Notes for Math 189. 2/10/1990 R. Montgomery
Existence of minima in the calculus of variations.

We will use the methods of functional analysis to prove the existence and well-
behavedness of minimizing paths for our "standard problem * in the calculus of variations.
This is the problem whose Euler-Lagrange equations are Newton's equations (with a
possibly variable mass matrix). The methods used are also used in modern nonlinesrp.d.e.,
eg. nonlinear wave equations, fluid mechanics, and gauge theory, but our problem is of
course significantly simplerthanthese.

Weset

b
Sx) = f L( x(1), x(t), t) &t ; where L(x.x'.t)=%<i BN X > - V(x,)
)

In the integrand x(1) € R? , a 5 t < b, is taken to be a piecewise smooth fuaction. The
“metric” g(x,t) is a symmetric postive definite mxn matrix which depends smoothly on x and
t. and V, the "potential”. is & smooth real-valved function of the same vaniables. All the
essential difficulties are present in the case n = 1, 30 you may just want to assume this as you
readalong.

Question: Does S admit a minimum when restricted to the set of smooth paths x: [a.b] —
R*which satisfy the boundary conditions

xa)=x,, x(b)=x, ¢
If"yes" characterizetheminima.

Asswer: "Yes" , provided that

(») g is uniformly positive definite. and

(b) Vis bounded above .

These minima are smooth, and satisfy the Euler-Lagrange equations. They may aot be
unique.



t-

() means that there are positive constants C > ¢ such that forall x. v € R® . and allit €
[a.bjwehavec)|v|P < <v.g(x.t)v> s C||v|F. (b)means that there is a positive constant
m suchthat V(x.t)< m ,forall x, t. Conditions (a) and (b) are certainly not necessary. For
example, (b) could be replaced by “V(x) is bounded by const. || x |* as || x || goes to infinity.
and where &t < 2". The only place where condition (b) is used is at step (1): showing that S
is bounded below.

The rest of this manuseript is devoted to proving the validity of our answer. We begin by
giving namesto certainfonction spaces.

G ={x:[a.b] = R® | x is contimuous }

C, ={ x:[a,b] = R® | xis continuously differntiable }

Cilxg.x,] ={x€C,|x(8) =Xy, x(b) =X, }, anaffine subspace of C, .
We divide the proof into 7 steps. First we list these steps. Then we prove them .

(1). Show that S is bounded below, as a function on C, .

(2). Take asequence (x; } of pathsin C,[x, . x, ] suchthat S(x; ) — inf S(x) = Y , where

theinfimum istakenoverC,[ %, .x, ] . Bystep(1), ¥ > -0 .

Summary of steps (3) (5). The first goal, which will be achieved in step (5), is to show that

we can find a subsequence of the sequence {x, } from step (2) which converges to some x__

.andthat S(x_) =Y. To do this we will bave to enlarge C, to some bigger space, denoied

H; . in order toincorporate the limitx . H, will bethe completion (in the sense of metric

spaces) of C; with respect to the distance foction defined by a certain norm || - ||, . This

norm is essentially defined by the kinetic energy term of S. (H, is the simplest example of

acertaintype of Hilbert space called a "Sobolev space”.)

(3). Show that there is a subsequence of the {x, } which converges weakly to some x,

This means that it converges with respect to a certain topology on H, which is weaker

(easier for things to coniverge) than that of the sorm-topology. The only hypothesis needed

toget this weak canvergence is an inequality of the form S(x) + const. > [[x [®.

(4). Show that S(x_ ) < inf S(x), where the infimum is taken over the set of x in H,

smsfymgtheendpmmcondmons (Th:ssepxscalled provmgthe “weak * lowersemx
' UIty"ufS) . ’ - en s : p Prts




inequality the “Sobolevinequality” (simplest form) which has. as a corollary , that H, C
Co. Now we have our minimum, and it satisfies the boundary conditions.

(5). Show that a subsequence of the sequence in (3) converges grongly to x_ (i.¢. in the
original topology on H, ).

(6). Show that dS(x,) =0, as a linear functional on the subspace of H, corresponding to
zero variations of the endpoint conditions . We say that such an x is a “weak (or
distributional)solutiontothe Evler-Lagrangeequations”.

(7). Prove the fundamental lemma of the calculus of variations, in the form alluded to in
class at the prompting of Mr. Lumley. This is essentially a justification of integration by
parts. Now our x_ is & solution to the Euler-Lagrange equations, and in particular smooth.
Wearefinally done!

(1) isimmediate, since Listhe sum of two terms, the first (kinetic energy) is positive, and
the second is bounded below by m. Thus S(x) 2 -m(b-a)

(2). By definition of "infimum" we canfind such a sequence.

(3). Tosimplify the consequent notation, we will denote the length of a vector ve R as
ivi . Definethe norm

b
lixl? =Ma)? + I | %) P &t

oaC, . Let H, denotethecompletionof C, withrespect tothe distance function which this
sorm defines. H, forms a Hilbert space (every Cauclry sequeace converges) with the
obviousinner product. Itisthe simplest example of 2 "Sobolev space”.

(We recall this process of completion. For details, see any real analysis text, for
“exampleRudin. A "Cauchy sequence” is a sequence (x; } soch that || x; - x; [, — Ossi.j
— oo, An element of H, is an equivalence class of such Cauchy sequences. This
procedure of completion is the procedure by which the real mumbers are created out of the
rationalnumbers. )

Definitions. Suppose His areal Hilbert space. A linear functionalA : H— R is
called "bounded" if there is a positive constant Csuch that |A(x) | s C{|x [|. Example I v
€ H, thenx — <v,X> isa bounded linear functional. (Proof: Cauchy-Schwartz inequality.
The Rieszrepresentation theorem says all bounded linear functionals havethisform.) . -

Suppose that (x; } is asequencein H. We say that "x; converges weaklytox, €
H" provided that for all bounded linear functionalsA we haveA (x; )— A(x,) .



Basach-Aleogle Theorem. Every bounded sequence in a Hilbert space has a weakly
convergentsubsequence.

(For a proof , see for eg. Royden's Real Analysis. p. 202. The theorem is a direct
consequence of the Tychonoff product theorem. )

We will apply this theorem to our minimizing sequence {x, }. By assumptioas (a)
and (b) of our "answer” we have

S(x)zcllil’ -m(b-a) [3.1.1]).
Whichimpliesthat
I(iiF < M, for some constant M. (3.1.2],

b
where a plain | { always means f(t)dt. (Proof of [3.1.2]: since we only care about
P ys Y

a
the tail of the sequence, The constant M can be taken to be [(Y + £) + m(b-a) }/ ¢, where
from some pointigon, S(x; )<Y+ €,andy=infS.) Moreover [x, () = [x, |* for all

i. Itfollowsthar ||x, |l2isbounded. The Banach-Alaolglu theorem now impliesthat {x, }
has a weakly convergent subsequence { x 8 ). Forsimplicity, we relabel this subsequence

{x, ). This finishes step (3).

So far, we have dane almost no work, except that of quoting theorems, and we
know next to nothing about the weak limit, x_ .

(4) & (S). Let{x; } be the just-constructed weakly convergent subsequence, and x_ be
the vector that it weakly converges to. Most of our wark is based an

Lemms 1. [Simplest case of 2 Sobaolev inequality.] I x is cominuously
differentiablethen

t
&K@ -x6)< Vi - s I’\/ f. x0) P &




|
Proof. Ix(t)- x(s)|=| I i) o !

1
s {li(t)ldt

NowapplytheCauchy-Schwminequaﬁty]ﬂgi s\/l f2 '\/I g tof=1,g=Rl
[ |

Corollary of Lemma 1. (Sobolev embedding theorem, simplest case. )
() Hy C G, andthe inclusionis bounded and compact.

@) H,C L, --par.hsxwithlpq’ <o,

Explanstion. Theinclusion (i) means a mumber of things. First, every element of
H, (anequivalence class of Cauclry sequences, literally speaking)is represented by a unique
continuous function. If we denote this fuaction by x(t) then sup, [x(t)l < || x [|;. for some
constant C not depending of x. In particular any limit in H, also bolds in C; . Finally
(compactness) every bounded sequence in H, has a C; -conrvergent subsequence.

Proof of Corollary . ). 1) < (e} + () -X(@)|
¢
swoys Vi-a\[ J (ifa  gema)

s Clix|,

where C is a canstant depending only onb-a. Thusif {x, }isa || - |, -Canchy sequence in
C, (orin H, )it is vniformly bounded in C_ , i.e. the supremum of |x; (t)| is vaiformly
bounded. Also, lemma 1 implies that {x;} is a uniformly continvous famity . Werecall
that this means that the § in the definition of continvity (" for every € thereis 2 8 ... ")
depends onlyon €=t - s} and not on the “time" t &t which we are checking continuity, nor
on theindex i of the sequence. (Take8=‘\“:lehm M is a uniform bound anflx; fj, . )
The Arzela-AscoliTheorem from real analysis bas exactly these hypothesis, and implies
that {x; } has a G, - convergent subsequence.
(ii) Integrate theinequality x(t) < Clix [} . W



'
Cossequesnces of the embeddiag =, eorem The Sobolev embedding lemma
give us arough idea of what the Hilbert space H, loaklike: it is (canonically embeddedas ) a
vector subspaceof C; . In particular, it makes sense to evaluate x € H, at t€ [ab].

Thrus
Hlx . % ]={x€ H; | x(8) =25 . x(b) =%, }.

makes sense, asa well-defined, closed subspaceof H,.

Also, by the compactness part of the embedding, a subsequence of our sequence
(x; } convergesin C,. By uniqueness of limits, we have (after taking this subsequence, and
againrelabellingit(x; })thatx, - x_in C, . Since the sequence of vectors {x; (a) } and
{x; (b) } are simply the constant vectors x, and x, , and the condition “x(t) = const.” is a
closed conditionin H, , x_ satisfiesthese same boundary values‘ so that
x € Hlx.x ]

Now
Y .-.-]iminfS(xi)--inf”Cl[xo , X4 ]S(X) =i'nfx 631[10 .xl] S(x).

This last equality holds because Sis a continuous fuaction on H, and because C, is dense
inH (andhence C, [x, . X, ] isdensein H, [x;.%,]).

Exercise: Checkthesestatements!
Therefore
UmS(x ) < §(x.,).
However, we do not know that S(x_) = limS(x; ), because the x, only converge weakly to
x,, . and it is much easier than for a sequence to converge weakly thaa in the H, norm. We

will aow do a series of calculations which simultaneously proves that , in fact, S(x.) =
limS(x, ), and that x, — x,in the H, norm.



s(xi)'s(x.,)”lxi ‘K., -(Vi ‘V“).

where the shorthand notation is self-evident. We note that

<ii -xw(g“)(x. -i”)>= <x‘(gm)xi >-2<ii,(g~)i”)>+<i“.(g”)i”>,
and

2<% -X,, ()X, >=2<X; @, >-2< X ,(@gXN, >

where we suppressed the t-dependence of these functions. Thus

K; -K,=<x -x_, @)%, -x)>-2<x, -x_, (@)X, >
+<X (@ -BX, >

Claim. Asi — « we have
(A). J <X -X,.(@JX.>—0
(B) I‘ii'@i'&)iﬁ =0
(C) l.imian\"i zJV_,.
Suppose, for the moment, that we can prove these claims. Then

nminf(S(xi)-su.,))-umian <X -X,. @XX -X)> +nmtnff<vi-v..)

[equation 4.1] .

and the right hand side is the sum of two non-negative terms.

Corollsy 2. lim S(x; ) > S(x,, ).



Since have already showntbat lim S(x, ) < S(x., ). we now have
lim S(x;) = S(x,,)

This completes step (4), the proof of “the weak -* -lower semicontinuity of S at x ",
modulo proving the claims (A) - (C).

Corollary3. ,andx - x, inH, ,andinG;.

Proof of Cor. 3. (Cor. 2isimmediate). “x,— x_ in H, * meansthat |[x, -3 — 0,
which in turn means that
(i) ix; (a) - X, (8) | = 0, and (ii) Ilii -x,F-0.

We have already proved that (i) holds. (See Comsequeaces of the embeddiag

lemma.) Tosee that (ii) holds, use the fact that both terms on the right of equation 4.1 are
non-gegative, and the fact, just proven , that Lim( S(x; ) - S(x,,) ) =0, to conclude that

mf <%, -X,.@X% -x) =0
Finalty use the bound , (assumption (&) onthe metric), that
I <X, -X_,@XX -1)> zc]|ii-i,,r. [

It remains to prove the claims (A), (B), (C).
Proof of claim (A). A(v) = I <v,(g,)x,) > is a linear functionsl on H, . It is bounded
by assumption (a) onthe metric, and the Canclyy-Schwartz inequality. Infact
A®) 2Ve v} 13§ - ThusA (x;)~ A (x,, ) = 0, by the definition of weak convergence.
Thisisthe limit claimedin (A). @

Proof of claim (B) . The embedding lemma, part (i) implies that (after taking & subsequence
of the (x; }, and thenrelabellingit (x; } ) x; — x_ uniformly in G, . Thisimplies, by the

continuity and uniform boundedness of g, that g, — g, in Gy ([a,b]; matrices). We can use
the “operator sorm “ |A| = sup, , o |AVI/|V], 0n X n matrices, so that the last statement



Al by
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means sup, |g(x,(t), t) -g((x_(t).t))|— 0. The operator norm satisfies |Av| < |A] v, for
all vectors v. Setljg; - gl = %up, [g(x;(®). v) -g((x, (t).1))]. Thous

<X, -8I50> < [g- gloIGOF,
sothat , upon consulting equation [3.1.2], we see that
| i@ -gd%> < gl 1KOF < g g M.

and this |ast sequence goesto 0, as we just mentioned. @

Proofof claim (C).  Sincex; — x_ pointwise, and V is continuous, we havethat V, » V_

R 3
Chfact Hecw
= a \A"l‘Fﬂa
bouv-o\ (T8 l\/é ' )
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pointwise. If we knew that V were bounded below also'.'the same proof as for claim B

would have worked . Since we don't , we will have to use some measure theory. “Recall”
Fatou's lemma (which is 90% of the Lebesque dominated convergence theorem) : I

are asequence of non-negative integrable functions, and f; — f pointwise, thea
hmmfj £, 2 If. Applythelemmatof, =m - V; , where m is the upperboundon V. B

Step 6. Proposition(step6). For all 8x € H, , with Sx(a) = 8x(b) =0, we have
dS(x_)-6x =0,

We will begin by assuming that the derivative in fact exists, and will prove the proposition
by contradiction. After that, we will prove that the derivative exists forall x € H, , and is
given by our usual formula, beforeintegrationby parts.

Proof (by contradiction): Assume the contrary. Then there exists a 3x, with &x(a)
=8x(b) = Osuch that dS(x_) - &x = 0. We can assume , by multiplying x by -1, if
meed be, thatdS(x,, ) - &x < 0. Notethat for each €, the path x + €8x satisfies the boundary
conditions, and sois in the affine space H,[x, . x, ]. Apply the mean value theorem to the
differentiable function S(x + £ § x ) - S(x) to conclude that there is an &+ with
S(x + o 8§x)< 0. This contradicts the fact , proved in corollary 2 above, that x|
minimizes Samong allxin H,[x, . x, ] B

Existence of the derivative (abit more carefully thanin class).
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S(x +£6x)-S(x)=IA1K+A2K +AV

The integrands are functions on theinterval [a,b] and bave the form
20, K@) =<x+€8%,gaXx +8x)>- <x,g)x >
24, K=<x+€8x, [gx+€8x)-g(x)](x+€8x)>
AV=Vx+£8x)- V()
Now 2A, K =2¢<x, g(x)8x > + < x,gx) x>
28,K=€<x,dg(x) - &x)x> +o(€)
AV= dV(x) & +0(€).
Here o( £) means any function f(t, € )satisfying theinequality |f(t,€)] /€ — O uniformlyint
as € — 0. These ot ) terms come from Taylor's theorem with remainder, and the

assumption thatg and V aretwice-contimuously differentiable.
Itfollowsthat

dS(x)‘Sx-I<x'.g(x)8i> + <X, (dgx) &x)x> + dV(x)-&x. @

Step 7. Webeginby proving the following version of the

Fuadamesatal lemma of the calculus of varistions. Let p and f be absolutely
integrable functions on theinterval [a,b] with valuesin R® (meaning that the length of the
carresponding vectors inR® areintegrable functions) . Suppose that

]<p.5i>+<f.ax>=ofmuaxeﬂ,.wim&x(a)=ax(b)=o. I*]

Thendp/dt =f (almost everywhere).



Proof. It suffices to prove this for the case n = 1, since in the general case the
imtegral isa sum of nindependent suchterms. It suffices to assume that a= 0, b =1, by the
transiation invariance and scaling propertiesof integration. It sufficesto provethe lemma for
the smaller class of "test functions” 8x which have the form 1-cos(2fiat) , and sin(2nnt ) ,

~ forn=12, ... . Thatis, we will only assume that [*] bolds for every 8x in this small
‘ subclass of the functions in H, which vanish at the endpoints, but still arrive at the same

conclusion. Finally it suffices to prove just the case f =0. To see this, replace pby P = p -
1
F, where F(t) = I f(x) dx . P isstill integrable, and we can integrate - F§ x by parts,

since both factors are differentiable. 'rnen]pax' =Ip8i +If8: and
d__d
EP= &P f.
i
So, assume that l P(t)Sx(t) &t =0

for all 8x with the above trigonometric form. Thisis the statement that

1 $
l P()siana ) di = l P(t)cos@nat ) &t =0, forn=12,3, ... .
1
Thus all the Fourier coefficients of P vanish except its mean, A, = l P(t)dt . Since an

o~ absolutely integrable function is uniquely determined by its Fourier series , we have P(t) =
‘ Ay, forallt. W

Accarding tothe fundamental lemma, our weak equations: dS(x) - &x = 0 for all x
€ H, vanishing atthe endpointsimply the validity of the differential equations, »+& ~e wrile i+ 1ia
Sclamgtic €orm: d%(g x)=-dgx? -dV . The right hand side is only a measurable fonction. We do not

even know that X exists everywhere. Integrate this equationto obtain
(1
xt) = g I{-dgi’ - dV} +const. .
[ ]
The right hand side is’i"c;minwusfnna.ion. Thisis because: (a)the indefiniteintegral of a
measurable function is contimuous, and (b) x(t) is continuovs (Sobolev embedding) . and
thos sois g(x(t),t)"! . Hencetbe lefthandside, x is continuous everywhere! We spply

the same argument again, using this new information about x , (i.e. we notice that the
indefiniteintegral of a continuous functionisa differentiable function whose derivative is the



integrand) to concludethat x is in fact twice contizuously differentiable. Now the equation
holdsina completely classical sense: all functionsin it are continuous. Finally we havethat
X =Xx_isaclassical solutiontothe Eunler-Lagrange equations.

We can now keep differentiating the equation ( or integrating if you prefer that
srgument)to obtain that X is smooth.

Ead Note.

The proofs of some of the steps required the following “big guns” from analysis:
the Banach-Alaoglu theorem, the Arzela-Ascoli theorem, and Fatou's lemma. kI also
required the notion of completing a vector space with respect to a norm, and, &t the ead,
some knowledge of Fourier series. A proof of the fundamental lemma of calcuius of
variations not relying on Fourier series can be found in L.C. Young's book "Optimal
Control” . He takes his “test functions” &x to be piecewise linear functions instead of trig
functions.

If you want to understand the entire proof better, go back and reprove the theorem in
the case V(x.t) s A + Mfx| for some constants A, M. Initially, you will fail at step 1, but
you can usethe inequalities from step 4to show that S is in fact bounded below.



