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1. INTRODUCTION

We try to study the following 2D surface quasi-geostrophic system (SQG) from
a Hamiltonian point of view.

Dt9 - 0
(1.1) v = Vo
—(-0)"y = 6

where Dy = 8, +u -V, V* = (=85,01)", and (—A)"/? is the pseudodifferential
operator corresponding to the multiplier |k|. This system is the boundary dynamics
of the 0-th order approximation of the motion of the atmosphere or the ocean on
the earth surface when the rotation of earth is dominating. 6 is called the potential
temperature, whose distribution indicates the temperature at different locations on
the earth surface.

The surface quasigeostrophic (SQG) system proved to be quite successful when
applied to atmospheric or oceanic flows and is important in geostrophy (see e.g.
Pedlosky [Ped79]). Recently, it is found that the SQG equation bears much re-
semblance to the 3D Euler equations with respect to the mechanism of singularity
formation (if there are singularities at all). It is worth mentioning that the sin-
gularity problem for the 3D Euler equation is one of the most outstanding open
problems today. Therefore, it is important to study this SQG system, whose sin-
gularity problem is also open.

As is well known, the Hamiltonian formulation of the Euler equations yields
many insights into the Euler dynamics. However, to my knowledge, such a formu-
lation for the SQG system (1.1) is still missing. The purpose of this project is to
investigate the possibility of a Hamiltonian formulation for the SQG system (1.1),
and furthermore, whether such a formulation would help study the SQG singularity
problem.

In Section 2 I will derive the 2D SQG system. Then in Section 3 I will derive the
Hamiltonian structure for the 2D SQG system and give a brief discussion about it.
Finally, in Section 4 I will give a brief summary.

2. THE QUASIGEOSTROPHIC EQUATIONS AND ITS HAMILTONIAN STRUCTURE

We consider some stratified fluid on the earch surface, e.g. the ocean or the
atmosphere. When the rotation effect is strong, one can derive various approximate
equations that govern the overall behavior of this fluid. In this section we will
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derive one of such approximate systems which has been successfully equiped with
a Hamiltonian structure.

2.1. Rotating fluid. Denote by {2 the angular velocity of the earth’s rotation. For
any particle, denote by u; its velocity in an inertial frame, and by ug its velocity
in the rotating frame moving with the earth. Then we have

ur =ur +Q xr.
It follows that

(Dtuj)l = (DtuR)I + Q X uy
(Diur)p + QX up +Q x (ugp +Q xr)
(Diur)p +2Q x urp + Q2 x Q x r

where 2Q) x up is the Coriolis’ force, and 2 x  x r is the centripedal force.
Thus the 3D Euler equations in the rotating frame becomes

Diu+20xu=V>o

where V& contains —Vp, the gravity term, and the centripedal term.

Now let the fluid under consideration be at latitude 6 € [0,7/2], and define
the Coriolis’ parameter f = 2|Q|sinf. It is easy to see that if we take the frame
(e1, ez, e3) such that es is perpendicular to the earth surface, we have

Ui Uuq —U2 15,5
(2.1) U + (u101 + ugds +uzds) | ue | +f Uy = 0,®
us3 us 0 03P

t

2.2. The QG system. The QG system is the limiting equation of the primitive
system when the Rossby number (~ 1/f) approaches 0.

The primitive model adds a new scalar function, called the potential temperature,
into the rotating system. It reads

(51 Uy 0 -1 0 0 “ Ory
U2 U2 1 0 0 0 U2 = 321/)
" +(u101 + u202 + uzds) us 1o o o 1 uz | f d31
p 0 0 0 -1 0 0 0

t

Where v = ®/f. Here it is assumed that the size of ® is comparable to f, since
otherwise the dynamics would not be interesting when taking f — oo.

Now taking f — oo, it can be shown that (Beale-Bourgeois [BB94|, Iftimie
[Ift9x]) the limiting system is the following:

Oy (A)) + (=0ap, )" VA = 0
(2.2) 0 = &y

where A is the Laplacian in 3D, while V is a 2D operator. This system is called
the QG equations.

Remark 2.1. As mentioned in Iftimie [Ift9x], since the QG equation conserves A,
the whole system behaves like the 2D Euler equations. Therefore it is easy to prove
the global well-posedness of (2.2).
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2.3. Hamiltonian structure for (2.2). Now we present the Hamiltonian struc-
ture obtain by Holm ([Hol86]). Let ¢ = At. Then the main equation can be

written as

Oeq+[th,ql =0
where [a,b] = a?aglfjg)z) is the Jacobian bracket. Now introduce the Lie-Poisson
bracket

o= [ Loo5 5

H:/ dmg/ VY| dzid,.
0 R2

Now simple calculation yields

and the Hamiltonian

0H
g v
Therefore
oy = [ [ alws
o Jre
= / / qwx15z2 - q1/)m5m
o Jr?
= - (q1/}w1)z2 + (quz)xl
We see that
¢=A{H,q}
is just (2.2) and therefore the above setting gives the Hamiltonian structure of the
QG system.

3. A HAMILTONIAN STRUCTURE FOR SQG

Although for the QG system (2.2), a Hamiltonian structure has been successfully
equipped to it, for the SQG equation (1.1) it is still lacking.

First we derive the SQG system. In (2.2), since the quantity ¢ = A1) is just
carried around by the flow, it will remain 0 if initially we take Ay = 0. In this
case we are left with the Laplace equation

A =01in R? x RT.
We assign fast decay boundary condition at infinity. On the bottom surface x3 = 0,
we use the evolution equation for 6

et + [1/1,

0] =
as the boundary condition, where 6 = 66_;;' Since Ay = 0, it turns out that
\1/2 -
0=— (—A) 1, where A is the 2D Laplacian, on the bottom surface. This leads

to the SQG system (1.1):
et + [77[]’ 9] =0

) _(_A)1/2w

0
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Remark 3.1. Although, as we mentioned in Section 2, the well-posedness of the QG
system (2.2) is easy to obtain, it is argued in Held et. al. [HPGS95] that this fact
does not mean that there cannot be singularities formation in the SQG system.

For the SQG system, the kinetic energy is
_o2
K = / ‘V’(/J‘ dridxs
where V is the 2D gradient. It is easy to check that
K = /|9|2 dzyds.

Now it is clear that the naive choices of the Hamiltonian H = K or H = K + [ 62
would not give the correct dynamics.
Instead we take H = f 8. We take the same kind of Lie-Poisson bracket as in

Section 2:
0F oG
{F,G} = —/9 |:6—9, 6—0:| d(Eld(EQ.

Since %_1(;1 = 1) which can be easily checked, following the same line as the argument

of Section 2 we see that
0={H,0}

gives the Hamiltonian structure of the SQG system.

Now we spend some time comparing SQG and 2D Euler. We know that for the
2D Euler system, the conserved quantity is the scalar vorticity w. The 2D Euler
equation can be written as

815‘-*-) + [1/)7 UJ] = 0
where 1 is the stream function, i.e.,

A\ = w.

In this case, the Hamiltonian is simply the kinetic energy H = [ lul* daydas.
Noticing that it can also be written as

H= /1/)(,0 dxyidxo,

we see an analogue between the Hamiltonian structure of the SQG equation and
the 2D Euler equation.

Remark 3.2. The quantity [0 has been proved to be conserved by the QG dy-
namics in Constantin-Majda-Tabak [CMT94]. However, there it is described as “an
additional positive definite conserved quantity without a direct analogue for the 3D
Euler equations” ([CMT94], pp. 1501). Here we see that it really has an analogue for
the 2D Euler equations. The kinetic energy [ |u|2 in the 2D Euler dynamics corre-
sponds to two instead of just one conserved quantity in the SQG dynamics, namely

the kinetic energy [ |u|> = [ 62, and the Hamiltonian [ 6 = [ ((—A)71/2 9) 6.



HAMILTONIAN STRUCTURE FOR THE 2D SURFACE QUASI-GEOSTROPHIC EQUATION(CDS 205 FINAL PROJECT REPORT

4. SUMMARY

In this short note we derived the Hamiltonian structure for the surface quasi-
geostrophic equation (SQG). We found that this Hamiltonian structure bears direct
resemblance with the Hamiltonian structure of the 2D Euler equations.

Remark 4.1. Since the derivation is surprisingly easy, I strongly believe that it
should has been done before. I will continue searching through the literature for
previous works.
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