Vector Calculus Sample Final Examination \#1

Warning to Instructors: Question 2 may involve more linear algebra than you are assuming, so modify it accordingly (eg, by deleting or changing parts (b) and (c).

1. Let $f(x, y)=e^{x y} \sin (x+y)$.
(a) In what direction, starting at $(0, \pi / 2)$, is f changing the fastest?
(b) In what directions starting at $(0, \pi / 2)$ is f changing at 50% of its maximum rate?
(c) Let $\mathbf{c}(t)$ be a flow line of $\mathbf{F}=\nabla f$ with $\mathbf{c}(0)=(0, \pi / 2)$. Calculate

$$
\left.\frac{d}{d t}[f(c(t))]\right|_{t=0}
$$

2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a given mapping and write $f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$.

Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $g(u, v, w)=(u-v, u+w, w+v)$ and let $h=g \circ f$.
(a) Write a formula for the derivative matrix $\mathbf{D} h$.
(b) Show that $\mathbf{D} h$ cannot have rank 3 at any point (x, y, z).
(c) Show that $\mathbf{D} h$ has an eigenvalue zero at every (x, y, z).
3. Extremize $f(x, y, z)=x$ subject to the constraints

$$
x^{2}+y^{2}+z^{2}=1 \quad \text { and } \quad x+y+z=1 .
$$

4. (a) Evaluate

$$
\iiint_{D} \exp \left[\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}\right] d x d y d z
$$

where D is the region defined by $1 \leq x^{2}+y^{2}+z^{2} \leq 2$ and $z \geq 0$.
(b) Sketch or describe the region of integration for

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) d z d y d x
$$

and interchange the order to $d y d x d z$.
5. Let $\mathbf{G}(x, y)=\left(x e^{x^{2}+y^{2}}+2 x y\right) \mathbf{i}+\left(y e^{x^{2}+y^{2}}+x^{2}\right) \mathbf{j}$.
(a) Show that $\mathbf{G}=\nabla f$ for some f; find such an f.
(b) Use (a) to show that the line integral of \mathbf{G} around the edge of the triangle with vertices $(0,0),(0,1),(1,0)$ is zero.
(c) State Green's theorem for the triangle in (b) and a vector field \mathbf{F} and verify it for the vector field G above.
6. Let W be the three dimensional region under the graph of $f(x, y)=\exp \left(x^{2}+y^{2}\right)$ and over the region in the plane defined by $1 \leq x^{2}+y^{2} \leq 2$.
(a) Find the volume of W.
(b) Find the flux of the vector field $\mathbf{F}=(2 x-x y) \mathbf{i}-y \mathbf{j}+y z \mathbf{k}$ out of the region W.
7. Let C be the curve $x^{2}+y^{2}=1$ lying in the plane $z=1$. Let $\mathbf{F}=(z-y) \mathbf{i}+y \mathbf{k}$.
(a) Calculate $\nabla \times \mathbf{F}$.
(b) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ using a parametrization of C and a chosen orientation for C.
(c) Write $C=\partial S$ for a suitably chosen surface S and, applying Stokes' theorem, verify your answer in (b).
(d) Consider the sphere with radius $\sqrt{2}$ and center the origin. Let S^{\prime} be the part of the sphere that is above the curve (i.e., lies in the region $z \geq 1$), and has C as boundary. Evaluate the surface integral of $\nabla \times \mathbf{F}$ over S^{\prime}. Specify the orientation you are using for S^{\prime}.

