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1 Introduction

During the 1920s Kaluza and Klein [1][2] put forward the concept of unifying
the theories of general relativity and electromagnetisim via the introduction of
a [ifth dimension. When viewed [rom the viewpoint of an observer living in
space-time this extradimension transforms in the way required by the gauge
transformations of electromagnetism. This idea was quickly reinterpreted into
the mathematical language of counections living on principal bundles and gen-
eralised [rom the electromagnetic case to that of a general Yang-Mills field [3].
This reinterpretation marks a move from considering the higher dimeusion as
a smooth manifold with a dimension curled up so that it can not be seen to a
view point where a particle possesses an internal space which possesses certain
group symmelries. It is this latter viewpoint which appears to have porsisted.

Once the principal bundle formalism is established it is possible Lo extract
equations of motion for a charged particle. These can be shown to be the
projection of the geodesics in the bundle onto the base space. The deviation
Irom geodesics in Lhe flat space is interpreted as being due to a force acting on
the particle.

Another way [4] of approaching the problem of generating the equations
of motion of a particle in a Yang-Mills potential is to modify the symplectic
structure of the cotangent bundle of the manifold by the addition of a two form
based upon the connection of the principal bundle. This process corresponds Lo
the process of minimal couplling in physics and leads to a geometric method of
recovering the equations of motion. These different. methodologies can be shown
to be equivalent [6).

In this report 1 summarise some of the techniques used in the above ap-
proaches using the example of electromagnetism, which possesses a U(1) gauge
symmetry, as a concrete exanple.



2 Kaluza-Klein Theory

The theory of Kaluza and Klein attempted to unify gravity and electromag-
netism as due to the natural geometry of some special five dimensional manifold.
Specifically they chose a manifold R* x S'. At the same time Utiyama [8] put
forward a general view of forces as arising from gauge potentials based on sym-
metry groups. This theory can be regarded as equivalent to the mathematical
theory of connections on principal bundles.

A principal bundle, P(M.G) is a fibre bundle over a base space M whose
fibre F is identical with its strucure group G. A connection l-form, w on the
tangent bundle TP is employed to effect a split of TP into vertical and horizontal
subspaces,

T,P = Hor®Ver.

The vertical subspace is a subspace of 7,P which is tangent to the fibre G, at
the point u, #(u) = p. The horizontal subspace is the compliment of this vertical
subspace. For practical purposes this split is accomplished using the Lie-algebra
valued one-form, the connection w. With this connection we say that a vector
X € T, P lies in the vertical subspace iff < w, X >=0 where < ,- > denoles
the natural pairing between one-form and vector on 7, P.

To develop the Kaluza-Klein theory we seek to place a metric on this princi-
pal I)1mdle[3]..The projection of geodesics on the bundle to the base space will
then give the equations of motion of a charged particle moving in the Yang-Mills
potential deseribed by the structure group, G. This metric must obey several
restrictions.

1. The metric must preserve thie split between horizontal and vertical sub-
spaces L.e. vertical and horizontal vectors must be orthogonal with respect
to the metric

2. The metric on the horizontal subspace must be isomorphic to the metric
on the base space.

3. The metric on the vertical subspace must be isomorphic to some metric
on Lhe Lie algebra of the structure group.

Let’s work in the local trivialisation of the bundle and denote components on
the Abre with iudices a,b.c,elc. and components on the base by ij.k.etc. Then
the connection A has components AJ. Denoting coordinates in the bundle by
greek letters which run over 1 to dim{M)+dim(G) we find that the metric takes

the form
0o = gij + A? Ag A';
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The application of standard techniques to this metric allow the geodesic
equations to be determined,
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where Q¢ = 2A}‘,il‘;’;—'. This latter quantity Q° can be identified with the Yang-
Mills equivalent of the charge divided by the mass of the particle. Notice that
in flat space and for the EM field (go, = 1) this reduces to the usual Lorentz
force on a particle.

For a definite example of this procedure let us consider the simple case
of a charged particle moving on a flat background space through a magnetic
licld [3]. As mentioned previously the Kaluza-Klein configuration space for this
particle is Q@ = R* x §'. The various conditions placed upon the components
of the connection allow it to take the simiple forin w, = (A, 1) we see that this
generates a Kaluza-Klein metric

Qi +A,A A;
Jag = ( iy A, + l" ) .

[From this metric we {orm a modified kinetic energy lagrangian.
L(r,#,0,0) = %gnﬁ()"(}u
im||E)® + 3(A &+ 6)? _
2 . D
gmllEl? + Fl < w, (x,£,0,0) > ||?
where g = (x,0) € Q, x € R and 0 € S'. The BEuler-Lagrange equations for

this lagrangian will recover geodesics of the above metric. Inspection reveals
that 0 is a cyclic variable and so
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leading topp = A- G+ 0 being a constant of the motion. We identify this
conserved quantitiy with the charge of the particle.
The equations of motion for the spatial pavt ol the problem yield

dp; . d . oL
- = ;-l—t-(mm, +podi) = e

which give us the usual Lorentz force equations.

This approach has very general application, and provides a very intuitive
picture of the gauge theory. One interesting point is that paths which follow
closed loops in Lhe base space do not necessarily close when lifted into Lhe
bundle. Consider a closed curve ¢(1) on the base space. This is the projection
ol some curve on the bundle &(¢). It is quite possible that the end points &(0)
and ¢(1) differ by some vertical vector while still having the same projection
onto the base space. This vertical veclor is related to the field strength of the
Yang-Mills field also known as the curvature of the connection.

3 Minimal Coupling

The standard proceedure in physics for gencrating the equations of mnotion of
a particle in an electromagnetic field is that of the minimal coupling scheme by



setting p — p — eA in the Hamiltonian. It was observed that this proceedure
was equivalent to taking the usual Hamiltonian, but altering the symplectic
structure on T*Af by the addition of a two form dA to the standard symplec-
tic form. The equations of motion with respect to this Hamiltonian and the
modified symplectic structure arve the desired ones for a particle moving in an
em fickl. This procedure generalises to the case of the Yang-Mills field where
once again we formulate our theory on a principal bundle. Following Stern-
burg [4] we consider a principal G-bundle P — X with G a Lie Group. Let X
be a symplectic manifold with symplectic form w We next take a hamiltonian
G-space ' with a symplectic form Q. The group G acts on F as a group of
symplectic diffeomorphisms. From these two bundles we form the associated
bundle P x ;¢ F*. The connection on P then determines a symplectic structure
on P x ;¢ F. This associated bundle has a unique, closed form Q4 defined by
d< A, ¢ > +Q=7"04. We use this to form the modified symplectic structure
on P x ¢ I by forming the closed two-form w + Q4. The equations of motion
are then Hamilton's equations with respect to this symplectic structure.

For the case of the clectromagnetic field we have G=U(1) and I'=e. For a
connection 1-form A we thus obtain Q4 = d < A,¢ > from which we recover
the modified symplectic form w + cdA where we identify e as the electric charge.
This leads us the equations of motion for a charged particle in a magnetic ficld
B=VxA

4 Equivalences

The (two methods outlined above appear at first glance to be very dilferent.
In the Kaluza-Klein approach we put a metric on the principal bundle P and
found our equations of motion from the geodesic equations. In the minimal
addition scheme we modilied the symplectic structure of the associated bundle
P x ¢ F and found our equations of motion from Hamilton's equations with
this structure. These two methods are in fact equivalent in a natural way as
was shown by Montgomery [6].

In fact Montgomery lists a series of methodologies for calculating thc oqua-
tions of motion for a particle in a Yang-Mills force [7]. These methods are all
equivalent and represent. different ways of looking at the same problem. The
net result is that there are many ways to describe motion on the bundle all of
which have the same projection onto the base space. These include forming a
purely horizontal hamiltonian, the Kaluza-Klein approach and the the modified
symplectic geometry appraoch.

5 Conclusions
The original notion of Kaluza-Klein to exploit extra dimensions in an attempt

to unify theories of gravity and other forces showed initial promise. The original
formulation has been superceded by the use of connections on principal bundles



to describe gauge theories. This has great application in a variety of circum-
stances. Beyond application to undamental physics the ideas of gauge theories
can he applied to problems as diverse as the falling cat problem, the motion of
ameoba and a myriad of control problems.

The general approach in all of these problems is to formulate the theory on
a conliguration space Q which posesses some symmetry group G. The "shape
space”™ Q/G which forms the base space of the bundle then takes the role of
the space of either the control space or the observable space coordinates. A
conncclion living on T* P is then used to elfect a split between horizontal and
vertical subspaces. Different, but equivalent, methodologies are available for
extracling the equations of motion from the bundle and connection. Some of
these apply only in certain situations, e.g. Kaluza-Klein for which the Lie-Group
must. possess a bi-invariant metric in order to form the Kaluza-Klein metric.

Despite the great effectiveness of the mathematical structure provided by
connections on principal bundle it seems that the original principle of Kaluza-
Klein was lost along the way. Generating higher dimensional riemanuian mani-
folds which allow the reproduction of the observed standard model group sym-
metries in a natural way seems like a sensible plan. It appears that the complex-
ity of determining appropriate topologies on the space has dissauded progress
on this avenue excepl. perhaps in the arena ol string theory.
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