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In this report, I review the results presented by Bloch, Krishnaprasad, Marsden and
Ratiu (1994a, 1994b) on the effect of dissipation on formally unstable Hamiltonian
systems. As we shall see, for the Hamiltonian systems which are formally unstable,
i.e. the second variation of the Hamiltoninan, or the reduced Hamiltonian, is indefinite,
introduction of small dissipation results in nonlinear and spectral instability. The added
dissipation may affect the internal variables (the variables which are invariant under
the group action), in which case the dissipation term can be regarded as the gradient of
a Rayleigh dissipation function with respect to the reduced phase-space. Alternatively,
the dissipation term may directly be added to the group or Lie algebra variables. We
see that in order to maintain conservation of momentum, this has to be of a “double
bracket” form similar to what considered by Brockett (1993). This term can again be
regarded as the gradient of a Rayleigh dissipation function but tangent to the coadjoint
orbits, where in case of rigid body for example the magnitude of the angular momentum
is preserved. We apply and compare these results for the heavy top example.

1. Introduction.

In this review, we consider the issue of stability of Hamiltonian systems. For the sake of
simplicity, we restrict our discussion to finite-dimensional systems, although under certain
conditions of regularity and for the cases where the linearized system has a discrete spec-
trum, these results extend to the infinite-dimensional case as well. In fact, these results
are probably more interesting and applicable for infinite-dimensional systems.

To study stability of equilibria of nonlinear systems, one either uses spectral information
about the linearized Hamiltonian system or attempts to find a Lyapunov function in order
to establish Lyapunov stability of the system.

Now, in the case of Hamiltonian systems on symplectic manifolds, it is well-known that
the spectrum (set of eigenvalues) of the linearized system, in addition of being symmetric
with respect to the real axis, 1s also symmetric with respect to the imaginary axis. Let
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# = X,(z) with respect to the Hamiltonian H : P — R represent the dynamics of the
Hamiltonian system. Then, the above fact is a direct result of DX ,(z) being 2-skew or
infinitesimally symplectic, which in local coordinates is equivalent to saying

Q DX, (z) + (DX, ()" 2 =0.

See for example Abraham and Marsden (1978). Thus, unless a Hamiltonian system is
spectrally and nonlinearly unstable because the spectrum has components in the open
right and left half-planes of the complex plane, the spectrum must lie on the imaginary
axis, in which case spectral analysis alone can not determine stability of the system.

Alternatively, one can use Lyapunov method to investigate stability. It is well-known that
if there exists a Lyapunov function W : P — R, which is positive definite with respect to
the equilibrium point z, (§ W(z.) =0, §2W(z.) > 0), and has negative time-derivative
along the trajectories of the system in a neighborhood of z, (W(z) < 0), then z is
nonlinearly stable. Conversely, existence of such a function W, such that W(z) <0 in a
neighborhood of z¢, but §2W(z,.) is indefinite, is sufficient to show that the equilibrium is
nonlinearly unstable. Since the Hamiltonian is a conserved quantity for the Hamiltonian
system (H(z) = 0), one candidate for the Lyapunov function is H (or —H). dH(z)-v =
Q(X,,v) on a symplectic manifold, implying that any equilibrium of the Hamiltonian
dynamics is a critical point of § H, i.e. § H(z.) = 0. Therefore, if §2H is positive definite
(or negative definite) at some equilibrium, that point is stable in the sense of Lyapunov.

However, if §2H(z.) is indefinite or semidefinite, one can not say anything about stability
of z.. Notice that to prove instability one needs H<0or H>0.

In many cases though, §2H(z,.) is indefinite or semidefinite and thus, one must use other
techniques or Lyapunov function candidates. For example, if C is another conserved
quantity (C(z) = 0), one can consider C or H + C, such that z, is a critical point of
6 C or 6§ (H + C). This is the basis of energy-Casimir method, where one uses appropriate
Casimir functions, which are conserved quantities depending only on the Poisson structure
of the system and independent of the particular Hamiltonian. Unfortunately, for symplectic
structures the only Casimirs are constant, and in general there exists no systematic method
to find these functions.

To further complicate the issue, we are often interested in examining the stability of certain
orbits or trajectories generated by the action of a symmetry group G, which we call relative
cquilibria. Now, if the Hamiltonian dynamics are invariant with respect to the action of G,
they induces a reduced system on P/G, where [z.] the reduction of z, to the quotient is an
equilibrium point. Therefore, one can investigate the stability of the reduced Hamiltonian
system on P/G instead. It is obvious that for a compact symmetry group, if [z.] is a stable
cquilibrium for the reduced system, then z. is a stable relative equilibrium for the original
system. But P/G is not usually symplectic and in the non-symplectic case, the equilibrium
may not be a critical point of § H.



Alternatively, one can examine the reduced Hamiltonian system and variations of H on
the symplectic leaves which is the basis for the energy-momentum methods.

To summarize the above points, we have:

e Nonlinear stability (Stability in the sense of Lyapunov): We say a trajec-
tory {z; ¢ > 0} is stable in the sense of Lyapunov if for all € > 0, there exists a § > 0
such that if ||Zo — 2¢]| £ 8, sup, ||z} — z:]| < ¢ where %, is the trajectory starting at
Zo. If the statement holds only in a neighborhood of the trajectory, then it is locally
stable.

¢ Spectral stability (instability): An equilibrium is spectrally stable (unstable)
if the spectrum of the linearized system with respect to that equilibrinm lies in the
closed left half-plane (has components in the open right half-plane) of the complex
plane. Spectral instability implies nonlinear instability, but for the Hamiltonian
systems, the converse is not true.

¢ Formal Stability (instability): An equilibrium of a Hamiltonian system is for-
mally stable (unstable) if it is a critical point of the first variation of some conserved
quantity (6 H for example), while the second variation is definite (indefinite). Formal
stability implies nonlinear stability, but not vice versa.

¢ Lyapunov stability (instability): An equilibrium is locally Lyapunov and thus,
nonlinearly stable if there exists a Lyapunov function W : P — R such that
§W(z) =0, §2W(z) >0 or <0,and W(z) <0 in a neighborhood of z..
The equilibrium is Lyapunov and nonlinearly unstable if W is as above, but § 2W (z,)
is indefinite and W(z;) <0 in a neighborhood of z.

If we perturb a Hamiltonian system by introducing small dissipation into the system such
that the equilibria are preserved, the above implications may no longer be true. This
perturbation may cause the eigenvalues of a spectrally unstable system to move into the
left half-plane, or drive some of the eigenvalues of a spectrally stable system into the right
half-plane. In the former case the system is nonlinearly stable, while in the latter it is
nonlinearly unstable. In fact, we show that if §2H is indefinite, addition of dissipation
results in the latter case.

Addition of small dissipation to the Hamiltonian system results in H < 0 with H being
strictly negative in certain directions. If §2H(z.) is positive definite, then the equilibrium
is still stable after introducing the dissipation. On the other hand, if §2H is indefinite,
we will see that in certain situations, there exists a perturabation of H, W, such that
W, < 0 in some neighborhood of z., while § W,(z,) = 0 and 82W,,(z¢) is indefinite,
meaning that the perturbed system is nonlinearly unstable.

In fact, what we show is that the time-derivative of W, (8z;) “with respect to the linearized
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system” is negative. Here, 6z, denotes the integral curves of the approximate linearized
system,;

6z =DX,(z)6z, and W, =dW, - DX, (z.)éz.
This of course implies WH < 0 in a neighborhood of z.. But it also results in the stronger
implication that the linearized system is spectrally unstable.
To see this, note that the spectrum can not entirely be in the open left half-plane, otherwise
the equilibrium is stable. It can not also have zero components, in which case W, (6z,) =0
in some subspace invariant with respect to trajectories of §z;. One can also show that no
eigenvalue lies on the imaginary axis, otherwise there must exist an invariant subspace, in
which the trajectories of 8z, are periodic. But then, W, (§2,) along those trajectoris must
be periodic which contradicts W, 1 (6z¢) < 0. Therefore, some eigenvalues must lie in the
open right half-plane.

Example 1. To clarify our discussion, let us consider the following simple linear
Hamiltonian system on the symplectic space (R2",2, ), where M is a positive definite n xn
matrix, B is a skew-symmetric matrix and ¥ is a symetric matrix. One can regard this
system as a reduced linearized Hamiltonian system with respect to an Abelian symmetry
group, where all variables can be considered as internal variables:

p=—-BM-lp-Xgq
Mg+ Bgqg+XZgq=0, geR" = (1)
qg=M""p.
The system is clearly Hamiltonian with respect to the following structure:
1 - 1 _[-B I
H(g,p)=35p-M™"p + 5q-%q, Qs—[_I 0]- (2)

The only equilibrium for this system is z, = 0. If T is positive definite, then §2H(0) =
Diag(M~!, ) is positive definite and thus, z. is stable. In this case, all eigenvalues lie on
the imaginary axis.

If ¥ has some negative eigenvalues then §2H(0) is indefinite and the system may or may
not be stable. For certain choices of X, one can in fact show that the spectrum lies on the
imaginary axis and 0 is spectrally stable.

Adding a certain small dissipation to the above system results in the following dynamics,
where R is assumed to be positive definite and ¢ > 0 is small:

p=—(B+eR)M 'p—-Xgqg
Mg+ (B+eR)g+Xq=0, = (3)
g=M"p.
For the perturbed system, one finds that
H= —eM™'p-RM™'p<o.
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The above equations can be rewritten as

-5 n ]

where the function R(g) = 3¢ Rq is called a Rayleigh dissipation function and
F = —R§ a dissipative force field.

If ¥ is positive definite, one can still use H as Lyapunov function to show that 0 is stable.
Also, the corresponding eigenvalues will be in the closed left half-plane.

However, H is not an adequate choice if ¥ has negative eigenvalues. Nevertheless, one can
find in this case a perturbation of H

W,=H + MTK™'Sq-M™'p,

such that for some sufficiently small 8 and positive definite K, W,, < 0. Since §2W,,(0) is
indefinite for sufficiently small 3, the above means that 0 is unstable. As mentioned above
it also implies spectral instability. Thus, we have:

A For the perturbed Hamiltonian system (3), the equilibrium remains nonlinearly and
spectrally stable with addition of small Rayleigh dissipation term, if §2H(0) or ©
is positive definite. On the other hand, addition of the dissipation term results in
a nonlinearly and spectrally unstable equilibrium, if §2H(0) is indefinite or £ has
negative eigenvalues. d

We generalize the above result in the next sections to the cases where group variables exist,
and where the dissipation term affects the group variables instead and then continue with
some examples. But first, we briefly review the energy-momentum method.

2. The Energy-Momentum Method

Let (T*Q,R) be a symplectic manifold, with the Lie group G acting properly and freely
on T*Q through the (left) action ®, for all g € G, and the standard momentum map
J: T*Q — G*. Consider the Hamiltonian dynamics corresponding to the @ ;-invariant
Hamiltonian H. Then there is a natural reduction of the Hamiltonian system to T*Q/G,
where the symplectic structure reduces to a Poisson structure on T*Q/G.

Furthermore, using the Noether’s theorem; i.e. conservation of the momentum map along
the trajectories of the Hamiltonian system, one can further reduce the dynamics to the
symplectic leaf P, = J~!(u)/G,, where p € G* is the initial momentum of the system
and a regular value of J, and G, is the symmetry or invariance group of (H,J). Using
the mechanical connection g, the reduced Hamiltonian structure on P, is given by the
Hamiltonian k, = H,(q,p+a,), a, = (g, 1), dropped to the quotient, and the symplectic
form Q, on T*(Q/G,) restricted to the tangent space of P,.
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We would like to study the stability of the relative equilibria of the above Hamiltonian
system. Let {z(f,z.), ¢ > 0} denote the integral curve of X, passing through z. at £ = 0.
Then, 2. or the entire trajectory z(t, z.), is called a relative equilibrium if for all £ > 0,

2(t,2¢) = D, e,y Zer for some £, € G, where e = J(ze) = J(2(2, 2¢)).
(4)
It is easy to see that z, is a critical point of the G ,-invariant augmented Hamiltonian H .
One can further show that at the relative equilibrium, p.=10(g.)¢ and

0 (@) =L (()g(@))  where 2o = (ge,pe). (4)

[ze] € Py., the reduction of z(¢,z.) to the quotient with respect to G,., is obviously an
equilibrium of the reduced system on P,, and a critical point of § h,,. Clearly, if [z.] is
a stable equilibrium point for the reduced Hamiltonian structure, the relative equilibrium
is stable with respect to the original Hamiltonian. Thus, it suffices to study the stability
of [z] in the reduced Hamiltonian dynamics.

In the energy-momentum method, one considers §2H, (z.) along variations tangent to
J~'(p.) and transverse to T. (G,, - z.), where

Glle PRe = {Qexp(tt)ze’ V€ € gl"e}

is the orbit of G,, through z.. Since §2H,, along T, (G,, - z.) is zero, it turns out
that §2h, ([z.]) has the same spectrum as §2H, (z.) restricted to the above-mentioned
variations. Hence, this is sufficient to determine formal stability of [z.] in the reduced
Hamiltonian system. Let & C T, ,T*Q be the subspace of these variations, then one can
choose § to be

S =T, I (u)N{6z € T..T" Tr 6z, no(ze))e =0 Yy € G},
e DJ((u)) {62 € T..T"Q | (Tmyéz, n(ze))s n€ Gu.}

where 7, : T*Q — Q. But every point in J™'(g.) can be written as p + a, (q), where
(¢,p) € 371(0), equivalent to saying that (p, no(q)} =0 for all € G. Hence, S can be
split in the following manner:

§ = {vert.(6p) | (8P, 1Q(2:)) =0 Vn€G} @ T: eV =Sk, @ T:o0,,V

where V = {8, | (g, 10(gc)))y =0 Vn € G,.}. Moreover, in most cases, one can
split V C T, Q as in the following:

v = {CQ(qe) ] C € g;t} @ {6q € V I (77’ (D]I(QC) 6Q)Ee) =0 V’) S g;,l;} = Vrig @Vint-

Viig is the subspace of variations generated by the group action, transverse to T, G, -
ze. In the Abelian case, where G, = G, Vg vanishes. Viy, on the other hand is the

6



space of variations where loosely speaking { (n¢(4c), (éc)@(ge))) =0} for any 7 € G-
looks invariant.! This choice of Vi, results in a block-diagonalized §2H,, (z.). We note
that vectors in Vg relate to local variations of the group variables, while vectors in
Vint roughly correspond to local variations of the internal variables, of the reduced
Hamiltonian system.

Thus, using the notations S;ig = T, a,, Viig and Sin = T, a,, Vint, we have the following
decomposition of S

S = Sfeg@‘sint@‘gitl‘ >~ g;lLe @vin“QSitlt ~ Tzepﬂe'

Let @ be of dimension n, G of dimension m, and G, of constant dimension m’ < m for
all ¢ € G*. Then the three components of & will be respectively of dimensions, m — m/,
n—m and n—m , adding to 2n — m — m' the dimension of P,,. m — m' is an even
number since it is the dimension of the symplectic leaf.

Let &, represent variation restricted to S. Then, using the above decomposition of S,
62H, (z) in local coordinates block-diagonalizes as follows

A,, O 0
82H, (z)=| 0 & Ve 2 0 | (z)=Diag(4, 5, M), (5)
0 0 651 Ko,

where A, : g,t X g,t — R is the symmetric Arnold form given by
Au (2)(Cn) = (adipe, T(ge)  adype + ad,T(ge) ™" pe)-
Now, 5§i,mK ue(ze) = 6‘2&,"l {{p, pNo(= M) is clearly positive definite, thus to establish

formal stability, it remains to show that A ,(z.) and 62 ) Vi (ze) are also positive definite.

Similarly, one can obtain a representation of §2(z.) restricted to S in local coordinates,
which is equivalent to a local representation of ,, ([z.]) in P,,. By using the facts that

U2)(612,622) = —da,,,(6:19,629) V(b12,622) = T:a, ,,(614, 629), (6)
and
Uz) (Tzaumqla), Troplole)) = —(1, 0Cl) VY, €6, p=13(2) (7)
one can show that in local coordinates, restriction of Q(z.) to S is of the form
L C 0 L 0 L-'c
Qs(ze) = |-CT -B If, @:H7=] o 0 ! . (8)
0 -I 0 -CcTL"' -1 -8-c7L-'C

1 Alternatively, we could have split V into V.ig®{8q | {{(6¢,n0(q))}},=0 Vyn€G}.
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where L is a skew-symmetric matrix corresponding to the Lie-Poisson bracket (7) on the
coadjoint orbit of ., C is a coupling term between internal and group variables, and
B is the skew-symmetric magnetic term corresponding to da,, in (6). For more details
regarding the above derivations see Marsden (1992) and Simo, Lewis and Marsden (1991).

Therefore, instead of considering the linearized reduced Hamiltonian dynamics in local
coordinates; i.e.

P=Xn(z) = 8= () Eha(lz))z, (9)

the energy-momentum method considers the following equivalent linearized system, where
62H, (2.) and Qs(z.) are given by (5) and (8):

bz = (R3'(2.)) T 62 H, (2.)8z. (9")
Then, z, will be formally and spectrally stable if 62 H,, (z.) is positive definite.

Comparison of energy-Casimir and energy-momentum methods.

In the energy-Casimir method, one searches for Casimir functions on T*Q/G, such that
ze dropped to the quotient is a critical point of §( H + C) and §%(H + C) at that point
is definite. H here denotes the Hamiltonian dropped to the quotient, i.e. H = H o7,
where 7, : T*Q — T*Q/G.

A sufficient condition for existence of such Casimir T+Q
is to find a function ¢ on G* such that ¢oJ = ' Te NI
. “ s . 5 _ . T*Q/G G*
Cow,, ¢is Ad*-invariant, and 3%(;18) = —£.. Since \C 6
J is equivariant, Ad*-invariance of ¢ implies that R

¢ o J is G-invariant and hence, C is well-defined.

Then, it is clear from the Noether’s theorem that Con is conserved along the trajectories
of every G-invariant Hamiltonian system on T*@Q, which is equivalent to saying that C is
a Casimir. To see that [z.] € T*Q/G is a critical point of § (H + C), notice that

)
Xa(2) = (E I‘=J(=))T’Q .

Therefore at z, XC“G(ze) = X,u1(2e) = —=(€e).q, while by definition, X, (z) =
(§e)r-q - This means that z. is a critical point of X”+C°*c.- =X, + Xcor, and thusa
critical point of 6 (H + Cow;) and§(H + C).

Hence to apply the energy-Casimir method, it is sufficient to find ¢ satisfying the above
properties. Note that Ad*-invariance of ¢ means that ad’%‘%u = 0, i.e ¢ is a Casimir

function with respect to the Lie-Poisson bracket on G*.
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However, existence of such function ¢ or such Casimir function C is difficult to verify and
may not hold. On the other hand, with the energy-momentum method one directly exam-
ines the second variation of the reduced Hamiltonianin P, = J~!(¢)/G,, thus determining
the stability of the equilibrium in the reduced structure or the relative equilibrium in the
original system. Nevertheless, one should remember that the energy-momentum method
results in stronger conditions for formal stability, that is to say there are situations where
the energy-momentum method fails to prove stability, while there exist Casimir functions
using which one can show that the system is formally stable.

3. Rayleigh Dissipation

In this section, we give an abstract definition of dissipative force field for Hamiltonian
systems on cotangent bundles. In Bloch et al (1994b), the following derivation has been
carried out for the Lagrangian representation of the system and the Euler-Lagrange equa-
tions. However, for the hyperregular case, one can directly derive similar definitions by
using the Hamiltonian structure, as presented in the following:

Let X4 be a vector field on T*Q. Then, we say this vector field is vertical if there exists
a fiber-preserving map Fy: T*Q — T*Q such that

U Xa,w) = —(Fy, T wyw) YweTTQ,
where 7, : T*Q — Q. Then, we have

dH - X4 (Qap) Q(X,,,Xd)(q,p) (Fd’ Tﬂ'q u)(‘Ia p)
= (Fa, TL")(q,p) = (Fa(g,v), v) for  (g,v) =TL7'(q,p)
where we have used the fact that by definition of H and IFL, Tx, X, = IFL~!. Therefore,

if z; is the integral curve of X, + X4, we have

H(z) = dH - X, (21) + (Fa(v,(1)), vg(1))  where  w,(t) = IFL™!(z).
0
We call the map F‘d (or Fy) a force field. If in addition ( ,1((], v), v} < 0 foralv e T Q
such that H (2¢) <0, then we call Fd a dissipative force field. For such Fd, if Fd(q, v) =

—IFR(q,v) = —D2R(q,v) for some function R : TQ — R, then R is called a Rayleigh
dissipation function. In particular, for R(q,v) = (v, v)}r(,), we have

H(z) = =TFR(v4(t)) - v4(t) = —{{v, v))r(qy) < O

The above definition of force field, coincides with the standard definition, since one can
show that the Lagrangian representation of : = X, + X, is given by

d 9L(q,q) 0OL(q,q) _ .
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Now, let Fy = FFR be G-equivariant, which can be implied by G-invariance of R. Then,
by equivariance of IFL, X4 will be ®g-invariant, i.e. Xg(®,2) = T:®,Xx(z), and group
symmetry will be preserved for the perturbed Hamiltonian system z = X ,,(z) + Xq4(z).

But in addition, we would like the integral curves of X,, + X4 to preserve the momentum
or its corresponding coadjoint orbit. This means that we would like the sets J ~(u) or
J~1(O) be preserved for any u € G* or O a coadjoint orbit in G*. In the first case, we
must have

d

EJf(z) = dJ*- X, (2) + dJ¢ - X4(z) = ~QU Xy, €10 )(2)
N ——

0 (10)
= (Fu(z), €q(g)) =0  VEE€G,

where f"d : TQ — T*Q and we have used the fact that Tw, 0 {,., = {g o 7my. This

imposes a strong restriction on F;. In particular if action of G on T*(Q is transitive, for
example if T*Q) = T*G, we would get F; =0 , i.e. there exists no force fields preserving
the momentum map. Thus, it is more reasonable to look for dissipative force fields which
preserve J~1(0). Now, every member of the coadjoint orbit passing through J(z) can be
represented as Adj;J(z) for some g € G. Therefore, J=!(O) is preserved by the integral
curves of X, + Xg if

dJ(z)
dt

= adg()J(2) —> _;_tjﬁ(z) = JIE ()
= (Fd(z)v EQ(q)) V¢ € G,

for some 7 : T*Q — G. In §5, we use the above condition to explicitly formulate the
coadjoint-orbit preserving force fields on T*G and show that any such dissipative force
field can be represented by a double bracket.

(11)

4. Dissipation Induced Instability: Dissipation Affecting the Internal
Variables

Consider the Hamiltonian system described in §2 and the corresponding reduced dynamics.
Let the Rayleigh dissipation function R be defined as

R(a,0) = 5%, v e

where vt is the projection of v onto {8¢ | (8¢, no(q))y = 0 Vn € G}, and T is
positive definite G-invariant. Then, it is evident that R is G-invariant. This means that
the corresponding force field ﬁ‘d and vector field on T*Q, X4, are G-equivariant and ®4-
invariant. Moreover, one can easily see in local coordinates that (f‘d(vq), €o(q)) =0 for

all £ € G. Therefore, we know from (10) that J is preserved along the integral curves of
X a+ Xa.
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Hence, we can reduce the dynamics of the perturbed Hamiltonian system to P,_ corre-
sponding to the relative equilibrium z.. Using the definition of R, we have R(q.,v) =0
for v € Viig. This means that the dissipation affects only the internal variables.

Thus in local coordinates, restriction of X4 to S in a neighborhood of z,. is given by

0
Qs(z) Xa |S (2) = [I‘(q) lFL“(q6 p— aue(q))] : (12)

By using (8) and (9’), we then get the following linearized system at z,:

. r 0
0z = ((le(ze)) 62H, (z) — [I‘A/_(;“]) bz. (13)

One can use (5) and (8) to expand the above equations and show that in fact for the
linearized Hamiltonian

H°(6r,bq,6p) = —;— (6p- M~'6p + 6q-86q + 6r - Aér) where 8z = (ér,6q,6p),

(14)
the dissipation term results in H(8z;) < 0.
Using the linearized equation (13), we get the following result:
Theorem 1. Suppose A, is nondegenerate or vanishes altoghether and T’ correspond-

ing to the dissipation vector field (12) is positive definite.

Then if A and X defined in (5) are positive definite, z, remains a nonlinearly and spectrally
stable relative equilibrium of the perturbed Hamiltonian dynamics z = (X, + X4)(z),
where X, is given by (12).

On the other hand, if A or ¥ has at least one negative eigenvalue and C in (8) has full
row-rank, z, will be Lyapunov and spectrally unstable for small dissipation of the given
form affecting only the internal variables. 0

The first statement immediately follows from (14). For the second case, as in example 1,
we can find a perturbation of H° in (14), W, such that W",,(éz,) < 0. See Bloch et al
(1994a) for details. To show that =, is also spectrally unstable we use the same argument
given in §1.

We also remark that since C is m — m' x n — m, the condition of the theorem, restricts
the dissipation-induced instability result to the cases where n + m' — 2m > 0, where
n=dim@Q, m =dimG, m'=dimG,. This of course puts a lower bound on the number
of internal variables for which this result can be used.

In addition, one can show that C has full row-rank,if V., NT, (G-q.) = {0}.
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5. Dissipation Induced Instability: Dissipation Affecting the Group Vari-
ables

In the last section, we studied the effect of dissipative force fields on stability of relative
equilibria, restricting to the cases where the force field affects only the internal variables.
In this section, we consider the case where the force field affects the group variables as
well. In such cases one can not usually expect the momentum to be preserved. However,
one can find force fields which preserve the coadjoint orbit through the momentum, and
hence can carry on the reduction procedure with respect to P, ~ J~1(0,)/G.

But first we classify the coadjoint-orbit preserving force fields on T*@Q = T*G and show that
such force fields can be represented by a double bracket and be regarded as the gradient
of a Rayleigh dissipation function tangent to symplectic leaves or coadjoint orbits.

5.1 Double-Bracket Force Fields for Lie-Poisson Equations

Example 2. We begin with the simple example of rigid body. The rigid body equa-
tions in so(3)* are given by

I=1xQ, where  II € so(3)", Q =1""1I € 50(3) (15)

and H(I) = {M -Q is the Hamiltonian. Let these equations be purturbed by the
following term:
D=IOxQ +elx(IxQ) forsome e>0. (16)

Then, it is easy to see that H = —e(Il x Q)2 < 0 around the equilibrium points
and —‘;—lt-"]:["2 = 0. Therefore, the added dissipation term preserves the coadjoint orbit
{||IX]] = constant} while dissipating energy. Using H as Lyapunov function, then it is
easy to show that the stability of the equilibria of (15) remains unchanged with addition
of the above dissipation term. Notice that

S Ix®)=0 - (Ix¥)=——L (Mx@xQ)-¥ VEcg

g - ~ e =
where every tangent vector to O, = {||II||* = ||do||*} can be represented by II x ¥ for
some ¥ € G. Thus, defining

>

(Grad H, ¥)), = % ¥ Ve,

the above equalities mean that "']]I_IIIF(H x (II x )) = Grad, H; the gradient of H
tangent to Oy,.

We now generalize this to the Lie-Poisson equations g = ad};y_ 1 on the Poisson manifold
m

G* with Hamiltonian k() and Poisson bracket {F,K} = —(u, %’I;:, %])
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By (11), the coadjoint-orbit preserving force fields on T*G satisfy (Fu(g,p), €c(9)) =
(J(g, 1), adg(g,y€) for some 7 : T*G — G. But for the left action on TG, J(g,p) =
Ad;_,p and £c(g) = TeR4€, where Ry, L, are the right and left multiplication by g.
Thus, we have

(T:RFu(g,), €) = (ks [AdyorT, Adymr]) = (Adj-radiy 5, €)

Then, using the facts that Fy is G-equivariant, i.e. Fy(T;Lypu) = T;L,-1Fy(p), and
Adj-1 =T R, 0T, Ly-1, we find out that

Fo(p) =adyp where  n(p) = Ad,-17(g, 1) (17)

Next, let us assume that the force field given by the above equality is the negative gradient
of a function ¢ : G* — R tangent to the coadjoint orbit O,. Clearly, every element of
T,0, can be represented by ad;u for some ( € G. Let ((-, -)). be a metric on G*.

This metric induces a I'"!-metric on G and a normal metric on T,,0,, such that

(adgp, adep)) v = BUE, (Or- for all £, € G and some 8> 0.
Then we may define the gradient of ¢ tangent to O, at u by

b¢

(Grady o), adgu) = (adip, 22) = (adipm adgihy = (adiem 6)
which in turn implies
1 " " 1 .
n(u) = Er (ad.g%ﬂ) == —Grad, ¢ = adr)ﬂ = Eadl‘(adzéla“n) H#, (18)

where I' : G* — G is induced by the metric. Thus, any coadjoint-orbit preserving force
field which can be regarded as a gradient tangent to the coadjoint orbit is of the above
form, where 3 in general can be replaced by any positive Casimir function on G *. Then,
the time-derivative of the Hamiltonian h(z) along the trajectories of

: « 1 o
Hy = ad.g%ﬂt + Eadr(udzéﬂl'”‘) e (19)
will be given by
. « ©Oh . Sh 1, .. .
h(pe) = a'd,gf_‘ﬂtm + ad,,(,l)llzm = —E((ad.g%llt’ ad_g%ﬂt»l‘-
.

0

If for some ¢, the above derivative is negative around equilibria, the corresponding force
field is dissipative. One such case is when ¢ = h.

Moreover, if the group G is compact and semisimple, then one can define a similar normal
metric on adjoint orbits in G, thus identifying G and G*. Assuming that T is identity, then
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the above orbit-preserving force field can be represented by the following double bracket
form

6 84 1)
—Grad, ¢ = %[u, (12, %]] =  p=u, 5—;] + %[u, (&, 6—2]]- (20)

See Brockett (1993) for more details.

Finally, we should remark that although physical interpretation of dissipation fields affect-
ing the internal variables is obvious, it is less obvious what kind of dissipations can be
modeled as above. In Bloch et el (1994b), physical examples involving fluid mechanics and
particle physics have been mentioned.

5.2 Instability Results

Consider the perturbed Lie-Poisson equations (19) with ¢ = &, then forevery f : G* — R,

f(“l) = (ﬂh [Vh’ Vf]) - %«a‘d’%h”i’ ad*V_fI'“»r = {f’ h}POiSSOH - {f’ h}Pos.Sym.-

Then by using & as the Lyapunov function, we have the following result:

Theorem 2 Let 62h(z,) be positive definite for z., an equilibrium of the unperturbed
Lie-Posson equation. Then z, is also a Lyapunov and spectrally stable equilibrium of the
perturbed Lie-Posson equation (19) with ¢ = h.

On the other hand, if §2h(z.) is indefinite or negative semidefinite, addition of the dissi-

pation term ensures that z. is Lyapunov and spectrally unstable for the perturbed system
(19) with ¢ = h. a

To prove spectral instability in the final statement, note that since i < 0, the linearization
of h around z. still implies Lyapunov instability in a local neighborhood of z.. The rest
follows as before.

Now consider the Hamiltonian structure on 7*Q introduced in §2 and studied in §4, now
perturbed by a general coadjoint-orbit preserving dissipative force field satisfying (11);
z = X, +X4. In Bloch et al (1994b), the authors “implicitly” claim that in general, addition
of such force field results in the following equivalent linearized system with respect to the
reduced space of variations S. Note that since J~!((Q) is preserved, we can still reduce
the perturbed Hamiltonian system to P, ~ J~}(0,,)/G and use the same decomposition
of S for the variations of the linearized system. In this case, X4 in local coordinates and
restricted to & in a neighborhood of z, is given by

A(g)

Qs(z) X S (Z) = [F(Q) ]FL-I(qd p- a’uc(Q)) ) (21)
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where A(q) is independent of internal variables. Then by using (8) and (9’), we get the
following linearized system at z.:

. T G-14
6z = ((Q;‘(ze» §2H,(z)- | o |) ez (22)
TAM—?

If G is positive definite and T' is positive semidefinite, we can again show that the Hamil-
tonian H° given in (14) satisfies H(8z;) < 0. We should mention that G corresponds to
the normal metric defined on the coadjoint orbits as explained in §5.1 and thus may be
assumed to be positive definite. Then, we have the following result similar to theorem 1:

Theorem 3. Suppose A, is nondegenerate, G is positive definite and T is positive
semidefinite.

Then if A and ¥ are positive definite, z, remains a nonlinearly and spectrally stable relative
equilibrium of the perturbed Hamiltonian dynamics ¢ = (X ,, + X4)(2), where X4 is given
by (21).

On the other hand, if A or T has at least one negative eigenvalue and CTC + T is positive
definite, z, will be Lyapunov and spectrally unstable for small dissipation of the given form
affecting the group and possibly the internal variables. |

Proof of the first statement is again immediate. The second statement follows from ex-
istence of another perturbation of H°, W_,, such that W ,,(8z) < 0 and for small
perturbations 62Wm is indefinite. Note that here condition of the theorem is satisfied
when C has full column-rank; i.e. m —m’ > n —m, while in theorem 1, C was required
to have full row-rank. Therefore, if I' is for example zero, the instability result is true if
the number of internal variables is less than some upper bound.

6. The Heavy Top Example

In this section, we apply the above discussions to the example of heavy top.

Example 2. For the heavy top, the configuration space is SO(3), the configuration
of the body coordinates with respect to spatial coordinates, where the symmetry group is
obviously the S group of rotations around the direction of gravity.

Clearly, the symmetry group is an Abelian group acting freely and properly on SO(3) and
the Hamiltonian dynamics can be reduced to T*(SO(3)/51) of dimension 4. If in addition,
the top is a Lagrange top, i.e. the top is symmetric with respect to its axis of rotation,
the symmetry group will be the S! x S! group of rotations around the gravity axis and
top axis. The reduced dynamics on T*(SO(3)/(S! x S!)) will be of dimension 2.

However, instead of this approach, one may consider the direction of the gravity as auxiliary
variables, in which case the Hamiltonian will be invariant with respect to the action of
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the Euclidian group SE(3), with the phase space being T*SE(3). Then, one can use
Lie-Poisson reduction, to arrive at reduced dynamics on se(3). We briefly review both
approaches here, where we apply the results of §4 in the first case, and consider the double
bracket dissipation term of §5, equation (21), in the second case.

L. Let I, Q, ¥y and M = M&3 be the angular momentum, the angular velocity of the
top, the direction of gravity (||7|| = 1) and the coordinates of the center of mass (M = 0)
all given in body coordinates. Then the Hamiltonian or energy function is given by

H(I,~) = %H -+ gv.M, where =0 (23)

and II is the moment of inertia matrix with respect to the body coordinates. The system
equations in spatial coordinates represent the unreduced dynamics. Let  :=Q x . Then
points in the phase space T*SO(3) can be represented by (A,Aﬁ) where A € SO(3) is
the configuration of the top in spatial coordinates and 1I € s0(3). The left action of SO(3)
on T*S0O(3) will simply be A, - (A,Aﬁ) = (AIA,AlAf[). The Hamiltonian H in spatial

coordinates, i.e. as a function on T*S0(3), is equal to
H(A,AR) = ST + geg AM. (24)

Clearly, H is not invariant with respect to the left action of SO(3). However, if we assume
the direction of gravity, ez, to be an auxiliary variable, then one can assume T*SE(3) to be
the phase space with elements represented by (A, v, Aﬁ, a), where v,a € R®. The left action
of SE(3) on T*SE(3) is given by (A1,v1)-(A,v, ALl a) = (A1A, v1(A1v), A ATL v1(Ara))

where v(a) means translation of a by v.

In this case, the Hamiltonian H as a function on T*SE(3) is given by the same equation as
in (24). Using the facts that ATA = I for all A € SO(3) and the dynamics are translation-
invariant, one can easily check that H is SE(3)-invariant. Thus, one may use Lie-Poisson
reduction to reduce the dynamics to se(3), with phase-space representation (ﬁ,'y). The
reduced Hamiltonian is given by the original equation (23) in body coordinates and the
Lie-Poisson equations are

d T ~
<1 - i ~ §H .
dt = ad ( ) where u=(0, ~ and —={Q,gM}.
( —fn) o\ v (I, 7) 5 ( )
But the ad* operation for SE(3) which is the semiproduct of SO(3) and R? is given by
ad’('? w)(ﬁ,:) ={uxv+2zxw, zXv) (25)

See Marsden, Ratiu and Weinstein (1984) for detailed analysis of Lie-Poisson reduction on
semi-product groups. Thus, the Lie-Poisson equations can be written as

N=0OxQ + gyx M, y=7x Q. (26)
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The coadjoint orbits of se(3) are given by {(f,7) | II - v = constant, 7]l = constant },
which are 4-dimensional submanifolds of R®. In fact, one can check that along the trajec-
tories of (26), £II-y=0 and %H'y"2 = 0.

Now let us consider the double bracket dissipation term of equation (20) introduced in
§5.2 with ¢ = H. Using (25), one finds that the perturbed Lie-Poisson equations with the
mentioned double bracket dissipation term are given by

D=0xQ+gyxM+ F@Ix(@xQ + gyxM) + 7x(7xQ))
. (27)
Y=7xQ+ 5 (rx(IxQ + gy xM)).

Now, by using reduction with respect to the S! symmetry group, Lewis et al (1992) show
that in general, there exist formally unstable relative equilibria z., where §2h, ([2.]) is
indefinite. These relative equilibria reduce to equilibria of (26) or (27) and the reduced
symplectic space is a coadjoint orbit of se(3). Therefore, the conditions of theorem 2
are satisfied, meaning that these equilibria are nonlinearly and spectrally unstable for the
perturbed system (27). The stable equilibria of the original system (26) remain stable.
We should however mention that the physical interpretation of the above dissipative term
1s unclear.

II. Next, let us consider reduction with respect to the S! symmetry group of rotations
around the gravity axis. We first assume the general case where the top may be asymmetric.
For this case, the symmetry group is Abelian and hence the reduced linearized system will
be of the form given in (1) or (3).

Let A again represent the configuration of body with respect to the spatial coordinates and
consider the dynamics in these coordinates, i.e. on T*SO(3), with phase space variable
representation (A,7A), where 7 is the angular momentum in spatial coordinates. The
Hamiltonian with respect to these coordinates is then given by

H(ATA) = ;1)-1r M7'w + ges - AM, where I, = AIIAT. (28)
B

II-H-t1

It is obvious that the left action of the symmetry group is the clockwise rotation (multi-
plication from left) around the gravity axis. The corresponding momentum map is given
by the angular momentum along e3. Therefore, the angular momentum in this direction
is constant. The relative equilibria are the periodic trajectories which are invariant with
respect to rotation around ej.
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€,
)»f 63

Also noting that £, (A) = £é3A forall £ € R?
it 1s easy to check that the locked inertia tensor is S
C

equal to I[(A) = ey -1 e3 constant along the tra- 6
Jectories of the relative equilibria. Let p. be the
constant eg-component of the angular momen-
tum corresponding to the relative equilibrium z .,
&

then £ =I(A.) ', will be “the angular veloc-

Y
librium. Note that this is different from angular /

ity of the axis of the top” at the relative equi- 5

velocity of the top along es. Fig. 1 The Heavy Top

To reduce the dynamics to T*(SO(3)/S') at z., we restrict A variations to V = {§A |
SA L ez} which is the space of angular velocities along the plane tangent to the direction
of gravity. We choose £ X ez and (&3 x e3) x e3 as coordinates of this plane, where £y is
the unit vector along the rotation axis of the top.

Let 6 be the tilt angle along the falling direction, then the components of V along €3 x ey
are variations in #. Thus, variations of A in V coordinates can be represented by (da, §6).
See also figure 1. As explained in §2, to show that z, is stable it suffices to show that
6*Vyi,(Ae) is positive definite along this directions, where V,_ for this example is given by

, 1
Vi (A) =ges- AM + 3][(1‘&)_1;12.

We refer to Lewis ef al (1992) for the computations. There it is shown that in general for
certain relative equilibria, 62V, (A.) along V directions is indefinite.

The reduced linearized equations will be in terms of (éa, 86,71, m) where w1,y are the
momenta along the (€3 X eg) X e3 and & x e3 axes. Let us now introduce dissipation terms
of the form discussed in §4. For example we can chose the corresponding dissipative force
field to be the negative gradient of the following Rayleigh dissipation function:

\ 1 ; "

R(A, 8, 660) = ;(al(‘ia‘z + 0966°).
Then the terms added to the linearized equations will be —o;8a for the m; equation and
—a1868 for the m, equation. These can be interpreted as friction against tilting sideways
(da) and tilting in the falling direction (66). Since we have assumed that the angular
momentum along ez i1s preserved, there must however be no friction against rotations

around es.

Thus according to theorem 1, the above friction destabilizes those relative equilibria for
which 62V, (A.) is indefinite (82V),, (A.) along e3 is always zero), while other relative

equilibria remain stable.
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Now, consider the case of Lagrange top. Using the principal body coordinates, I =
Diag(Iy, I, I3) in this case, where I3 is the moment of inertia along £3. Looking at (28),
it is easy to see that H is invariant with respect to rotations around both the e; and
&3 axes. The symmetry group is S! x S!, which is again Abelian, and the left action
is defined as the clockwise rotation (multiplication from left) around the gravity axis and
counterclockwise rotation (multiplication from right) around the top axis. The momentum
map in this case is given by the angular momenta along e3 and £ which are constant.
The infinitesimal generators are of the form (§,w) o5, (A) = £&A —wA&; and the locked
inertia tensor is

_| es-Mes —e3-AllEs| _ | I;sin?8 + I;cos28 —I;cosf
I(a) = —e3- AE; & - T&s ] o [ —Iycosé I ’

where 6 is the tilt angle (see figure 1). Clearly, § must be constant along the trajectories
of relative equilibria. If 8 # 0,7, the action of the symmetry group on SO(3) is free and
proper and II(A) is invertible. We assume that § # 0,7. Then, (€., —w.) =I(A.) . are
respectively the angular velocity of the axis of the top, and the angular velocity of the top
with respect to its frame, at the relative equilibrium z..

V in this case is only one-dimensional and is the space of §6 variations orthogonal to e
and &. 62V, _(A.) is a real number which turns out to be positive for all § # 0, 7. See
Lewis et al (1992) for details. The only case where formal instability may occur is when
# = 0, where for angular velocities less than a threshold the relative equilibrium becomes
formally unstable.

Hence, adding dissipation terms of the form —o 66 to the reduced dynamics in this case
results in nonlinear instability of the relative equilibrium. This form of dissipation can
be interpreted as friction against tilting. Again we must assume that there is no friction
against rotation. The other relative equilibria remain nonlinearly stable.

At the end, we note that the mentioned dissipative force fields are negative gradients of
Rayleigh dissipation functions which are tangent to P,_, a coadjoint orbit of se(3) and
preserve the coadjoint orbits. In §5.1, we showed that for the Lie-Poisson case, every such
force field must be of the double bracket form (20) for some function ¢. Thus one must
be able to formulate these dissipation terms as double brackets added to the Lie-Poisson
equations (26). However, the function ¢ in this case is not the Hamiltonian H. This means
that for the heavy top the two classes of dissipative force fields are equivalent.
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The following notations and definitions are used in the following report:

Notations and Definitions:

- P=T*Q: phase space, Q: Canonical symplectic form on T*Q

- G : symmetry group acting on @ with Lie algebra G.

®,: (Left) Action of G on T*Q.

(): T*Q@xTQ or G*xG —R.

IF: F(TQ) —» T*Q: Fiber derivative; IFR(q,v) = DyR(q,v).

=Ny :  g-Metricon TQ (T*Q);
{(vg, wq)), := (FL(vg), wg), (P, P'Ng(q) = (p, FL™Y(q,p"))-

- §W, 8?W . First and second variations of W §*W =D*W, §W=DW.

- L:TQ —>R: Lagrangian.

H: T*Q—R: Hamiltonian; H(IFL(v,)) := |lvgl|2 — L(g,v),
H(g,p) = K(q,p) +V(a),  K(q,p):=3lpl%(a)-

- X, : Hamiltonian vector field corresponding to H.

Z2e = (gespe):  Ar relative equilibrium of the Hamiltonian system,
He = J(qe7p8)’ Ee = ]I—](Qe)lle-

o(q) : Infinitesimal generator of G on @ Vn € G.
- Ou: Coadjoint orbit through p; O, = {Adgp, g€ G}, T,0, :={adgu, £€G}.
- G, Gu:  Isotropy subgroup and subalgebra of ¢ € G* w.r.t. the coadjoint action.

- Gt :  Complement of G, with respect to II(g) at given q.

J: T*Q —G*: Momentum map; (J(g,p), £) = (p, £,(2))-

J¢(q,p) := (J(g,p), &) YE€G.



I(g): G —»G*: Locked Inertia Tensor; (I{g)n, §) = ((ng(a), &o (D)),

- o(g): T,Q - G: Mechanical connection; p(q)(vy);=T"'J(FL(vy)) Vv, € T,Q.

au(q) == (o(q), n) YwvegG~

-~ H,: Augmented (energy-momentum) Hamiltonian; H, := H —(J — g, §),
negs, {=I"'pu

K,,V,: Amended Kinetic and potential energy; H, =K, +V,,
Kp=K(g,p—eu(@), Vule):=V(®)+3 &, (=I"pn

- K¢, Ve:  Augmented Kinetic and potential energy; H, = K¢ + Ve + (g, £),
'Kf = I(“, Vg = V,, - (u, f)

hu(lgl; [p]) == K(lal, [P]) + Vi(lg)) = Hu(la], [P + @u]) :
Reduced Hamiltonian on P, = J~}(u)/G, .

- Q,: Symplectic form on T*(Q/G,) corresponding to the reduced Hamiltonian.

We note that using the above definitions, we have

a,(q) = FL(£,(9)) if p=1¢.



