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Abstract

This paper addresses the use of the well established Energy-
Casimir and Energy-Momentum Methods for determining stability of
relative equilibria. In particular, these methods will be compared and
analyzed in the context of a possible algorithmic implementation for
automated classification of the stability of relative equilibria. This
analysis will complete the first step towards constructing a software
package, built on the powerful Energy methods, to systematically
determine and classify the stability of relative equilibria in a broad class
of physical systems.
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1. INTRODUCTION

In this paper, I will discuss the Energy-Casimir and Energy-Momentum
methods, constructing each from basic theorems and definitions. I will further
investigate an algorithmic implementation of these methods. This will allow for
computer automated classification of the stability of a large class of physical
systems. As the Energy-Momentum method is a general technique that may be
applied to nearly all physical systems with symmetry, new modules may be added
to the program, including topological information about the configuration space and
expressions for the Lagrangian and for constraints, allowing for the automated
analysis of entire classes of new physical systems.

Sections 1 through 3 of this paper involve basic definitions and theories
regarding stability and relative equilibria, whereas in Sections 4 & 5, the two
Energy methods are described and analyzed in the context of a potential computer
implementation. For this analysis, it is important to keep in mind the capabilities
and limitations of available mathematical software packages such as Mathematica
and MAGMA computer algebra software.

2. RELATIVE EQUILIBRIA

In the study of dynamical systems there are few features more important
than the equilibrium positions of the system. Aside from the obvious implications
of knowing the states of equilibrium of a physical system, the dynamics
surrounding these positions provide invaluable information about systems that are
too complex to solve directly. Equilibrium positions are positions corresponding to
critical points of the dynamical system—these particles are both at rest and have no
forces acting on them, hence they are in a state of equilibrium.

When analyzing dynamical systems with inherent symmetry, it is often
valuable to look at equilibrium points of a reduced phase space, which are called
relative equilibria of the original system. Given the Poisson action of a Lie group
G on a symplectic manifold P, we construct the reduced phase space by taking the
manifold of orbits of the action of G, on P,, where P, corresponds to the level set of
the momentum of the original symplectic manifold P. In other words, P, is the set
given by the inverse image of some peg’ under the standard momentum mapping J
[11]. The relative equilibria of a system in motion, such as an asteroid pair, are
often of great importance to understanding the overall dynamics of the system and
to resolving issues of control. More formally, relative equilibria are phase curves



in P that project to equilibrium positions in the reduced system and on the reduced
phase space.

There are many illustrative examples of relative equilibria—for instance, the
stationary rotations of a rigid body that is fixed at is center of mass, or the two
solutions to the double spherical pendulum:
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] Figure 1: The
solution on the left
is the stretched-out
equilibrium and
the solution on the
right is the cowboy
equilibrium. This
figure was taken
from [7].

3. STABILITY CRITERION

When studying the equilibrium points of a dynamical system, a natural
question arises—do points that start in a small neighborhood of an equilibrium
point stay in the vicinity of that point? This is a question of the stability of a given
equilibrium point and is of significant importance when analyzing systems
experiencing perturbations. Considerable time and effort have been applied to
developing the theory of stability of relative equilibria and perturbation theory. To
this end, we will make use of Liapunov’s Theorem and the Lagrange-Dirichlet
Criterion.



3.1 Liapunov’s Theorem

Theorem: If all eigenvalues of d f(x,) have real part that is strictly
negative, then the fixed point x, is stable—conversely, if the real part of any
eigenvalue is positive then the fixed point is unstable. —Note: d f(x,) is the
Jacobian of f at the point x,, which is defined as the matrix of partial derivates

(%]

Sketch of Proof: This is a relatively elementary result from the theory
of Ordinary Differential Equations. Solutions to the system % = F{(x) may be
written as a linear combination of eN*'s, where A; is the /! eigenvalue of F.
Thus, if any of the eigenvalues of d f(x,) have a positive real component, then
there will be a blowup, and the fixed point will be unstable in time. Likewise,
if the eigenvalues all have negative real components, then each component will
decay to zero as time grows sufficiently large, meaning that if we start ina
neighborhood of x,, then we will remain in some finite neighborhood of x,,
and eventually approach x,. Thus the fixed point is stable.

This form of Liapunov’s Theorem cannot be applied to determine the
stability of fixed points in a Hamiltonian system as eigenvalues are always in
quartets distributed symmetrically about the origin, and thus always have
eigenvalues in both the left and right half planes. Thus we turn to the Lagrange-
Dirichlet criterion for fixed points of a Hamiltonian system.

3.2 Lagrange-Dirichlet Criterion

Theorem: If the 222 n matrix of second partial derivates, i.e. the second
variation & H, is either positive or negative definite at (¢, p.) then it is a stable
fixed point.

Proof: We simply consider the case when 62 H is positive definite.
For a fixed point (g., p.) then % (Ge» Do) = —5—"”; (ges Pe) =0. Thus, at
Z¢ =(ge Pe)» H has a nondegenerate minimum, which allows us to apply Tay-
lor's theorem. Thus, we find that near z,, level sets of H are bounded on both
sides by spheres of arbitrarily small size. Finally, by the conservation of
energy, all solutions are restricted to level surfaces of H, implying that any solu
tion beginning in a small neighborhood of z, will stay near this minimum.,



This criterion is very useful for Hamiltonians of the form H=T+V since
critical points are found when p.=0 and ¢ is a critical point of the potential V.
Thus, when H=T+V , one needs only find a non-degenerate minimum of the
potential.

4. ENERGY-CASIMIR METHOD

The Energy-Casimir Method is a generalization of the method obtained
from the Lagrange-Dirichlet criterion. This method tests the stability of a given
equilibrium z,, which satisfies Xu(z.)=0, by choosing some conserved function C
such that z, is a critical point of H+C and computing the second variation
8 (H+C)(z.). If the resulting matrix is either positive or negative definite then the
equilibrium z, is stable. Broken up into steps, the Energy-Casimir Method may be
stated as follows [4]:

Step 1. Find some conserved function C such that it satisfies the relationship:
XH +C)(z,) = 0.
Step 2. We then calculate the second variation &(H + C) (z,).

Step 3. If the second variation 2(H + C) (2,) is either positive or negative defi
nite, then z, is formally stable.

The third step requires explanation, and the conserved functions in the first
step deserve further treatment.

4.1 Casimir Functions

A Casimir function is one that Poisson commutes with every other function
defined on the phase space of a given Hamiltonian system. In other words {C,F}=0
for all functions F in the phase space P. Since C={C,H}=0, we see that Casimir
functions are constant along the flow of all Hamiltonian vector fields; i.e., Xc=0.
Also, since Casimir functions commute with all functions defined on the phase
space by definition, the set of all Casimir functions forms the center of the Poisson
Algebra—this follows from definition, as the center of a group is the set of all
elements that commute with every element of the group.

Thus we see, upon examination of Casimir functions, that Step 3 of the
Energy-Casimir method truly is a simple extension of the Lagrange-Dirichlet
criterion. As long as we verify that z, is a critical point of H+C then we see that if



62 (H+C)(z.) gives a definite matrix, then z, is stable, by a simple variation on
Lagrange-Dirichlet criterion. This may be stated strongly as the proof of the
criterion holds for all of the above modifications.

4.2 Example: Rigid Body [12]

Although the previous section outlined the general concept of the Energy-
Casimir method, it is far more revealing to apply this method to a simple problem.
We now analyze the stability of the rigid body:

For the free rigid body, the Hamiltonian will simply correspond to the Kinetic
Energy of the body. Letting £2and I'T represent the angular velocity and angu-
lar momentum, respectively, we see the natural relationship IT; = 7;Q);, where /
is the standard moment of inertia tensor. Thus we have the following

A=IIxQ (4.2 .1)
H(IM) = é n-Q (4.2 .2)

which are the equation of motion and the Hamiltonian. From [11] & [12] we
see that given some smooth function ® :R — R, then there exists a Casimir
function:

CoM = &(} IIFD)

We now apply the three steps of the Energy-Casimir method, directly as
described in section 4:

Step 1. We find some Cyp such that the first variation of H, = H + Cy is zero
at some equilibrium point of equation (4.2.1). Upon inspection we see that
these equilibrium points occur when ITis parallel to & We normalize and
assume that Il and Q are pointing in the x-direction, for ease of calculation.
Thus I, = (1, 0, 0) is an equilibrium solution. Taking the derivative of Hc,
we see that:

He, (M = 1 1-0+ (1 1P
==DH,(ID- 11 = (2+@' (5 M) 1) - 611

This derivative is zero precisely when Q + @' (% IMP)I1=0. At

I.=(,0, 0),wseeﬂ1atﬂ1ederivaﬁveiszcmwhen<b'(%)=—7’l .



Step 2. Now we use the expression for DFH ¢, (TT) - 611 and take the second
derivative of Hg, at the equilibrium I'l, = (1, 0, 0):

D? Hey(TD) - (ST, 6T1) = 802611+ @' (4 112 16102 + (11, 6112 @ (4 Y1)
=3 - e () ey

= (é - 71;)(5@2 +(l—'3 - -}l~)(5[13)2+<p" (3) LY
Step 3. Finally, we test this quadratic form for definiteness. By looking at
each term, we see that this form is positive definite if and only if I; > b,

Iy> I, and ®" (1) > 0. Taken with the condition that &' (3) = ! , we

integrate €' twice, obtaining
P(x) = —l—: x+( - —;)2

Thus, as this gives a second variation of Hg, at (1, 0, 0) which is positive defi
nite, it follows that stationary rotations about the shortest axis is stable in the
Liapunov sense. By applying the same method to construct a ®(x) that makes
the quadric form negative definite, we see that rotations along the long axis is
also stable [Liapunov]. The quadratic form is always indefinite if /; > 5 and
I > 1, or the reverse. By the Energy-Casimir Method, there is no way to
prove that the rotation around the middle axis is unstable however. To prove
this result, one might use spectral analysis, a treatment of which is gjven in
[12].

Thus we see the usefulness of the Energy-Casimir method in demonstrating
that rotations along the shortest and longest axis are Liapunov stable, though it does
not provide an instability statement for rotations about the middle axis.

4.3 Limitations

Although the Energy-Casimir method often offers a direct and simple
generalization of the Lagrange-Dirichlet criterion, it relies on a wealth of Casimir
functions, and only offers stability information: the Energy-Casimir method cannot
be directly applied to infer instability. In some examples, such as the dynamics of
Geometrically exact rods, no Casimir functions have been found, and we cannot get
past the first step of the process. Also, problems arise when one tries to apply the



Energy-Casimir method to systems with infinitely many degrees of freedom (such
as fluids or plasmas) [12].

5. ENERGY-MOMENTUM METHOD

The method developed to overcome the limitations described in section 4.3
is known as the Energy-Momentum method, and is closely linked to the method of
reduction. The Energy-Momentum method also uses conserved quantities, but
rather than Casimir functions that may or may not exist, it uses the conservation of
energy and the momentum map, which are more readily available than Casimir
functions. Similar to the Energy-Casimir method, the Energy-Momentum method
makes use of the augmented Hamiltonian, which is of the form

Heg,p)=H(q,p) - £J(q.p)

Where J is the momentum map and £ may be thought of as a Lagrange multiplier.
One begins by equating the first variation of H, with zero, obtaining a relative
equilibria. Stability is then determined by taking the second variation 6°H; and
checking for definiteness. More formally, we may construct the method for a
mechanical system with symmetry as follows:

Let O be the configuration space with phase space T"Q and some
symmetry group G acting with the standard momentum map J: 7°0-g’,
with g" as the Lie algebra of G. We begin by constructing the problem on
the unreduced space, where relative equilibria associated with an element &
of the Lie algebra are simply critical points of the augmented Hamiltonian
Hg:=H-(J, £). We now calculate the second variation of H, at some relative
equilibrium z, with momentum p, subject to the condition that J= # and on
the space transverse to G, which is the subgroup of G that fixes p. Thus
our space § is a subspace of the kernel of DJ(z.) and is transverse to the G,
orbit inside the kernel of DJ(z;). The energy momentum method requires us
to simply:

(1) Find some £ in g such that the variation of H, at the equilibrium
point is zero, and

(2) Test the second variation of Hg for definiteness on our space S.

Figure 2: The energy-momentum
method tests the second variation of
Hg for definiteness on S. This
figure was taken from [11].
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5.1 Energy-Momentum Theorem (proof is due to [11}])

Theorem: If & Hz,) is definite, then z, G,-orbitally stable in J-!(1s) and
G —orbitally stable in P; i.e., then the relative equilibrium z, is stable.

Proof: The orbit space P,, has well defined dynamics as induced by the
reduced dynamis. Thus we have G, —orbital stability within J-'(2); the well
defined dynamics on P, induces a dynamical system on S for which ¢ is an
invariant function. As there is a non-degenerate extremum at the equilibrium
position z,, the invariance of its level sets is sufficient for stability. Further, we
find G, —orbital stability within J-!(v) for v that are close to u as the form of

Figure 2 changes in a regular way since u is a regular value and a generic point
ing*.

5.2 Converse To Energy-Momentum Theorem

Aside from the power of the Energy-Momentum method to handle physical
systems with few or no Casimir functions, or systems with infinitely many degrees
of freedom, it has the remarkable property that the second matrix may be block
diagonalized as described in [11], [13], and [14].

Using this block structure, the converse of the energy-momentum method
has been proven, in some sense, as an indefinite second variation implies that the
system is unstable. This is not as simple as stated, since many examples are
formally unstable with purely imaginary eigenvalues. This converse becomes
particularly useful when discussing dissipation-induced instability [5],[8]—the
converse can show that with the addition of dissipation, then the system
destabilizes.

This converse is perhaps what exhibits most clearly the maturity and power
that sets the Energy-Momentum method apart from the Energy-Casimir method.



FINAL THOUGHTS

Having analyzed both the Energy-Casimir and Energy-Momentum methods,
we may now address the issue of algorithmic implementation towards automated
classification of relative stability. It is simple to see the merits of the Energy-
Momentum method over the Energy-Casimir method for a potential program
designed to determine stability, as the Energy-Momentum method is both more
general and has a converse statement involving dissipation induced instabilities [5).
We must now analyze each step in the Energy-Momentum method, looking both for
ways to implement the method in a program, and for difficulties that may arise in
the implementation.

From [12], we find that “the second variation 6°He and the symplectic
structure (and therefore the equations of motion) can be explicitly brought into
normal form simultaneously” [page 155]. Thus, it seems likely that given minimal
topological information regarding the configuration manifold, and a Lagrangian and
constraint equations, the Energy-Momentum method could be programmed on a
case-by-case basis.

The next step requires us to determine the precise topological data needed
by the method from both the configuration manifold and the symmetry group. We
must then structure this data for use by the algorithmic implementation of the
Energy-Momentum method. Finally, the method used to program examples case-
by-case must be abstracted into a general method that allows our classification
program to simply accept new conditions defining a physical system in the form of
data structures describing the system’s Configuration Manifold, Symmetry Group,
constraint equations, and Lagrangian. Eventually we may construct a library with
different manifolds, constraints, and Lagrangians, and simply pick-and-choose
which physical system to apply the Energy-Momentum method to.
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