
language should be designed in such a way that it can be
translated easily into a computer program which can run
e¤ciently on a variety of computing platforms. Third, it
is essential that the description language be precise,
meaning that there can be only one interpretation of any
given statement in a particular context.

Fortunately, these objectives do not con£ict. The ¢rst
objective suggests that the language should incorporate

well-established conceptual structures under speci¢c
names (e.g. `Hodgkin^Huxley channel’, t̀opographic
projection’), and should support the ability to add to the
set of named structures (e.g. `My-Hypothesised channel’,
`LGN-V1 projection’). The second objective can also be
served by incorporating high-level conceptual structures
into the model description language. For example, a
description of a population of neurons given as

De ne Populat i on(Populat i on - name ,CellT ype ,N umbe r)

can be translated into a variety of forms suitable for
di¡erent computational platforms, including parallel
platforms, whereas a description of the form

for i =1t o N umbe r
De ne Ce ll(Ce llt ype)

is not amenable to a similarly wide range of optimizations
and, in particular, is not as suitable for parallel platforms.
The ¢rst form can be executed in parallel if the De¢ne-
Population primitive is suitably implemented. The second
form is inherently sequential in that, without analysing
the loop, it is impossible to know whether the neuron
descriptions are independent.

The objective of well-de¢nedness can be met by
ensuring that the constructs added to the language have
precise semantics. In particular, this means having clear
de¢nitions of how high-level, domain-speci¢c constructs
interact with each other. From the modeller’s perspective,
much of the substance of making the model description
well-de¢ned inheres in the understanding of these high-
level constructs ; e.g. what exactly is meant by a t̀opo-
graphic projection’? This understanding requires that
such constructs be documented adequately in appropriate
forms (e.g. textual, pictorial, movies).

(ii) Requirement 2. Portability
The portability of a model description is a matter both

of transfer from one computational platform to another
and of transfer from one simulation environment to
another. Most of the aspects of transfer from one compu-
tational platform to another can be reduced to the
question of whether an appropriate simulation environ-
ment (i.e. one capable of executing the model description)
exists on the target platform. One consideration which is
not merely an implementation issue at this stage of
technical development is the extent to which a model
description is amenable to parallelization. A model
description is parallelizable if it is expressed in a way that
allows e¤cient algorithms both to partition the model
across multiple processors and to construct the model in
the computer in parallel. One way in which descriptions
can be made more likely to be parallelizable is by
expressing them at the highest conceptual level; then, the
implementation can vary depending on the type of
computational platform. Although this is not su¤cient in
and of itself, it is a good heuristic.

The ability to transfer a model description from one
simulation environment to another is the major port-
ability issue. Given that for the foreseeable future there
will continue to be a diversity of simulation environments,
the utility of a database of model descriptions will depend
on their portability between environments. Generally
speaking, portability between two environments is only

1212 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

m
ode

l d
es

cr
ipt

io
ns

 pl
ug

-in
s

visu
ali

za
tio

n p
lug

-in
s

sim
ul

ato
r p

lu
g-

ins

ex
ter

na
l d

ata
ba

se
 pl

ug
-in

s

op
tio

ns
 pl

ug
-in

gr
ap

hs
 plu

g-
in

da
tab

as
e p

lug
-in

da
ta

ha
nd

ler
s p

lug
-in

ne
tw

or
k d

ire
cto

ry
 pl

ug
-in

general-purpose plug-ins

domain-specific plug-ins

plug-in loader core

Figure 1. The component-based architecture: many
components use NeuroML to communicate. The same plug-in
loader is used for domain-speci¢c plug-ins as for the library of
general purpose plug-ins.

possible if the languages they use can be unambiguously
translated in both directions without loss of information,
and if this is the case for a number of environments then
there must exist a common language they can all use
(trivially, the language used by one of the environments!).
Consequently, the most practical approach to enabling
transfer between environments is to seek a common
language.

The essential requirement for portability, then, is the
availability of a common model-description language
which has extensibility built into it from the start. In fact,
we should think of it as an evolving language. This
language can be the basis for exchange of models between
research groups, and for exchange of information with
databases of models.

(iii) Requirement 3. Modularity
As models become ever more complex and span more

structural levels, it is important that model descriptions
become modular: as model descriptions become modular,
we ¢nd that the associated language itself becomes
modularöthat is, we require language elements focused
on particular problem domains, sharing a common basis.
For example, we may wish to describe channel kinetics
using equations, so the language element dealing with
channel modelling should support the expression of equa-
tions. But we may also wish to describe channels using
some well-known form (e.g. dual-exponential) in which we
use a name that stands in for particular equations. The
network-level language element needs to be able to express
the concept of populations of cells and projections between
populations, perhaps in a hierarchical manner. We may
also wish to describe networks in terms of equations
governing the interaction between cells, perhaps on a
spatial basis (e.g. long- versus short-range in£uences). If
the underlying language common to all language elements
supports expression of equations, we can specialize this in
each language element to support the particular needs of
models of processes at a given structural level.

Language elements also provide advantages for the
other two requirements of clarity and portability. Smaller
languages tend to be more easily comprehensible, and
restricting the range of legal expression to that appropriate
for modelling particular types of processes ensures that
extraneous constructs and terms do not obscure the model
description. Portability is more easily assured because it is
only the tools associated with a particular level of model-
ling that need to be available in the target simulation
environment. This allows for incremental enhancement of
a simulation environment: if a capability needed for a
particular language element is missing, it can be added to
make the language element available in that environment.
If, however, we used a single monolithic language, then
every aspect of that language would need to be available
before any particular (and much smaller) subset were
usable for a particular modelling project.

(b) Program-free model descriptions
We have established that we want a common language

framework within which we can design extensible language
elements focused on particular subdomains of the neuro-
science modelling endeavour. We want these languages to
incorporate abstractions corresponding to the conceptual

structures used in scienti¢c discourse about theories and
models. One approach to meeting these requirements
would be to use any common object-oriented program-
ming language (interpreted or compiled) augmented by
an extensive set of object classes which provide the high-
level constructs. These classes would thereby extend the
base language to turn it into a particular set of language
elements. The clarity requirement suggests that a simple
interpreted language (e.g. Python) would be more appro-
priate than a compiled language such as C++ or Java. But
the need for the language framework to support a variety
of software components, including databases and user
interfaces, provides more serious constraints, and, it turns
out, suggests a di¡erent approach which yields rich
rewards in terms of clarity and modularity.

We would like these languages to be amenable to
storage in databases and to support queries over the
constituent elements and structures in a model and its
annotations. For this to be possible, the model description
cannot contain any imperative programming; it must be
purely declarative. The reason for this is that it is imprac-
tical to do searches over imperative programs without
running the programs under all possible sets of boundary
conditions, something that is clearly infeasible. Declara-
tive forms are also closest to the way in which people
discourse about models. Consider the following passage
from a textbook describing a neural structure:

`This simpli¢ed model of the CA3 pyramidal cell has 19
compartments with a soma in the center and two linear
chains of compartments to represent the apical dendrites
and the basal dendrites . . . [T]his cell has fast sodium,
delayed recti¢er potassium, high threshold calcium,
transient potassium and calcium activated potassium
conductances.’ (Bower & Beeman 1998, p. 130.)

This passage exempli¢es the terms commonly used in
descriptions of neural systems: s̀oma’, `dendrite’, c̀onduc-
tance’, etc. These are the kinds of constructs that model-
description languages should provide.

Our ideal, then, would be to have model-description
language elements which are entirely declarative in
nature. This is possible, in principle, if the language is
extensible: simply require that any aspect of the model
description that requires iterative or sequential behaviour
be hidden behind a name. For example, the phrase `linear
chains of compartments’ in the quote above speci¢es a
very particular structure which requires a loop to imple-
ment in the general case, but which can be referred to
with the simple naming used in the quote.

(c) Replacing the programming
Purely declarative descriptions are possible when every

structure in the model can be named (e.g. `parallel projec-
tion’) and therefore codi¢ed. But unfortunately, the
essence of research involves developing new constructs
that may be ill-de¢ned, in £ux, badly parameterized, etc.
It is precisely as these new, hypothesized, prototype
concepts that are under investigation become better
understood and accepted that they can be rei¢ed with a
name and formal parameterization. We can be sure that
any model description language which requires all struc-
tures to be available in the language a priori will not be
used for long, if at all, by the research community.

Collaborative Modelling with NeuroML N. H. Goddard and others 1213

Phil. Trans. R. Soc. Lond. B (2001)

How can we retain the advantages of the declarative
approach yet not be restricted to an ossi¢ed language?
An answer is suggested by considering how we will deal
with existing constructs. There is already in existence a
wealth of established structures in the neuroscience
modelling community which we need to make available
in the model-description language (e.g. `dual-exponential
channel’). These existing structures can only be made
available by providing some computational module that
implements them. Such a module has a well-de¢ned inter-
face to the model description language, exposing the
parameters which describe the structure. If we make
module-creation facilities available to the modeller, then
the language can be augmented and can evolve as
research progresses.

Our answer, then, is to make available to the modeller
methods for referencing encapsulated imperative code
fragments (a component) from a model description. The
interface to the code fragment presented to the model-
description language is purely declarative. We provide the
means to program these components in a variety of
languages (see ½ 5(c) for details). We envisage script
languages being used for small, in-£ux structures. As a
structure becomes more stable (e.g. its parameterization
settles down), we envisage that it will be recoded in
compiled languages for greater e¤ciency. Many research
models have structures which undergo rapid change for a
period and then become stable as the focus moves to
other aspects in the model (or indeed to experimental
work).

It may seem unlikely that anyone would recode a
model component from (say) a scripting language to a
compiled language, once the component is functioning
satisfactorily. However, there are incentives for doing this.
For example, the computational e¤ciency of a compiled
version is usually much greater. Moreover, the compiled
form provides a certain amount of control over distribu-
tion of intellectual property: modellers may choose to
distribute compiled components publicly without giving
away the hard work that went into creating the actual
program code. Further, journals in the future may require
that models used in a paper be made publicly available,
at least so that other researchers may duplicate simulation
results. (There are already requirements to publish data
in a number of research programs such as the Human
Genome Project.) In any case, if a model is to be useful
outside the research group in which it was developed, it
must be documented adequately, and this will require
much greater e¡ort than that involved in recoding a
small piece of encapsulated script code in a compiled
language.

(d) Non-textual model descriptions
It is becoming increasingly common in scienti¢c simu-

lation and programming environments to provide
graphical programming tools that allow the modeller to
describe a model in terms of graphical objects. For
example, XNBC (Vibert 2001) and NEURON (Hines &
Carnevale 1997) provide graphical methods for con-
structing neurons and networks of neurons. There is also
increasing interest in basing models on experimental data
directly rather than explicitly specifying the neural struc-
tures using interpreted data. For example, translators for

common morphology formats have been developed for
simulation environments such as NEURON and
GENESIS. This kind of capability requires code compo-
nents that can read in the data ¢les and convert them to
appropriate forms.

Both of these tendencies are examples of the trend
away from textual model descriptions at the user level.
Now the modeller interacts primarily with the non-
textual tools, and it is the tools that then create and
manipulate the descriptions. The implication of this trend
is that while a textual description is necessary (modellers
may still use it as a last resort if the graphical tools are
inadequate in some situation), the requirements for the
description language are somewhat changed, although as
we shall see the result is not much di¡erent. The most
important new requirement is that the model description
language be able to support the non-textual tools. That is,
the non-textual tools must be able to read and use e¡ec-
tively models described in the model description
language, and also to write out such descriptions. This
requires that the level of conceptual control (Hines &
Carnevale 1997) presented to the modeller in the non-
textual tool must be mirrored in the model-description
language. For example, if a graphical network builder has
the concept of a `population’ of cells, then the model-
description language should also have this concept.

Fortunately, we have already noted that, for clarity,
model-description languages should include constructs
and conceptualizations which are at the level of the scien-
ti¢c discourseöand this is the origin of the concepts used
in non-textual tools (e.g. the `population’ concept referred
to above). Thus, the addition of support for non-textual
tools is not onerous. In fact, the additional information
that the language may need to accommodate will be
more concerned with presentation; for example, addi-
tional hints may need to be encoded for layout on a
canvas or in a virtual world for visualization and visual
speci¢cation tools.

5. TEMPLATES FOR NeuroML

The language elements we have discussed, which are
focused on providing relevant conceptual structures for
particular levels of modelling, can provide the connection
to databases of models. The language elements generate a
stream of text to describe any particular model. If we are
to store the model in a database, we need a formal char-
acterization of the structure of the stream of text. The
language-element speci¢cation is such a characterization.
Another equivalent characterization arises if we treat the
stream of text as a stream of data. In database parlance,
what is then needed is a `data model’ to describe the struc-
ture of this stream. The language elements are a form of
data model, but another equivalent form is that given by
the the traditional database s̀chema’. These in turn are
equivalent to what object-oriented programmers refer to
as a `class’. To avoid confusion between the terms `data-
model’ and `model description’ and to make clear that
there is equivalence between the concepts of data model,
schema and object class, we refer to them collectively
with the term template.

Our prescription that the language elements be equiva-
lent to database schemas and object-oriented classes

1214 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

places restrictions on the languages, most notably that
there is no execution semantics. In other words, the
language elements cannot contain conditional statements,
iteration or the like. But these are exactly the restrictions
we want in requiring our language elements to be
declarative. There is a happy con£uence between the
requirements for language clarity, database information
structure and programming elegance.

In the remainder of the paper we shall describe in more
detail the particular conceptual structures described by
the language elements at several levels, using the template
terminology. A template de¢nes how a particular kind of
conceptual structure in the language element (or database
object in a database, or class in an object-oriented system)
is to be expressed, meaning the structure of the concept’s
representation, the attributes or slots in the representation,
and the types of data values that are permissible for each
slot. In other words, a template de¢nes a model-
description language element. Di¡erent object templates
are used to create objects that represent di¡erent kinds of
information. As explained below, we propose to organize
templates in a simple hierarchy, and we provide facilities
for de¢ning new templates. NeuroML is the XML-based
language de¢ned by this template hierarchy; we use the
term NeuroML to refer both to these templates and their
speci¢c XML instantiation.

(a) Template hierarchy
The template hierarchy we present here is intended as

a provisional structure for NeuroML. As mentioned
above, our current e¡orts in NeuroML have been limited
to structurally realistic models of neural systems spanning
the scales from networks of neurons to cell membrane
mechanisms. In collaboration with others in the

neuroscience modelling community, we expect to expand
this in both coverage of other scales and more in-depth
coverage of the phenomena we have so far examined.
This is a large task and we draw on the work of others
who have focused on other aspects of this enterprise. In
particular, we have used the pioneering work of Gardner
et al. (1999, 2001a) in the application of mark-up
languages to neuroscience, and use most of their schema
de¢nitions for NeuroML’s ¢rst-level basic templates. We
hope by this to ensure compatibility with their e¡orts at
developing a common database exchange language.

Our modelling component of NeuroML is speci¢cally
geared towards computational models: the elements of
the language are not merely descriptive, they are de¢ned
with careful attention to how a simulation environment
can use them to produce executable models. Although the
top-level, generic constructs in the language are closely
aligned with those of Gardner et al. (1999, 2001a), the
detailed constructs di¡er (in particular in the templates
for describing models) simply because the goals of the
e¡orts are di¡erent. We expect that the Common Data
Model being developed by Gardner et al. can be used to
encapsulate descriptions about models, such as which data-
sets it accounts for. The modelling component of
NeuroML, in contrast, is used to describe the conceptuali-
zations underlying models, such as the types of projections
in a network or the abstraction used to represent the
complexity of neuronal morphology.

The representational framework that we use is based
loosely on object-oriented programming concepts. One of
the key ideas used is the concept of inheritance applied to
templates. All templates are derived from either a speci¢c
one called Base or an existing template; Base is therefore
the root of a template hierarchy, illustrated in ¢gure 2.

Collaborative Modelling with NeuroML N. H. Goddard and others 1215

Phil. Trans. R. Soc. Lond. B (2001)

Transmembrane
Mechanism

Base

Data

Reference

Model

Method

Site

Intracellular
MechanismNetwork

Projection

Population

Neuronal Anatomy

Ligand-Activated
ChannelVoltage-Gated

Channel

Neuron

Imaging/Histology

HH Voltage-Gated
Channel

Figure 2. All templates are derived from Base or another existing template. Open arrows indicate inheritance, pointing from
inheritors to their parents. The ¢ve ¢rst-level templates (i.e. Reference, Data, Model, Method, Site) are taken from the scheme
developed by Gardner et al. (1999, 2001a). The additional templates derived from these ¢ve constitute the elements of NeuroML
necessary to represent some common types of neural structures ranging from networks of neurons to cell membrane mechanisms.
The diagrammatic notation we use is based on UML (Eriksson & Penker 1998; Oestereich 1999), an industry standard visual
language for specifying software systems. We explain our notation further as needed in later ¢gures.

The Base template itself contains few attributes, in the
expectation that it will be subclassed to represent objects.
Templates derived from Base then add successively more
detail, starting with general-purpose constructs and on
through increasingly more re¢ned and specialized
elements at the leaves of the hierarchy tree. The de¢ni-
tions of the templates are presented in ½ 6.

Each template inherits the same attributes as the
template from which it is derived, and in addition, may
add its own set of attributes. We impose the limitation
that derived templates may only add new attributes and
not delete existing ones. For example, if a given template
has attributes , and , a derived template can only
add other attributes; it cannot change or delete , or .
We impose this restriction to make search operations
more manageable: if existing template attributes were
allowed to be modi¢ed, there could be no assurance that
the ¢elds retained their meanings when moving from
higher levels in the hierarchy to lower, more detailed
ones, making the kinds of search operations described
below impossible.

The object-oriented style of representation is useful for
a variety of reasons. First, the existence of categorical
templates allows user-interface tools to present the user
with intelligent search forms. Speci¢cally, we envision
that a search interface may prompt the user to specify the
type of object to search for (which is equivalent to speci-
fying the template), and based on the user’s choice, the
system may construct a ¢ll-in-the-blanks form using
knowledge of the attributes de¢ned by the template.
Gardner et al. (1999, 2001a) have demonstrated the utility
and feasibility of this approach.

A second reason is that, by choosing the search category
appropriately, searches can be made more or less speci¢c.
Because of the hierarchical relationships between tem-
plates, a user can select a template in the middle levels of
the hierarchy, and search operations can be designed to
encompass all objects that are below it in the hierarchy.
This means, for example, that a search using Model will
encompass objects created from templates derived from it,
such as Neuron class objects, TransmembraneMechanism

class objects, etc.
A ¢nal reason for the utility of the representational

framework presented here is that software can be made
modular and extensible. New software modules can be
developed alongside new templates, customizing the
system to interact with new types of objects without
redesigning or restructuring the whole system. For each
representation derived from an existing template, all the
software elements that worked with the parent template
will also work with the derived templates. This is
because the derived template can only add attributes,
and while the existing tools will ignore the new attri-
butes, they will continue to work with the attributes that
were inherited from the parent template. Developers can
write new software modules that interact with the
additional ¢elds in the new templates and these software
modules can be loaded on demand, extending the soft-
ware’s functionality.

(b) XML-based encoding of templates and models
Extensible Markup Language (XML) (Bosak & Bray

1999; Bray et al. 2000) is a language used to express self-

describing, semi-structured representations of informa-
tion. It provides a way of marking up data with semantic
tags that describe and structure the contents of the data.
Although XML is typically thought of as a document
format similar to HTML, in fact it is more general. It is a
notation, a `metalanguage’, a way of organizing a stream
of data and marking up the di¡erent parts so that a
program can parse the stream into constituents. In the
words of one of its chief architects, `Just as HTML created
a way for every computer user to read Internet
documents, XML makes it possible, despite the Babel of
incompatible computer systems, to create an Esperanto
that all can read and write. Unlike most computer data
formats, XML markup also makes sense to humans,
because it consists of nothing more than ordinary
text.’ (Bosak & Bray 1999).

We use XML schemas (Biron & Malhotra 2000;
Fallside 2000; Thompson et al. 2000) to describe model
templates, and actual models are encoded in NeuroML
using these schemas. All the constructs described in
½ 6(a^d) have direct equivalents in an XML schema. An
XML schema speci¢es the structures that are syntacti-
cally correct in a schema-compliant stream of data,
enabling syntax-checking in software. The NeuroML
schemas ensure that model descriptions in NeuroML
adhere to the structural requirements of the model
templates. The schemas also support other software tools
such as visual editors which can use them to generate
syntactically correct NeuroML model descriptions.

For handling representations in a diverse collection of
databases, simulation environments, and other software
tools, XML o¡ers three key features: (i) Separation of
the template description (in the form of an XML
schema) from the content. Provided there is agreement on
basic guidelines and protocols, databases, simulation
environments, etc., can have their own specialized
representations. If the schemas are advertized, we can
retrieve them separately and use them to determine
which model classes a particular software tool uses in
common with other tools, and which classes are unique.
(ii) As mentioned above, schema descriptions can be used
to dynamically create user interfaces, for example, for
search forms or visualizations. XML makes this easier to
implement because its format lends itself to simple inter-
pretation and manipulation by tools. (iii) The text-based
format of XML is a powerful way by which to handle
novel data types: a database server that contains special-
ized data can provide, say, JavaScript code implementing
an applet for viewing the data. The applet script can be
sent as part of the XML document when the document is
retrieved by a client program.

(c) Incorporating programmed structures and
scripts using XML schemas

An important issue is how the descriptions can be
augmented to incorporate model structures best described
in imperative terms (i.e. using a programming language).
Our approach to this problem is to use XML schemas to
de¢ne new templates which refer to dynamically-loaded
code modules. Figure 3 illustrates the concept. The XML
schema ¢le N e uroM L.xsd de¢nes the standard set of
templates available for use in a model, such as `neuron’,
`network’, etc. Commonly used extensions are de¢ned in

1216 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

another schema ¢le, N e uroUt i ls.xsd ; this de¢nes such
things as volumetric projections and commonly used scat-
terings of populations of neurons. The program code to
actually perform these functions is located in an external
code module that can be loaded dynamically by a simula-
tion environment, and the schema document refers to this
code module. User-de¢ned extensions are speci¢ed in the
same way. Such a code module can be implemented in a
variety of forms such as a JavaBean or shared object
library; what is important is that a new label is de¢ned for the
new capability, and models are de¢ned declaratively in terms of these
labelsöthe code is not directly part of the model. To put
this in speci¢c XML terms, we can de¢ne new labels such
as <v olume proje ct i on> and <ce re be llumproje ct i on>
which can be used in de¢ning a model; the actual code to
implement a `volume projection’ (which might have to
make connections based on distances between neurons,
sample some probability distributions, etc.) is part of the
speci¢cation of what <v olume proje ct i on> means in the
language.

De¢ning user schemas for new facilities provides infor-
mation that can be used by schema-aware parsers and
editors, allowing for such things as automated data type
checking. The cost of moving code to the schema is that
more steps are involved than embedding code directly
into a model (see ¢gure 4 for an example). However, we
believe the advantages gained by not coding but
declaring models outweigh this; in any event, much of the
work can be automated by tools.

Giving users the ability to de¢ne new templates is very
appealing. But for many modelling tasks, it may be
simpler to use in-line scripting code. The example in
¢gure 5 shows how a small section of scripting code could
be introduced to implement a user-de¢ned projection
scheme between two populations. The user code in the

¢gure samples a random distribution in order to decide
whether to make a connection between two neurons; in
general, such a decision can be highly model speci¢c, for
example calculating the proximity of an axon to a
dendrite. In such cases the code would be more complex
than this.

(d) Semi-controlled vocabularies
Many of the attributes in the templates have essentially

unconstrained values. For example, there are no a priori
constraints applicable for such things as the name of a
model. But in many other cases it is useful to place
constraints on the permissible values of an attribute,
especially string attributes, in the form of a controlled
vocabulary. Gardner et al. (2001a,b) are leading an e¡ort
to de¢ne a set of controlled vocabularies for use in bio-
logical databases. These are meant to capture the allowed
values for an attribute. A controlled vocabulary is espe-
cially useful for search operations : when database objects
use attribute values drawn from a common vocabulary, it
is much more likely that a database search will succeed in
¢nding a match than if users are given free reign to enter

Collaborative Modelling with NeuroML N. H. Goddard and others 1217

Phil. Trans. R. Soc. Lond. B (2001)

Defines the standard
set of generic

templates

Root Schema
NeuroML.xsd

Projection

Neuron

Network

Voltage-Gated Channel

defines

Defines new templates,
and includes pointers

to code modules which
implement them

Standard
extensions
schema
NeuroUtils.xsd Grid3DPopulation

Hodgkin–Huxley
Channel

VolumeProjection

defines

Allows users to attach
their code modules to

new templates

User extension
schema
User.xsd

CerebellumProjection

NewCaChannel
defines

My SpecificNetworkStructure

Figure 3. Overview of the organization of XML schemas in
this approach.

step 2 : write the code module cproject.jar

step 3 : use the new template in
XML model code

<cerebellumprojection
 srcPop = "granules"
 dstPop = "golgis"
 diameter = "100um"/>

step 1 : write a user schema
 which refers to a code
 module

Projection

module : string : = "cproject.jar"
diameter : float

CerebellumProjection

CerebellumProjectionexample: create a new template

Figure 4. The steps involved in adding a new user template
with an associated code module and using it. First, the
template describing the interface to the code module is
de¢ned. Second, the code module is written. Third, the new
template is used in a model description.

<generalprojection <srcPop = "granules" destPop = "golgis" seed = "123">
<connectionmethod>

 <!--A section of script code embedded in the XML file -->
 if (Random.sample() < 0.1)
 [makeConnection();]

</connectionmethod>
</generalprojection>

Figure 5. In some cases, it can be useful to embed short
sections of script language code into a model description. This
example provides a user-de¢ned connection method between
two neurons; the method produces a given proportion of
connections.

any value for every attribute. Controlled vocabularies
reduce the chances that di¡erences in spelling, the use of
di¡erent terms having the same meaning, and other inci-
dental e¡ects will cause a search to fail.

We borrow this general idea, but in some situations we
also allow for attribute values that are not strictly limited
to values from a set vocabulary. We call this a semi-
controlled vocabulary. Such semi- controlled vocabularies can
be attached to an attribute to provide a set of initial,
suggested values in the user interface of an editing tool.
When a vocabulary is available for a given attribute in a
model template, the editing ¢eld for that attribute can
provide a pull-down list containing the set of suggested
values, allowing the user to easily select a value from the
list. If none of the available values is suitable, the user
may enter a di¡erent one.

Vocabularies can be easily de¢ned in XML Schemas.
The use of a semi-controlled vocabulary involves a trade-
o¡ as compared with a strict controlled vocabulary. The
provision for allowing users to type in new values means
that search operations may no longer be as e¡ective.
However, we feel that we are not able to de¢ne a
su¤ciently comprehensive controlled vocabulary for all
attributes, and that, moreover, users would react nega-
tively to an interface that does not allow them to type in
new attribute values when the prede¢ned set is insu¤-
cient. We believe that we can obtain most of the bene¢ts
of a controlled-vocabulary approach by providing reason-
ably comprehensive default vocabularies, so that users are
likely to ¢nd a prede¢ned value close enough for their
needs.

6. THE TEMPLATES

In this section, we describe brie£y our current
templates at the top level of the hierarchy and under the
Model template. A detailed de¢nition and explanation of
one of the templates is given as an example in Appendix
A. However, for up-to-date information on templates
used in NeuroML, we urge the reader to access the
NeuroML web site at http://www.neuroml.org.

(a) The basic templates
We begin by summarizing the preliminary versions of

the Base template and the ¢ve templates derived immedi-
ately from it in the hierarchy shown in ¢gure 2: Reference,
Method, Model, Data, and Site. These are general data
structures that are not limited to representing speci¢c
biological objects such as neurons and ion channels. The
more specialized templates that we have developed for
representing models of neuronal networks, single neurons
and associated elements such as ion channels, are
presented in ½ 6(b^d).

(i) The Base template
The Base template, shown in ¢gure 6, has only two

attributes, and . The former places a unique
identi¢er on every object; the latter allows the system to
track the evolution of data objects. The attribute of
type is an identi¢er that is unique to a given
model within a simulator or database. The type
contains ¢elds for such things as a time-stamp, a version
number, the version number of the immediate parent
version, etc.

Since all objects must be derived from Base, all objects
inherit and attributes. This may at ¢rst seem
odd, because it may seem that some types of objects such
as `data’ do not need versions. However, we believe that
all database object representations can bene¢t from
having version information, because it enables changes
(such as the addition of more details) to be tracked
through version control facilities that may be imple-
mented in editing tools. This will be especially useful
when objects are transmitted between users’ personal
databases : it will allow users to determine whether their
local copy of an object is the same as or di¡erent from
one retrieved from a remote database.

(ii) The Reference, Author and Publication templates
The Reference template serves as a starting point for

references to such things as authors and publications. The
de¢nition is shown in ¢gure 7. Reference inherits the
and attributes from the Base but adds no new
attributes ; both Author and Publication inherit and

as well, and each adds other attributes speci¢c to
its role. (The attributes implicitly inherited from the Base

template are not repeated in ¢gure 7, following UML
convention.) This general scheme follows the ideas put
forward by Gardner et al. (1999, 2001a).

1218 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

Base
id : NMLUID
version : Version

Figure 6. The Base template. In this UML-based notation,
the name of the template is shown in bold face at the top, and
its ¢elds/attributes are listed below it. The name of a ¢eld is to
the left of the colon; its data type is to the right.

Reference

Author

lastName : string
firstName : string
middleName : string [use = "optional"]
institution : string [use = "optional"]
address : string [use = "optional"]
email : string [use = "optional"]
homePage : urlReference

Author

XLink

authoreditor
0..*

XLink

0..*

Publication

title : string
year : year
publicationType : string ["article", ...]
journal : string [use = "optional"]
volume : string [use = "optional"]
...

Figure 7. The Reference template and two derived templates,
Author and Publication. Text enclosed in braces next to
attribute types (e.g. { ˆ `` ’’ }) indicates constraints
on the possible attribute values; we use XML Schema
language to express constraints because we are primarily
interested in the XML encodings of templates. The
notation indicates an association with a separate instance of
an object of the associated type (in this case, Author). The
type signi¢es the use of the XML linking language, XLink
(DeRose et al. 2000). The numbers on the arrows indicate the
number of allowable instances of this attribute; e.g. `0 .. *’
means `from zero to unboundedly many’, and the labels on
the arrows indicate the names of the attributes storing the
associations.

http://www.neuroml.org.

The Author template adds attributes for identifying a
person by name, address, web home page and other char-
acteristics, as shown in the ¢gure. The Publication

template shown in the ¢gure adds attributes describing
literature references. The attributes in the template are
based on BibTeX records (Lamport 1994), some of which
are shown in ¢gure 7. In a well-designed user interface,
the choice of made by the user can trigger
the interface to selectively present only those attributes
relevant to the type of reference in question.

(iii) The Data, Method and Site templates
The Data template is another subclass of Base. It

provides basic support for storing data in a database or
pointing to data stored in a remote database. Objects of
this type are pointed to from other templates such as
Model (see ½ 6(a)(iv)). The Method template is intended
to capture information about experimental method-
ologies. Data and Method are based on the DATA___
ELEMENT and METHOD___ELEMENT structures,
respectively, developed by Gardner et al. (1999, 2001a).
Their full de¢nitions are available from the NeuroML
web site.

The Site template is intended to capture information
about such things as neuronal recording sites, brain
regions, etc. We have not de¢ned these templates but
anticipate that we will draw heavily on the work of the
NeuroScholar project (Burns et al. 2001) and a neuro-
anatomy ontology project currently underway.

(iv) The Model template
The Model template shown in ¢gure 8 is intended to

serve as a common starting point for all model template
de¢nitions. It is a generic structure, not speci¢c to any
particular kind of modelling. Speci¢c kinds of models,
such as for neuronal networks (½ 6(b)), neural cells
(½ 6(c)) and intracellular and transmembrane mechan-
isms (½ 6(d)), are derived by starting from Model and
adding new attributes.

As with the other main templates, the Model template
is an extension of the Base template and therefore
implicitly inherits and attributes. Model then
adds several more attributes. The attributes and

allow a user to name a model and provide a
brief description of it. To support the possibility of
including equations, superscripts, and other formatted
content, the description is stored in XHTML format. The

attribute provides a place for recording information
about a model that is not easily recorded in any other
attribute, for example an output plot resulting from simu-
lating the model. The list is intended to point to
the `authors’ of the model, and the list is

intended to point to relevant literature, speci¢cally arti-
cles discussing the model.

(b) Templates for representing networks of neurons
The main template for representing models of neural

circuits is Network. It makes use of several other
templates, in particular Population, Projection and
Neuron. Figure 2 depicts the hierarchical relationships
between them. In this section, we discuss Network,
Population and Projection and associated templates. We
leave the neuron and cell mechanism templates to ½ 6(c)
and (d).

The Network template (¢gure 9) comprises populations
of cells connected by projections between them. (In the
degenerate case, a population can be a single cell and a
projection a single synaptic contact.) Both populations
and projections are compositionalöthey can be
composed of other populations and projections, respect-
ively. Populations are named, structured sets of cells. One
population can be a subset of another, or composed of a
union or disjunction of other populations. Figure 10 illus-
trates a three-level hierarchy of populations.

`Projection’ is a complex concept. An informal descrip-
tion of the projection construct is that it maps one
population having a particular type of structure (not
necessarily spatial) to another population having another
type of structure. Thus, it is essentially a mapping from
one structure to another. The population structure
concept therefore precedes the projection concept, i.e. we
cannot de¢ne projections without ¢rst having de¢ned
population structures. Furthermore, a given population
may need to be associated with more than one structure.
One projection may most naturally view the population
as having a particular structure, while another projection
most naturally views it as having a di¡erent structure. Yet
another structure may be more appropriate for visualiza-
tion purposes. Therefore we need to allow the association
of a variety of structures with a particular population. We
allow for a default population structure in a projection if
none is speci¢ed. In many models there will be only a
single way in which the structure of a population is

Collaborative Modelling with NeuroML N. H. Goddard and others 1219

Phil. Trans. R. Soc. Lond. B (2001)

0..*

0..*

XLink

author

publication
Publication

Author

XLink

Model

name : string
description : (XHTML)
notes : (XHTML)

Figure 8. The Model template.

Network

populations : Population{1..*}
projections : Projection{0..*}

Figure 9. The Network template includes a number of Neuron

populations and a number of Projections (possibly zero)
between populations.

microcircuit hypercolumn

V1

Figure 10. A set of hierarchical populations: V1 is composed
of an array of hypercolumns, each of which is composed of a
small array of microcircuits.

conceptualized (e.g. a 2D array), so we enable a single
point of speci¢cation, i.e. associated with the population
rather than the projection.

Geometrical structures are the type most obviously
applicable to neural models, but there may be other
types. In a geometrical structure there will usually be one
or more dimensions in some coordinate system, such as
Cartesian, polar, etc. We can generalize a little to some
non-geometrical structures which can be viewed as
geometrical by allowing some or all of the N dimensions
to be indexed by enumerated labels rather than numeric
indices. This is formally equivalent to the numerically-
indexed system but may be more natural for the modeller.
Initially we restrict the templates to structures character-
ized by a number of dimensions and a well-formed co-
ordinate system, with the extension that the indices may
be derived from an enumerated type other than integer.

(i) Populations
The provisional Population template is shown in

¢gure 11. The attributes common to all populations are its
name, and the default structure associated with the
population. We expect to provide subtemplates for popula-
tions of neurons, and populations of networks. We also
expect to provide templates for `Views’, which are

pseudo-populations derived from existing populations
(e.g. subset, union) with perhaps a di¡erent associated
structure.

Structuring of populations is provided by the Popula-

tionStructure template, which encompasses all types of
structuring of populations (¢gure 12), with one attribute
encoding its name. We have de¢ned two types of struc-
tures at this time: SpatialStructure and IndexedStruc-

ture. SpatialStructure represents a structure which is
layed out in a continuous metrical space, e.g. 3D real-
world space; spatial structures have a number of linear or
polar dimensions. IndexedStructure represents structures
with no associated continuous metrical space but in which
the elements of the population are accessed via integer
indices, e.g. a 2D array of neurons; indexed structures
have a number of linear or enumerated dimensions.

These templates and structures allow us to create
hierarchical, structured populations. We anticipate that,
in the great majority of models developed in the near
future, if hierarchies are used at all they will be very
shallow.

(ii) Projections
Figure 13 illustrates a three-level hierarchy of projec-

tions. The description of the connections at the level of V1
is given in terms of a projection between the hyper-
columns of V1 (nearest-neighbour), where the projection
between the components (microcircuits) of any pair of
linked hypercolumns is one-to-one, and the projection
between the components (neurons) of any pair of micro-
circuits is the two axonal connections shown. The critical
feature here is that a projection de¢nes a structured set of
links between components of one or two populations,
where the structure of each individual link in the set can
be another projection at a lower level.

A projection speci¢es a mapping between a source
population and a destination population. The Projection

template (¢gure 14) has two key attributes: (1) ,
which speci¢es the mapping between the populations,
and (2) , which describes the projection from an
element of the source population to an element of the

1220 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

Population

name : string
structure : PopulationStructure

Figure 11. The Population template.

SpatialStructure

dimension : SpatialDim

PopulationStructure
name: string

IndexedStructure

dimension : IndexedDim{1..*}

Figure 12. The PopulationStructure template.

hypercolumn projection
All–to–Other 4–Nearest–Neighbour

V1 projectionmicrocircuit projection
axonal connections

axonal connections

One–to–One

axonal connections

Figure 13. A set of hierarchical populations: the microcircuit is described with simple axonal connections; the hypercolumn is
described as an all-to-other projection between microcircuits, where each link in the projection is the bundle of axonal
connections shown below; V1 is described as a four-nearest-neighbour projection between hypercolumns, where each link in the
projection is another projection, one-to-one, between microcircuits in the hypercolumns, and each link in the one-to-one projec-
tion is the bundle of axonal connections shown below.

destination population. In a population of cells, this will
be a synaptic connection. In a population of populations,
it will be a web of synaptic connections (i.e. another
projection), as illustrated above.

This structure allows us to de¢ne hierarchical project-
ions, such as an all-to-one mapping between cortical
columns in two cortical areas in which the projection
from one column to another is a complex of synaptic
connections. It also allows multiple levels of hierarchy, for
instance a one-to-all mapping between a set of cortical
areas.

The bulk of the work is left to the ProjectionMap

template (not shown). At this point we are leaving the
realms of well-understood and agreed-upon structures in
neuroscience. The experimental data suggest a great
diversity in the structure of projections between neuron
populations (see, for example, Burns 2001). The modelling
literature uses a variety of projection structures, increas-
ingly diverse the closer the model is to the experimental
data. Until well-understood and accepted projection
structures emerge from experimental and theoretical
work, we provide simple geometric structures, and the
ability to program structures using a programming
language via the code-module facility described in ½ 5(c).

We expect that, over time, some of these programmed
projection structures will become widely used with well-
accepted parameterizations. Then we expect the interface
to these structures to become standardized and encoded
as a template. The advantage of template encoding is that
aspects of the projection structure become accessible to
other NeuroML-aware software components such as
database query engines or visualization tools.

(c) Templates for representing models of neural cells
The Neuron template extends the basic Model template

with additional attributes for describing a neural cell.
Our e¡orts so far have been directed at structurally
realistic models, rather than abstract models such as
integrate-and-¢re neurons; however, we expect that in
the future, we will de¢ne templates for describing abstract
neurons as well.

Most contemporary approaches for creating realistic
models of neural cells are based on cable theory and
compartmental modelling (Hines 1984; Segev & Burke
1998; Rall & Agmon-Snir 1998). This involves taking
dendrites, axons and cell bodies, and modelling them as a
number of segments (typically cylindrical in shape, but
sometimes spherical or conical), as shown in ¢gure 15. In
software simulation systems such as NEURON and
GENESIS, these segments may then be further sub-
divided into compartments, which are ¢nite-di¡erence
approximations that can be de¢ned in terms of ordinary
di¡erential equations.

The properties of a segment of passive cell membrane
include such things as its capacitance and resistance;
these enter into the di¡erential equations that relate
current and voltage inside and outside the segment
membrane. Neural cells also have active elements such as
ion channels embedded in their membranes; such
channels allow ions of substances such as sodium and
calcium to pass through, resulting in changes in the
electrical potential across the membrane. The collective
e¡ects of a given species of ions are characterized as an
active conductance, and this adds terms to the di¡er-
ential equations modelling a segment of a neuron
membrane.

The Neuron template is designed to capture the struc-
ture of a neural cell model in terms of segments with
embedded active conductances. The main portion of the
de¢nition is shown in ¢gure 16. The template implicitly
inherits the attributes , and from
the Model template, and adds a number of others. The
¢rst few attributes in the top-level structure of the Neuron

template provide the ability to specify the temperature
assumed for the parameter values in the model, together
with scaling factors to be used to adjust parameters for
other temperatures if needed. This allows the model to be
reused in a simulation at a di¡erent temperature.
Attributes and are lists of
pointers to Data objects that may be used to add informa-
tion about experimental data related to a given neuronal
cell model.

The actual structure of the cell model is described
using a list of one or more type data structures.
Each segment in the model structure has a unique

Collaborative Modelling with NeuroML N. H. Goddard and others 1221

Phil. Trans. R. Soc. Lond. B (2001)

Figure 15. Stylized illustration of a neural cell reduced to a
¢nite approximation constructed out of cylindrical segments.

Segment

id : ID
name : string [use = "optional"]
type : string [use = "optional"]
parent : IDREF
attachmentPoint : float
geometry : SegmentGeometry
passiveProperties : PassiveProperties
activeProperties : ActiveProperty{0..*}

Neuron

temperature : float
temperature_units : Units
Q10Factor : float
scalingFactor : float
section : Segment{1..*}

0..*
Data

neuroanatomy

XLink

experiment

0..*

XLink

Figure 16. The Neuron template.

Projection
name : string
structure : ProjectionMap
linkType : Projection

Figure 14. The Projection template.

identi¢er, an optional name, a pointer to a parent
segment, and collections of geometry attributes, passive
properties and active properties. The geometry attributes
(organized in a data structure, not
shown here for brevity) allow a segment to be described
and orientated in three spatial dimensions. The passive
properties (organized using data
structure) include such things as speci¢c membrane
capacitance and resistance. Information about active
properties is represented using references to objects
derived from either the TransmembraneMechanism or
IntracellularMechanism templates described below.

(b) Templates for representing models of cell
mechanisms

The TransmembraneMechanism and Intracellular-

Mechanism templates are the starting points for de¢ning
models of active properties for use in neuronal cell
membrane segments. As shown in ¢gure 2, both of these
templates are derived from the generic Model template,
and other templates are in turn derived from them.

First, a few words are in order concerning our use of
the term c̀hannel’. As mentioned above, this term is often
used to mean an individual pore through which ions may
£ow into and out of a cell. However, in some simulation
contexts, the term has also come to be used loosely to
mean an ionic conductance that models the behaviour of
many thousands of individual channels (pores) as they
open and close. In this usage, a c̀hannel’ is not really an
ion channel at all; it is a construct, a stand-in for a
conductance that represents the massed e¡ect of a large
number of actual ion channels. It is this second sense of
the term that we use here.

(i) Transmembrane mechanisms
TransmembraneMechanism inherits from Model and

adds a few new attributes : a text string for naming the cell
type from which a particular transmembrane mechanism
model is drawn, and optional lists of pointers to datasets
describing the experimental results from which the model
was derived. The cell type attribute has a semi-controlled
vocabulary associated with it. The motivation for this is to
allow user interfaces (such as in the Modeler’s Workspace,
see ½ 7(b)) to present the user with a list of common alter-
natives. Users may select from one of the values or supply a
di¡erent value of their choice.

The VoltageGatedChannel template inherits from the
TransmembraneMechanism template and adds several
attributes common to many models of voltage-gated
channels. These attributes include the following: descrip-
tors for the channel type and current type; the cell resting
membrane potential being assumed by the channel model
(this is sometimes used as part of the initialization of a
simulation); the equilibrium potential of the membrane
segment (the initial value of the membrane potential at
which there is no net £ux of the ion across the membrane);
and ¢nally, the temperature and temperature scaling
factors assumed for the parameter values in the model.

Readers may wonder why the equilibrium potential is
included as a user-speci¢ed value here, when in simula-
tions it can be computed or changed by various simu-
lated mechanisms. The reason is that this quantity is
often treated as a constant in a model, or is used in the

process of computing other quantities. This illustrates
one of the problems with developing a general represen-
tation that can be converted into simulatable code: it is
sometimes necessary to include ¢elds that may not be
fundamental quantities or may not be used in all models,
but must nevertheless be included to permit the
construction of those models that do need to specify
their values.

The HHVoltageGatedChannel template is intended to
represent a certain common class of ion channels used in
many structurally realistic neural models. It can describe
channels not only of the common Hodgkin^Huxley
(Hodgkin & Huxley 1952) variety, but also a number of
variants. The representation is derived partly from what
is used in the GENESIS neural simulator (Bower &
Beeman 1998), with additional information introduced for
generality and in order to make a ¢lled-out model more
descriptive and identi¢able during database searches.

The de¢nition of HHVoltageGatedChannel is fairly
complex. However, it is instructive because it illustrates
the connection of the model representation to theoretical
concepts. We therefore provide it in Appendix A, together
with example portions of an XML document encoding a
sample model.

7. IMPLEMENTATION

We are currently implementing systems to handle
models de¢ned using NeuroML. The NEOSIM Project is
developing high performance tools within a modular
framework to run simulation models, and the Modeler’s
Workspace project is developing a modular framework for
interfacing simulators, editing tools and databases.

(a) NEOSIM

NEOSIM is a framework to support large scale multi-
level modelling of the nervous system. Its features include
(i) a plug-in facility that allows di¡erent simulation
components to be added for simulation, visualization and
I/O; (ii) a design that enables execution on workstations
together with networks of workstations and parallel
machines without having to write a parallel program,
and (iii) a simulation approach based on discrete event
simulation (Fujimoto 1990).

Up-to-date details are available from the project web
site located at http://www.neosim.org. Figure 17 illus-
trates the NEOSIM kernel with the separation of XML
model description levels from code modules. At the time
of writing, two API-identical kernels (Java for portability,
C++ for high performance) are available for download.
When (and if) the time comes to scale up a model to
more realistic sizes, the NEOSIM kernel supports the
distribution of the model onto multiprocessors, networked
workstations or parallel machines without having to
modify the model description.

The NEOSIM kernel provides only the basic support
necessary for building and running large simulation
models. All of the interesting behaviour of model
components is provided by plug-in modules. These
modules are intended to be developed independently by
di¡erent groups, and can communicate with each other
using the kernel interface. For example, a model could
be built using a visualization component written in one

1222 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

http://www.neosim.org.

laboratory, a neuron simulation component from the
NEURON simulator, another from the CATACOMB
(Cannon 2001) simulator, and a number of home grown
Java or C++ components. At the time of writing, a
number of plug-in modules are available for down-
loading, including some supporting NEURON and
CATACOMB models.

A clear separation between declarative model descrip-
tions (in XML ¢les) and plug-in code modules is
supported by NEOSIM. The example in ¢gure 18 shows an
XML model description of the type currently used by
NEOSIM, similar to that which will be created from the
templates described above when the implementation is
complete. The example shows a which consists of a
single population of entities.

The section in the example contains the
speci¢cs needed to actually run a simulation: it provides
the location of plug-in code modules and gives a simula-
tion run time.

In the example, the plug-in (GaussPop) contains the
code for scattering the members of a population across a
given area, given by a centre point and variances in each
dimension. The behaviour of a neuron is given in the
plug-in (spikegen). In both cases the code is speci¢ed in a
Java archive (.jar) ¢le, and referenced using a URL, so
that anyone with web access can run this model, and the
code is downloaded automatically by NEOSIM.

(b) The Modeler’s Workspace
The goal of the Modeler’s Workspace project (Forss

et al. 1999; Hucka et al. 2001b) is to develop an environ-
ment for computational neuroscience providing a number
of capabilities: searching remote databases for model
components based on various criteria; creating new
components; combining model components together and
translating them into formats suitable for simulation
systems such as GENESIS, NEURON and NEOSIM;
managing personal databases of models and other infor-

mation; and collaborating interactively with other
researchers to work with models and simulations. As with
NEOSIM, the Modeler’s Workspace is being written in Java
for portability and extensibility, using a modular architec-
ture of the type illustrated in ¢gure 1.

The Modeler’s Workspace User Interface can run either
as a separate application, or as an applet from within a
web browser. All user interactions with the other compo-
nents of the Modeler’s Workspace take place through the
User Interface. The Workspace Database acts as a private
repository for a user’s work (where models, notes and
other objects are stored). The database contains objects
that represent the di¡erent types of entities; each object is
structured according to one of the templates discussed
throughout this article.

Interfaces to third-party databases and also simulation
packages are implemented using software plug-ins. Each
kind of database must have a plug-in that mediates
between the system and the database. The plug-in’s task is
to perform the following functions: (i) engage the
network communications protocol required by a parti-
cular foreign database (e.g. CORBA/IIOP, HTTP,
Z39.50); and (ii) translate back and forth between the
Modeler’s Workspace templates and search language and
the corresponding elements of a foreign database. Simi-
larly, interaction with simulators is also supported
through plug-ins; a simulator plug-in must perform the
functions of (i) interfacing to the simulation tool using
Java Native Interface, network protocols, or some other
means; and (ii) translating back and forth between the
Modeler’s Workspace representation and the format
understood by the simulator. We are currently developing
two simulator plug-ins, one for GENESIS and one for
simulators operating in the NEOSIM framework, such as
NEURON and CATACOMB. The NEOSIM interface will
be particularly simple to implement because the two
systems implement the same data modelöthe templates
introduced in this article.

The existence of templates and their hierarchical orga-
nization allows the Modeler’s Workspace database search

Collaborative Modelling with NeuroML N. H. Goddard and others 1223

Phil. Trans. R. Soc. Lond. B (2001)

<neosim>
<model>

<network name = "demo" >
<define–entity name = "spike" modulename = "Spike"/>
<population name = "GaussPop1" entityname = "Spike"

modulename = "GaussPop" num = "100"
xcentre = "0" ycentre = "0" zcentre = "0"
xvariance = "10.0" yvariance = "10.0" zvariance = "10.0"
xdist = "gaussian" ydist = "gaussian" zdist = "gaussian"
seed = "1234"/>

</network>
</model>

<experiment>
<module name = "Spike"

location = "http://www.neosim.org/modules/spikegen.jar" />
<module name = "GaussPop"

location = "http://www.neosim.org/modules/gausspop.jar" />
<control>

<time value = "100.0"/>
</control>

</experiment>
</neosim>

Figure 18. Sample NEOSIM XML description of a model and
simulation run.

NEOSIM Kernel

plug-in modules (code)

XML and the NEOSIM kernel

XML Model description (data)

Network
Neuron

Segment
Mechanism

Figure 17. The NEOSIM kernel uses a number of declarative
model description levels, given in di¡erent XML ¢les. Extra
code features are introduced using plug-in modules.

http://www.neosim.org/modules/spikegen.jar%22
http://www.neosim.org/modules/gausspop.jar%22

facilities to present the user with intelligent search forms
as described towards the end of ½ 5(a). Results are shown
in a tabular summary format; individual objects can be
examined in more detail by double-clicking the mouse
over an entry in the results table. Viewing of objects is
accomplished using graphical interface plug-ins called
inspectors. An inspector is simply a user interface module
designed to let a user interact with information in a
certain way. We are developing special-purpose inspectors
for a variety of object types, including a neuron model
inspector with a graphical, three-dimensional tree
viewer/editor for working with cell morphologies, and a
channel model inspector featuring graphical plots of
channel characteristics.

8. DISCUSSION

The work described here has been motivated by the
increasingly large-scale modelling needs in neuroscience.
Structuring the exploding volume of experimental data
according to the models which use it is likely to lead to
greater synergy between modelling and experimental
e¡orts. It is notable that the NeuroScholar system (Burns
2001), has complementary aims. The increasing scale and
complexity of models, especially those crossing levels of
inquiry, require model description capabilities which are
as declarative as possible, for reasons of clarity, portability
and modularity. We have shown that a single model
description framework, the templates described above,
can support both database information structure and
simulation model execution. The inclusion of an ability to
interface imperative code modules to the declarative
templates via a well-de¢ned, parameterized interface,
provides a path for speculative research-oriented concep-
tualizations to be supported and, crucially, to gradually
migrate into the model description language (the
templates). Thus, we believe that this form of model
description is, to a reasonable extent, future-proof. For
both database entries and simulation execution, the
model description capabilities are naturally extensible to
support evolution of conceptualization of brain function.

Our major aim in this work is to facilitate collaborative
modelling work which requires the ability to share and
reuse model components developed at other times in
other laboratories on other computational systems. We
believe that the underlying software technology (Java for
execution, XML for description) can now support these
requirements. The motivation for collaborative work is
twofold. First, as simulation models become more
complex and cross spatio-temporal levels of inquiry, it is
likely that the expertise required to model all aspects of
the system adequately will not be present in one labora-
tory and perhaps not at one time. Second, development of
essential scienti¢c tools such as NEOSIM and Modeler’s
Workspace is best done in a highly distributed, collabora-
tive manner. No one laboratory has the scienti¢c exper-
tise across all the levels we need to support, and no one
laboratory has the funding or software engineering
capability to produce these tools in toto. Thus, a compo-
nent based approach is essential both for the scienti¢c
aspects of the work and the software methodologies which
support the science. The essence of component based
approaches is architecture. In this paper, we have

described an underlying information architecture for one
part of these systems, that concerned with describing the
structure of computational models.

We thank Dan Gardner, Robert Cannon, Marc-Oliver Gewaltig,
Greg Hood, Paul Rogister, Michael Hines, Gully Burns and
Henry Thompson for helpful discussions about the structure of
NeuroML and this paper. This work was supported by National
Institutes of Health Human Brain Project grants MH57358 and
NF00002, and an Academic Equipment Grant (EDUD-7824-
000127-US) from Sun Microsystems, Inc., 901 San Antonio
Road, Palo Alto, CA 94303.

APPENDIX A: DETAILED TEMPLATE DEFINITION FOR

VOLTAGE-GATED ION CHANNELS

We present here our current de¢nition of one of the
templates discussed in Section 6(d)(i). At the time of
writing, the representation is still evolving; the latest
template de¢nitions are available from the NeuroML Web
site, http://www.neuroml.org.

The diagram for the HHVoltageGatedChannel tem-
plate in ¢gure A1 shows that the top-level data structure
consists of a number of ions. A given channel may pass
more than one kind of ion, although most channel models
involve only one ion. Though it may arise infrequently,
the case of multiple ions must be supported, so the
attribute in VoltageGatedChannel is a list of data
structures. As shown in ¢gure A1, each structure
contains the following attributes : , a string that
records the user-chosen name of the ion (e.g. `potassium’),
and , a list of one to three
types discussed below.

In neural modelling, individual ionic conductances are
often described in terms of a small number of gating vari-
ables that control the £ow of ions through the channel.
The data structure contains attributes
related to the properties of a gate. The collection of gating
variables in a particular channel model captures the bulk
of the information necessary to describe the behaviour of
the channel. Each structure contains the
following attributes:

: The name of the gating variable, constrained to be
one of the strings `X’, `Y’, or `Z’, following a naming
convention used in GENESIS. These refer to the
variables in the equation for channel conductance,

Gk ˆ ·gkX
XpowerY YpowerZZpower . (A1)

In this equation, Gk signi¢es the conductance due to a
channel of type k, and ·gk is a normalization constant
that determines the maximum possible conductance
when all the channels are open. The variable X corre-
sponds to the gating variable usually called m, and Y
corresponds to the gating variable usually called h. To
give an example, for the case of the sodium channel in
the squid axon, X ² m, Xpower ˆ 3, Y ² h, Ypower ˆ 1,
and Zpower ˆ 0, to produce the common Hodgkin^
Huxley formula Gk ˆ ·gm3h.

1224 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

http://www.neuroml.org.

: An integer indicating the value of Xpower, Ypower

or Zpower, as appropriate.
: A list of strings that describes whether a

given gating variable is dependent on voltage,
concentration, time, or other quality. It is a list
because a gating variable can be dependent on more
than one quality simultaneously.

: A boolean variable used to note
whether a gating variable’s value is meant to be
determined instantaneously from ¬/­ or m1/
values, rather than solving di¡erential equations. If
true, the value of a variable X is determined using
X ˆ ¬/(¬ ‡ ­). This is often used with a Z gate to
model a multiplicative factor in a calcium-dependent
conductance, or to implement Morris^Lecar models
having zero time constant for activation (Bower &
Beeman 1998).

: Whether the data describing the gating variable’s
behaviour are stored in Hodgkin^Huxley-style ¬/­
form, or state variable m1 / form (Nelson & Rinzel
1998). Some users prefer one format over the
otheröoften, modellers tend to prefer ¬/­ , and
experimenters like to show m1/ because they are
more closely related to the results of voltage clamp
experiments. The choice is made by the user and
should re£ect the format in which the user actually
input the parameter values. The data are left
untouched regardless of the user’s choice; it is up to

the simulator program (or other consumer of models
in a database) to do whatever is necessary to trans-
late between ¬/­ and m1 / , if needed.

: A string specifying which of the three
possible representations (`parameterized’, t̀abulated’
or `equation’), is being used for the gating variable.
This is discussed in more detail below.

: The attributes setting the behaviour of the
gating variable, stored in an object derived from the
type .

The approach here uses a common model organization
that maps di¡erent styles of representation into one of
three types of representations : a parameterized form, a
tabulated form, and a catch-all equation form. The three
forms are subtypes of , and
are described below. Each gating variable can be indepen-
dently described using one of the three main forms. This
gives the user freedom to model categories of channels
that use combinations of, say, a gating variable described
using a parameterized form and another gating variable
described using a tabulated form. Regardless of the parti-
cular form, every gating variable has two rate functions,
one for forward (in Hodgkin^Huxley’s framework, the
¬(V) function) and one for backward (the ­ (V) function).
Each of the three subtypes of
therefore has two attributes, and .

(a) The parameterized form
The version of the Hodgkin^Huxley model of voltage-

gated channels used here is based on a generalized form
of the Hodgkin^Huxley equations for rate variables
(Hodgkin & Huxley 1952). It is characterized by three
main assumptions about the equations for channel
conductance and the forward and backward rate func-
tions. First, the model assumes an Ohm’s law relationship
between current and conductance, with

Ik ˆ Gk(Ek ¡ Vm), (A2)

Gk ˆ ·gkX
XpowerYYpowerZZpower , (A3)

where Ek is the equilibrium potential for the channel of
type k, ·gk is a normalization constant, and Vm is the
membrane potential. Second, the gating variables are
calculated from di¡erential equations of the form

dX
dt

ˆ ¬(Vm)(1 ¡ X) ¡ ­ (Vm)X, (A4)

dY
dt

ˆ ¬(Vm)(1 ¡ Y) ¡ ­ (Vm)Y , (A5)

dZ
dt

ˆ ¬(Vm)(1 ¡ Z) ¡ ­ (Vm)Z. (A6)

The third and ¢nal assumption is that the voltage depen-
dence of the ¬(Vm) and ­ (Vm) functions are each
expressed using a di¡erential equation that can ultimately
be rewritten in the form

¬(Vm) ˆ
A ‡ BVm

C ‡ H exp
Vm ‡ D

F

. (A7)

Collaborative Modelling with NeuroML N. H. Goddard and others 1225

Phil. Trans. R. Soc. Lond. B (2001)

0..*
Data

kinetics

XLink

GatingVariableRepresentation

EquationForm

forward : Equation
backward : Equation

InterpolationParam

useInterpolation : boolean
method : string ["linear", "cubic",
 "B–spline", "other"]
interpolatedSize : integer

TabulatedGateParameter s

dimension : integer{1..2}
elem : float{0..*, 0..*}
startingValue : float{1..2}
endingValue : float{1..2}
interpolation : InterpolationPara m

Equation

equation : string
startingV : float
endingV : float
assign : ParameterAssignment{0. .*}
divisions : integer [use = "optional"]

ParameterisedForm
forward : GeneralisedGateParameters
backward : GeneralisedGateParameters

TabulatedForm
forward : TabulatedGateParameter s
backward : TabulatedGateParameter s

ParameterAssignment
var : string
value : string
value_units : Units [use = "optional"]

GatingVariable
name : string ["X", "Y", "Z"]
exponent : integer
dependencyType : string{1..3} ["voltage",
 "concentration", "time", "other"]
instantCalculation : boolean
format : string ["alpha/beta", "m_inf/tau"]
representationForm : string ["parameterised",
 "tabulated", "equation"]
representation : GatingVariableRepresentation

Ion

name : string
gatingVariable :
Gating Variable{1..3}

HHVoltageGatedChanne l

ion : Ion{1..*}

GeneralisedGateParameters
category : string
 ["General Parameterised Form",
 "Hodgkin–Huxley Exponential",
 "Hodgkin–Huxley Sigmoid",
 "Hodgkin–Huxley Linoid",
 "Sigmoidal m_inf & constant tau",
 "Borg–Graham"]
A : float

: float
: float
: float
: float

B
C
D
F

Figure A1. The de¢nition of the HHVoltageGated Channel

template.

The attribute in the data
structure determines which of several variations of this
equation should be presented to the user. We have so far
determined the following categories : `General Parame-
terised Form’, `Hodgkin^Huxley exponential’, `Hodgkin^
Huxley sigmoid’, `Hodgkin^Huxley linoid’, `Sigmoidal m1
and constant ’, and `Borg^Graham’.

Equation (A7) given above is the most general; it is
called the `General Parameterised Form’. This same
formula for ¬(Vm) and ­ (Vm) can represent the three
common forms of the Hodgkin^Huxley (1952) equations:

Exponential: By setting B ˆ 0, C ˆ 0, D ˆ ¡V0,
F ˆ ¡B and H ˆ 1, we obtain the Hodgkin^Huxley
exponential form,

¬(Vm) ˆ A exp
Vm ¡ V0

B
. (A8)

Sigmoid: By setting B ˆ 0, C ˆ 1, D ˆ ¡V0, F ˆ B
and H ˆ 1, we obtain the Hodgkin^Huxley sigmoid
form,

¬(Vm) ˆ
A

exp
Vm ¡ V0

B
‡ 1

. (A9)

Linoid: By setting A ˆ ¡AV0, B ˆ A, C ˆ ¡1,
D ˆ ¡V0, F ˆ B and H ˆ 1, we obtain the
Hodgkin^Huxley linoid form,

¬(Vm) ˆ
A (Vm ¡ V0)

exp
Vm ¡ V0

B
¡ 1

. (A10)

Other forms, including some besides those developed by
Hodgkin & Huxley (1952), can also be represented using
this general approach.

We assume that the user interface for a tool such as
Modeler’s Workspace will provide a ¢ll-in-the-blanks
facility that triggers on the user’s choice from a pull-down
list for the attribute, and display one of the
specialized equation forms for user input. This will help
present the user with a slightly more familiar format, for
those cases when they are interested in using one of the
common types of equations.

does not have attributes related to
tabular ¢ll or interpolation. The reason is that

is intended to describe gating vari-
ables using a particular, general equation. The issue of
how the generalized equation is implemented in a simu-
lator (for example, whether it is internally turned into a
table of numbers, as in the tabchannel of GENESIS’) is a
simulator-speci¢c issue. Some simulators may not turn
the generalized equation into a table at all. Therefore, it is
not suitable to provide attributes related to table transla-
tion in the data structure. However, it
is appropriate for the , and therefore,

does have attributes that let a user specify
how a table should be expanded by interpolation; see
½ (b) below.

(b) The tabulated form
The data structure is used to represent

gate variables with tabulated data. This can be useful in
cases where a modeller has experimental data character-
izing the behaviour of a channel gate. The representation
here provides for separate tables for the forward and
backward rate functions. Each can be a one- or two-
dimensional table of £oating-point quantities stored in

, together with variables and
that express the range of the independent quantity

in the table. Both and are lists
of one-to-two £oating-point numbers, to handle the case
of 1D and 2D tables.

The attribute, using the
structure, allows a user to express expectations

about how a given table should be expanded by interpola-
tion. This is useful if the user has a small number of data
points, but expects those data points to be used to ¢ll a
larger table using a particular interpolation method. The
possible values of are restricted to a small number
of prede¢ned methods, to help ensure that users see the
same results in di¡erent simulation programs.

The data structure still assumes equa-
tions (A2)^(A6) apply. However, the tabular format allows
the expression of gating variables that have forms other
than that of equation (A7), if so desired.

(c) The equation form
The data structure stores rate functions

expressed as formulas. It has the following parameters for
this purpose: , a text string representing a
formula; and , £oating-point
values representing the range of voltage values for which
the formula is valid; , a list of
data structures for assigning values to symbolic para-
meters used in the formula; and an optional
attribute that can be used to specify the number of divi-
sions into which the equation should be discretized over
the range to . The syntax of
the expression language permitted in the attri-
bute is similar to that used in the C and Java languages,
with some minor di¡erences.

As is true for the tabulated form, the
data structure still assumes equations (A2)̂ (A6) apply.
However, the equation format allows the expression of
gating variables that have forms other than that of
equation (A7).

Readers may wonder why formulas are expressed as
text strings and not using MathML (W3C 2000). The
reason is that using MathML would require a complicated
parser in the tools using the representations. Formulas
expressed as text strings are much closer to the forms
already being used by simulation tools such as GENESIS
and NEURON, making it that much simpler to implement
translators that can take the representation and convert it
into a form suitable for these simulation environments.

Finally, another point is worth clarifying in this context.
is not intended to express an equation that is

used to ¢ll a table. The three representa-
tional forms (, ,

) are independent methods for describing channel
behaviour. A GENESIS or NEURON simulator plug-in
translating an representation may generate a

1226 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

script-language function that embodies the
equation, or it may create a discretized, tabulated represen-
tation of the funtion. The latter case would be likely for
GENESIS. However, if the translation program does
produce a tabular representation of the equation, it should
not then store the results in a representation
in the model de¢nition. The di¡erent forms store the user’s
input; they should not be modi¢ed by a simulator plug-in
translation program.

(d) XML example
Traub et al. (1991) developed a simpli¢ed model of

hippocampal pyramidal neurons based on physiological
data. Their model used a variety of ionic conductances
(i.e. ion channels in NeuroML terms; see the discus-
sion in ½ 6(d)). We present here as an example, a
NeuroML-based description of their model of a sodium
channel.

The Traub et al. (1991) model of the sodium channel
has the following characteristics :

(i) The activation variable rate functions are given by

¬(V) ˆ
0:32(13:1 ¡ V)

exp
13:1 ¡ V

4
¡ 1

, (A11)

­ (V) ˆ
0:28(V ¡ 40:1)

exp
V ¡ 40:1

5
¡ 1

. (A12)

(ii) The inactivation variable rate functions are given by

¬(V) ˆ 0:128 exp
17 ¡ V

18
, (A13)

­ (V) ˆ
4

1 ‡ exp
40 ¡ V

5

. (A14)

(iii) We assume that most of the experimental data used
by Traub et al. (1991) were either gathered at a
temperature of 32 8C, or else that Traub et al. (1991)
adjusted the quantities in their model to match this
temperature. We also assume temperature scaling
factors of unity.

(iv) We assume an equilibrium potential for sodium of
0:055 V.

(v) We express the resting cell membrane potential as
being measured relative to an extracellular potential
of zero, and having a value of ¡0:06 V. This follows
the convention used in simulation environments such
as GENESIS; see the discussion of the Traub et al.
(1991) model by Bower & Beeman (1998, Chapter 7).

(vi) We have converted the original units used in the
paper to SI units; this, combined with the change in
convention for the cell resting membrane potential,
a¡ects the values for the variables A, B, C, D, F and
H in the parametrized representation used below.

Figure A2 shows the main portion of an example XML
data stream encoding this channel model using
NeuroML. The outermost container in the XML
encoding in ¢gure A2 is the tag , identifying the
contents as using Neural Open Mark-up Language. The
attribute indicates that the content is formatted
according to version 1 of the de¢nition of NeuroML.

The next-inner container is a single
element that serves as the highest-level object in

the model. The model has a name, `Traub et al. 1991
sodium channel’. The various general attributes of a
voltage-gated channel model in NeuroML are expressed
as attributes of the element. A

element provides information about the version
of the model.

The rest of the model representation consists of gating
variable descriptions for the sodium ion. There are two
gating variables, corresponding to the activation and
inactivation rate functions shown in equations (A11)̂
(A14). The parameters A, B, C, D, F and H are the terms
in equation (A7).

REFERENCES

Beeman, D., Bower, J. M., De Schutter, E., Efthimiadis, E. N.,
Goddard, N. & Leigh, J. 1997 The GENESIS simulator-based

Collaborative Modelling with NeuroML N. H. Goddard and others 1227

Phil. Trans. R. Soc. Lond. B (2001)

<neuroml version = "1">
 <hhvoltagegatedchannel name = "Traub et al. 1991 sodium channel"
 channelType = "sodium" currentType = "sodium"
 cellRestingMembranePotential = "0.06"
 cellRestingMembranePotential_units = "V"
 temperature = "32" temperature_units = "C"
 Q10Factor = "1" scalingFactor = "1"
 equilibriumPotential = "0.055" equilibriumPotential_units = "V">
 <version timeStamp = "2000–10–30 18:40 PST" versionNumber = "1.0"/>
 <description>
 A description of the Traub et al. 1991 sodium channel </description>
 <notes> The neuron model here refers to the channel used within the
 CA3 pyramidal cell model. Parameter values are drawn from
 the GENESIS version of the Traub et al. model (traub91chan.g)
 as developed by David Beeman circa 1999. </notes>
 <listOfAuthors>
 <author xlink:href = "148492207951111 11@dbase.publisher.com" />
 <author xlink:href = "148492207951111 22@dbase.society.org" />
 </listOfAuthors>
 <listOfReferences>
 <reference xlink:href = "150292208045213D@dbase.uni v.edu"/>
 </listOfReferences>
 <listOfIons>
 <ion name = "Na">
 <listOfGatingVariables>
 <gatingVariable name = "X" exponent = "2" dependency = "voltage"
 instantCalculation = "no" format = "alpha/beta"
 representationForm = "Parameterised">
 <representation>
 <forward category = "General Parameterised Form"
 A = "35000" B = "0" C = "0" D = "0.005" F = "–0.010" H = "1"/>
 <backward category = "General Parameterised Form"
 A = "7000" B = "0" C = "0" D = "0.065" F = 0.020" H = "1"/>
 </representation>
 </gatingVariable>
 <gatingVariable name = "Y" exponent = "1" dependency = "voltage"
 instantCalculation = "no" format = "alpha/beta"
 representationForm = "Parameterised">
 <representation>
 <forward category = "General Parameterised Form"
 A = "128" B = "0" C = "0.0" D = "0.080" F = "0.018" H = "1"/>
 <backward category = "General Parameterised Form"
 A = "4000" B = "0" C = "1.0" D = "–0.003" F = "–0.005" H = "1"/>
 </representation>
 </gatingVariable>
 </listOfGatingVariables>
 </ion>
 </listOfIons>
 </hhvoltagegatedchannel>
<neuroml>

Figure A2. An XML data stream encoding a channel model.

neuronal database. In Progress in Neuroinformatics (ed. S.
Koslow & M. Huerta). Hillsdale, NJ: Lawrence Earlbaum
Associates.

Biron, P. V. & Malhotra, A. 2000 XML Schema Part 2:
Datatypes (W3C Working Draft 7 April 2000). See http://
www.w3.org/TR/xmlschema-2/.

Bosak, J. & Bray, T. 1999 XML and the second-generation web.
Scient. Am. 280, 89^93.

Bower, J. M. & Beeman, D. 1998 The book of GENESIS:
exploring realistic neural models with the GEneral NEural
SImulation System, 2nd edn. New York: Springer Verlag.

Bray, T., Paoli, J., Sperberg-McQueen, C. M. & Maler, E. 2000
Extensible Markup Language (XML) 1.0, W3C
Recommendation 6-October-2000. See http://www.w3.org/
TR/REC-xml.

Burns, G. A. P. C. 2001 Knowledge management of the neuro-
scienti¢c literature: the data model and underlying strategy of
the NeuroScholar system. Phil. Trans. R. Soc. Lond. B (This
issue.)

Cannon, R. 2002 `The CATACOMB simulation environment’,
Neurocomputing. (In the press.)

DeRose, S., Maler, E. & Orchard, D. 2000 XML Linking
Language (XLink) Version 1.0, W3C Proposed Recom-
mendation 20-December-2000. See http://www.w3.org/TR/
xlink.

Eriksson, H.-E. & Penker, M. 1998 UML toolkit. New York: John
Wiley.

Fallside, D. C. 2000 XML Schema Part 0: Primer. See http://
web4.w3.org/TR/xmlschema-0/.

Forss, J., Beeman, D., Eichler-West, R. & Bower, J. M. 1999
The Modeler’s Workspace: a distributed digital library for
neuroscience. Future Generation Comput. Syst. 16, 111^121.

Fujimoto, R. M. 1990 Parallel discrete event simulation.
Commun. ACM 33, 31^53.

Gardner, D., Abato, M., DeBellis, R., Erde, S. M., Knuth,
K. H. & White, T. 1999 Common data model 2000: open
methods for neuroscience data description and interchange.
Soc. Neurosci. Abstr., p. 1910.

Gardner, D., Knuth, K. H., Abato, M., Erde, S. M., White, T.,
DeBellis, R. & Gardner, E. P. 2001a Common data model for
neuroscience data and data model exchange. J. Am. Med.
Informatics Assoc. 8, 17^33.

Gardner, D., Abato M., Knuth K. H., DeBellis R. & Erde S. M.
2001b Dynamic publication model for neurophysiology data-
bases. Phil.Trans. R. Soc. Lond. B (This issue.)

Goddard, N. H. 1994 Rochester connectionist simulation
environment. In Neural network simulation environments (ed.
J. Skrzypek), Chapter 10, pp. 187^207. Kluwer Academic.

Goddard, N. H. & Hood, G. 1997 Parallel GENESIS. In
Computational neuroscience: trends in research 1997 (ed. J. M.
Bower), pp. 911^917. NewYork: Plenum.

Goddard, N., Hood, G., Howell, F., Hines, M. & De Schutter,
E. 2001 NEOSIM: portable large-scale plug and play neuronal
modelling. Neurocomputing 38^40(1^4), 1657^1661.

Hines, M. 1984 E¤cient computation of branched nerve
equations. Int. J. Biomed. Computing 15, 69^76.

Hines, M. & Carnevale, N. T. 1997 The NEURON simulation
environment. Neural Comput. 9, 1179^1209.

Hodgkin, A. L. & Huxley, A. F. 1952 A quantitative description
of membrane current and its application to conduction and
excitation in nerve. J. Physiol. 117, 500^544.

Howell, F. W., Dyhrfjeld-Johnsen, J., Maex, R., Goddard, N. H.
& De Schutter, E. 2000 A large-scale network model of the
cerebellar cortex using PGENESIS. Neurocomputing 32, 1041^
1046.

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. &
Kitano, K. 2001a The ERATO systems biology workbench:
an integrated environment for multiscale and multitheoretic
simulations in systems biology. In Foundations of systems biology
(ed. K. Kitano). MIT Press.

Hucka, M., Shankar, K., Beeman, D. & Bower, J. M. 2001b The
Modeler’s Workspace: making model-based studies of the
nervous system more accessible. In Computational neuroanatomy:
principles and methods (ed. G. Ascoli). Humana Press.

Lamport, L. 1994 LaTeX: a document preparation system. Menlo
Park, Calif.: Addison-Wesley.

Mirksy, J. S., Nadkarni, P. M., Healy, M. D., Miller, P. L. &
Shepherd, G. M. 1998 Database tools for integrating and
searching membrane property data correlated with neuronal
morphology. J. Neurosci. Meth. 82, 105^121.

Nelson, M. & Rinzel, J. 1998 The Hodgkin^Huxley model. In
The Book of GENESIS, 2nd edn (ed. J. M. Bower & D.
Beeman), pp. 29^49. Springer-Verlag.

Oestereich, B. 1999 Develop ing software with UML: object- oriented
analysis and design in practice. Harlow, UK: Addison-Wesley.

Peterson, B. E., Healy, M. D., Nadkarni, P. M., Miller, P. L. &
Shepherd, G. M. 1996 ModelDB: an environment for running
and storing computational models and their results applied to
neuroscience. J. Am. Med. Informatics Assoc. 3, 389^398.

Rall, W. & Agmon-Snir, H. 1998 Cable theory for dendritic
neurons. In Methods in neuronal modeling, 2nd edn (ed. C. Koch
& I. Segev), Chapter 2, pp. 27^92. MIT Press.

Segev, I. & Burke, R. E. 1998 Compartmental models of
complex neurons. In Methods in Neuronal Modeling, 2nd edn
(ed. C. Koch & I. Segev), Chapter 3, pp. 93^136. MIT Press.

Shepherd, G. M., Mirsky, J. S., Healy, M. D., Singer, M. S.,
Skoufos, E., Hines, M. L., Nadkarni, P. M. & Miller, P. L.
1998 The Human Brain Project: neuroinformatics tools for
integrating, searching and modelling multidisciplinary
neuroscience data.Trends Neurosci. 21, 460^468.

Thompson, H. S., Beech, D., Maloney, M. & Mendelsohn, N.
2000 XML Schema Part 1: Structures (W3C Working Draft
7 April 2000). See http://www.w3.org/TR/xmlschema-1/.

Traub, R., Wong, R. K. S., Miles, R. & Michelson, H. 1991 A
model of a CA3 hippocampal pyramidal neuron incorpor-
ating voltage-clamp data on intrinsic conductances. J.
Neurophysiol. 66, 635^650.

Vibert, J.-F., Alvarez, F. & Kosmidis, E. K. 2001 XNBC V9: A
user friendly simulation and analysis tool for neurobiologists.
Neurocomputing 38^40(1^4), 1715^1723.

W3C 2000 W3C’s Math Home Page. See http://www.w3.org/
Math/.

1228 N. H. Goddard and others Collaborative Modelling with NeuroML

Phil.Trans. R. Soc. Lond. B (2001)

http://www.w3.org/Math/
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0925-2312^28^2932L.1041[aid=1421127]
http://web4.w3.org/TR/xmlschema-0/
http://web4.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xlink
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xlink
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/REC-xml
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0167-739X^28^2916L.111[aid=1421122]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1067-5027^28^298L.17[aid=1420723]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0020-7101^28^2915L.69[aid=217150]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^299L.1179[aid=215308]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0925-2312^28^2932L.1041[aid=1421127]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0165-0270^28^2982L.105[aid=1420773]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1067-5027^28^293L.389[aid=1421130]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0166-2236^28^2921L.460[aid=1420500]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3077^28^2966L.635[aid=216219]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0001-0782^28^2933L.31[aid=659686]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1067-5027^28^298L.17[aid=1420723]
http://cherubino.catchword.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0022-3077^28^2966L.635[aid=216219]

