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Introduction:

To study the general theory of relativity it is necessary first to understand the
mathematical formalism in which the theory is cast. This paper aims to bridge the gap
between the concepts which were discussed in class and those which are introduced in
Hawking and Ellis’ The large scale structure of space-time. In their formulation of the
mathematical theory of general relativity, Hawking and Ellis begin by defining the
structure of space-time; i.e., a connected four-dimensional C*® Hausdorff manifold M with
a Lorentz metric g. They also introduce a number of other concepts from differential
geometry which are important parts of the mathematical formalism --vectors, tensors,
covariant derivatives, curvature tensors, etc. I review here only those major concepts
which are new or which are discussed in significantly more detail than in Mechanics and
Symmetry.

Tensors:
From the tangent and cotangent spaces to a manifold at a point p, form the Cartesian

product
II; =T M X ... XT,M XTM X ... XTM.

A tensor of type (r,s) at p is a function on IT? which is linear in each argument. The space
of all tensors of type (r,s) is denoted

T, (p) =T,®...QT, T, ®... ®T,.
Note that, To(p) =T, and T (p) =T,.
If R and S are tensors at a point p of type (r,s) and (p,q) respectively, then the
tensor product R @S is an (r+p,s+q) tensor at p defined by
R ®S(al’“.,ar+p,xl ,"°,X34q) =R(aly-“’a"x] ’.“,x’)s(ar-ﬂ ,...,QH‘P,X“’ !""xgqq)‘

The components of a tensor T of type (r,s) at p with respect to a pair of dual bases
{E.}, {E’} of the tangent and cotangent spaces at p are given by

Tul...n,blmb. =T(E51 yees ’E" 9Eb| groay Eb, )’



SO
T =T*"*,,.5E" ®..®E* ®F, ®.-@E, .

The upper and lower indices of T are called contravariant and covariant indices
respectively. In particular, a (1,0) tensor is said to be a contravariant vector, and a (0,1)
tensor (or one-form) is said to be a covariant vector.

The contraction of a tensor T of type (r,s), with components T* " *y, . b, with
respect to a pair of dual bases, on the ith contravariant and jth covariant indices is defined
to be the tensor C}(T) of type (r-1,s-1) whose components with respect to the same bases

are Tt @ty b0y, 1.€.
C(T)-T"‘ Aty bbb E, ,®--®E, ®E, ®--Q@E, ®E, ®-- ®E ®E ,®©GE,

The symmetric part of a tensor T of type (k,0) is the tensor S(T) defined by

scryes =1 P

The components of this tensor are denoted T ™, Similarly, the components of the anti-
symmetric part of T are denoted by

8;...8 l By 1) Bo(k)
Tl =0 ;sgn(a)T ,

where S, is the group of permutations and sgn(c) is the sign of the permutation 6. More
generally, the components of the symmetric or antisymmetric part of a tensor on a
particular set of covariant or contravariant indices can be denoted by placing round or
square brackets around the indices. E.g., T.,.." ™ or T, .,»"™®

A tensor is symmetric with respect to a given set of indices if it is equal to its
symmetric part on these indices. It is antisymmetric with respect to a given set of indices
if it is equal to its antisymmetric part on these indices.

A g-form is a tensor of type (0,q) that is antisymmetric on all q indices. In this
notation, the wedge product of a g-form A with a p-form B is defined by

(A AB) =A

A g e, [ay-- anaqq--'uq.ﬂ
A C* tensor field T of type (r,s) on a set U in M is an assignment of an element of
T, (p) to each point p in U such that the components of T with respect to any coordinate
basis defined on an open subset of U are C* functions. Note that a vector field is a tensor
field of type (1,0).
If a set of local coordinates are chosen on some open set in M, and if basis vectors
{(@/0x*),} CTM and {(dx*),} CT,M can be chosen, then this basis is called a



coordinate basis. There is one advantage to using such a basis. That is that E(E.f) =
Ey(E.f) (by the equality of mixed partials).

The Covariant Derivative:

Unlike the exterior and Lie derivatives, which can be defined independently of any
additional structure on the manifold, the covariant derivative requires the addition of an
new structure called a connection. (The following definition of the covariant derivative is
equivalent to that given in Mechanics and Symmetry, but as this construction generalizes

more easily to the definition of the covariant derivative for arbitrary tensors I will outline it
here.)

A connection V at a point p of M is a rule which takes each vector field X at p
and assigns an operator Vx which maps each vector field Y (Y is at least C') to a vector
field VY such that:

(i) for any functions f and g on M, and C' vector fields X, Y, Z

ViegZ = V5Z + gVyZ
(ii) for any C' vector fields Y, Z and real numbers c, d
Vi(cY+dZ) = cVyY + dVxZ
(iii) for an C' function F and C' vector field Y
V(fY) = X()Y + f VY

V.Y is the covariant derivative (with respect to V) of Y in the direction X at p.
By (i) we have that V, Y =V_, Y =X"V_Y, which implies that there exists a tensor of

type (1,1) dependent only on Y which gives the vector VxY when contracted with the
vector X. This tensor, denoted by VY, is called the covariant derivative of Y. Locally,
the components of VY are written Y°, so

VY =Y*:E® ®F,

Condition (iii) above is equivalent to V(fY) = df®Y + f VY.
The connection is then determined by the functions I'*., where

) ™ =<E"VE.E¢> =<E"6db(Ec)e3" Ee) =(Ec)'3" Aad VEc =I‘."°Eb ®Ea'
Now we can see that

VY =V(Y°E ) =dY* ®E,_ +Y¢ ®VE, =dY° ®E_ +YT*xE® ®E,.



And so the components of VY and VxY with respect to the coordinate bases are

Y's =0Y* /3x® 4T % Y*
and
(Vi Y)* =X°YT % +X"3Y" /ax".

The last of these equations is equivalent to (7.5.2) in Mechanics and Symmetry. Placing
¥(X,Y) = X°Y° I’ E, completes the comparison between the two discussions. In
particular, the concept of parallel transport as it is defined in Mechanics and Symmetry is
equivalent to the definition which is given in (Ellis and Hawking, p.32), except that the
definition given there is generalized to arbitrary tensors on M.

The second covariant derivative VVZ of a vector Z is defined to be the covariant
derivative of VZ. Its components are Z°,,.

The covariant derivative can also be generalized. The covariant derivative of any
C' tensor field T is defined by the following rules:

(i) if T is of type (q,s), then VT is a C™* tensor field of type (q,s+1)

(ii) V is linear and commutes with contractions

(iii) for any tensor fields S and T, V(S®T) = (VS)®T + S&(VT)

(i.e., V is a derivation)
(iv) Vf=df

The components of VT are written (Vg T)" ™ ,..o, =T* ™5,..6,n.

The following relation relating the Lie derivative to the covariant derivative will be useful:
[X,Y] = VxY - V\X

The Riemann Curvature Tensor:

In general, the second covariant derivative is non-commutative, i.e., Z%,. # Z*,. The
Riemann curvature tensor R gives an expression for the non-commutation of VVZ,

Given C™! vector fields X, Y, Z, one can use the C* connection V to define a C ™
vector field R(X,Y)Z by

R(X,Y)Z = V(VvZ) - VUVZ) -VixxiZ.
Then with R*ws: =(E*,R(E,,E,)E, ), we find

(R(X,Y)Z)" =R%eaX YZ" =(Z°aY?) X —(Z°aX®%), Y —Z°a(Y%X° =X%.Y")
=Z‘;dchXc +Z';aY";cX° _anxdyc —Z'aXd-,cYc _Zn" (dexc —Xd;cYc)
=(Z°4 —Z°)X°Y*

which is equivalent to Z°4. —Z* =R"wsZ" since X and Y are arbitrary vectors.
In coordinate bases,



R =00a /9x° —aTw /0x? +T°«Ta —T ol
If R%s = 0 at all points of M, then the connection is said to be flat.

Furthermore, the Riemann tensor has the following properties (as can be verified
from the definition):

Rty =0 R =R"mc
R%da; =0© R +R%a +R°p =0
R%jetie) =0© R%bdic +R%beca +R%wte:c =0

Using the metric tensor g (discussed later), and putting Rae = 8..R°ws, One derives two
further properties of the Riemann tensor:

Rana =0© Ry =Ry
Ropa =R

The last of these implies the Ricci tensor of type (0,2) (constructed by contracting the
curvature tensor) with components Rys = R%,s is symmetric.

The Metric

A metric tensor g at a point p in M is a symmetric tensor of type (0,2) at p. A C" metric
on M is a C" symmetric tensor field g. With the metric tensor it is possible to define the
length of a vector as well as the ‘cos angle’ between two non-zero vectors.

The ‘magnitude’ of a vector X is given by (Jg(X,X)|)'” and the ‘cos angle’ between
two vectors X and Y is given by g(X,Y)/(I2(X,X) g(Y,Y)))'?, where g(X,X) g(Y,Y) = 0.
X and Y are said to be orthogonal if g(X,Y) = 0.

The coordinates of g with respect to a basis {E,} are given by g.,= g(E,,E.).

Since g is assumed to be a non-degenerate metric (i.e., g(X,Y) = 0 for all vectors
Y <=> X=0), the matrix (g,) is non-singular and inevitable. There therefore exists a
unique tensor of type (2,0) with components g*®, where (g*) = (g.)'. g* is defined by

£ g = &%

The signature of g at p is defined to be the number of positive eigenvalues of (g.,),
minus the number of negative ones. A metric is called a Lorentz metric on M if it has
signature n-2. The existence of a Lorentz metric allows the division of the nonzero
vectors at p into three classes --timelike, null or spacelike-- each characterized by the
sign of g(X,X) --negative, zero or positive, respectively.

There is also a relation between the metric and the connection which was discussed
earlier. For the metric g (in fact for any metric) there is a unique connection defined by
the condition that the covariant derivative of g is zero, i.e. g = 0. One can then derive
from this condition expressions for the connection components. (Ellis and Hawking, p.



40) One finds that if a coordinate basis is chosen that the connection components are
given by the Christoffel relations (i.e. equation (7.5.14) in Mechanics and Symmetry).

Conclusion:

This completes the review of the major points of difference between the concepts
discussed in class and those in the chapter on differential geometry in The large scale
structure of space-time. Among the points which were not discussed were the
generalizations of the exterior and Lie derivatives to arbitrary tensors, as well as the
section on hypersurfaces. Also not discussed, but of particular importance was the notion
of a Killing vector, which will evidently play a role in the derivation of the Einstein
equations (Ellis and Hawking, p. 74).
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