Vector Calculus Solutions to Sample Final Examination \#1

1. Let $f(x, y)=e^{x y} \sin (x+y)$.
(a) In what direction, starting at $(0, \pi / 2)$, is f changing the fastest?
(b) In what directions starting at $(0, \pi / 2)$ is f changing at 50% of its maximum rate?
(c) Let $\mathbf{c}(t)$ be a flow line of $\mathbf{F}=\nabla f$ with $\mathbf{c}(0)=(0, \pi / 2)$. Calculate

$$
\left.\frac{d}{d t}[f(c(t))]\right|_{t=0}
$$

Solution

(a) f is changing fastest in the direction of $\nabla f(0, \pi / 2)$. But

$$
\begin{aligned}
\nabla f(x, y)= & {\left[y e^{x y} \sin (x+y)+e^{x y} \cos (x+y)\right] \mathbf{i} } \\
& +\left[x e^{x y} \sin (x+y)+e^{x y} \cos (x+y)\right] \mathbf{j}
\end{aligned}
$$

and so

$$
\nabla f(0, \pi / 2)=\frac{\pi}{2} \mathbf{i}
$$

Thus f is increasing fastest in the direction \mathbf{i} (and decreasing fastest in the direction -i).
(b) If \mathbf{n} is a unit vector, f is changing at the rate

$$
\nabla f(0, \pi / 2) \cdot \mathbf{n}=\frac{\pi}{2} \mathbf{n} \cdot \mathbf{i}
$$

in the direction \mathbf{n}. The maximum value is $\pi / 2$, so the rate is 50% of its maximum when

$$
\frac{\pi}{2} \mathbf{n} \cdot \mathbf{i}=\frac{\pi}{2} \cdot \frac{1}{2}
$$

i.e.,

$$
\mathbf{n} \cdot \mathbf{i}=\frac{1}{2}
$$

This means \mathbf{n} makes an angle θ with \mathbf{i} where $\cos \theta=1 / 2$, or $\theta= \pm \pi / 3$ or ± 60 degrees. Note that this defines two directions (if this were in space and not the plane, we would get a cone).
(c) By the chain rule, and since $\mathbf{c}^{\prime}(t)=\nabla f(\mathbf{c}(t))$,

$$
\begin{aligned}
\left.\frac{d}{d t} f(\mathbf{c}(t))\right|_{t=0} & =\nabla f(\mathbf{c}(0)) \cdot \mathbf{c}^{\prime}(0) \\
& =\nabla f\left(0, \frac{\pi}{2}\right) \cdot \nabla f\left(0, \frac{\pi}{2}\right) \\
& =\left\|\nabla f\left(0, \frac{\pi}{2}\right)\right\|^{2}=\frac{\pi^{2}}{4}
\end{aligned}
$$

2. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a given mapping and write $f(x, y, z)=(u(x, y, z), v(x, y, z), w(x, y, z))$.

Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be defined by $g(u, v, w)=(u-v, u+w, w+v)$ and let $h=g \circ f$.
(a) Write a formula for the derivative matrix $\mathbf{D} h$.
(b) Show that $\mathbf{D} h$ cannot have rank 3 at any point (x, y, z).
(c) Show that $\mathbf{D} h$ has an eigenvalue zero at every (x, y, z).

Solution

(a) By the chain rule,

$$
\begin{aligned}
D h(x, y, z) & =D g(u, v, w) \cdot D f(x, y, z) \\
& =\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial u}{\partial x} \\
\frac{\partial w}{\partial y} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{\partial u}{\partial x}-\frac{\partial v}{\partial x} & \frac{\partial u}{\partial y}-\frac{\partial v}{\partial y} & \frac{\partial u}{\partial z}-\frac{\partial v}{\partial z} \\
\frac{\partial u}{\partial x}-\frac{\partial w}{\partial x} & \frac{\partial u}{\partial y}-\frac{\partial w}{\partial y} & \frac{\partial u}{\partial z}-\frac{\partial w}{\partial z} \\
\frac{\partial v}{\partial x}-\frac{\partial w}{\partial x} & \frac{\partial v}{\partial y}-\frac{\partial w}{\partial y} & \frac{\partial \theta}{\partial z}-\frac{\partial w}{\partial z}
\end{array}\right]
\end{aligned}
$$

(b) We claim that this matrix has determinant zero. Its determinant is the product of the determinants of the two factors. But

$$
\left|\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|=\left|\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right|=0
$$

Thus, $D h(x, y, z)$ is not invertible, so it must have nullity $\neq 0$, so rank $D h(x, y, z) \neq$ 3.
(c) Since nullity $\neq 0$ some non-zero vector must get sent to zero; this is an eigenvector with eigenvalue zero.
3. Extremize $f(x, y, z)=x$ subject to the constraints

$$
x^{2}+y^{2}+z^{2}=1 \quad \text { and } \quad x+y+z=1
$$

Solution We are to extremize $f(x, y, z)=x$ subject to

$$
g_{1}=x^{2}+y^{2}+z^{2}-1=0 \quad \text { and } \quad x+y+z-1=0 .
$$

Using the method of Lagrange multipliers, this means

$$
\begin{aligned}
\nabla f & =\lambda_{1} \nabla g_{1}+\lambda_{2} \nabla g_{2} \\
g_{1} & =0 \\
g_{2} & =0
\end{aligned}
$$

i.e.,

$$
\begin{align*}
1 & =\lambda_{1} \cdot \partial x+\lambda_{2} \tag{1}\\
0 & =\lambda_{1} \cdot 2 y+\lambda_{2} \tag{2}\\
0 & =\lambda_{1} \cdot 2 z+\lambda_{2} \tag{3}\\
x^{2}+y^{2}+z^{2} & =1 \tag{4}\\
x+y+z & =1 . \tag{5}
\end{align*}
$$

Subtracting (2) and (3) gives

$$
2 \lambda_{1}(y-z)=0
$$

and so either $\lambda_{1}=0$ or $y=z$. But $\lambda_{1}=0$ is not consistent with (1) and (2). Hence, $\lambda_{1} \neq 0$ and so $y=z$. Thus we have

$$
\begin{align*}
1 & =\lambda_{1} \cdot 2 x+\lambda_{2} \tag{7}\\
0 & =\lambda_{1} \cdot 2 y+\lambda_{2} \tag{8}\\
x^{2}+2 y^{2} & =1 \tag{9}\\
x+2 y & =1 \tag{10}
\end{align*}
$$

Substituting (9) in (8) gives

$$
(1-2 y)^{2}+2 y^{2}=1
$$

i.e.,

$$
1-4 y+4 y^{2}+2 y=1
$$

i.e.,

$$
-2 y+3 y^{2}=0
$$

Thus, either $y=0$, or $y=2 / 3$. If $y=0$ then $x=1$ (and $\lambda_{2}=0, \lambda_{1}=1 / 2$) and if $y=2 / 3$ then $x=-1 / 3$.

Therefore, the solutions are

$$
(1,0,0) \text { and }(-1 / 3,2 / 3,2 / 3)
$$

The former maximizes f while the latter minimizes it.
4. (a) Evaluate

$$
\iiint_{D} \exp \left[\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}\right] d x d y d z
$$

where D is the region defined by $1 \leq x^{2}+y^{2}+z^{2} \leq 2$ and $z \geq 0$.
(b) Sketch or describe the region of integration for

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) d z d y d x
$$

and interchange the order to $d y d x d z$.

Solution

(a) We use spherical coordinates

$$
\begin{aligned}
\iiint_{D} \exp \left[\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}\right] d x z d y d z & =\int_{\varphi=0}^{\pi / 2} \int_{\theta=0}^{2 \pi} \int_{\rho=1}^{\sqrt{2}} \exp \left(\rho^{3}\right) \times \rho^{2} \sin \varphi d \rho d \theta d \varphi \\
& =2 \pi \int_{\varphi=0}^{\pi / 2}\left(\int_{\rho=1}^{2} \exp \left(\rho^{3}\right) \rho^{2} d \rho\right) \sin \varphi d \rho \\
& =2 \pi \times\left.\frac{1}{3} \exp \left(\rho^{3}\right)\right|_{1} ^{\sqrt{2}} \times\left.(-\cos \varphi)\right|_{0} ^{\pi / 2} \\
& =\frac{2 \pi}{3}\left(e^{\sqrt{8}}-e\right)
\end{aligned}
$$

(b) The region for

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} f(x, y, z) d z d y d x
$$

is that under the plane $z=y$ and over the region in the plane bounded by the x-axis, the line $x=y$ and the line $x=1$. (The student should draw a figure here).
(c) In the order $d y d x d z$, the integral is easiest to write down by consulting the figure drawn in the previous part; one gets

$$
\int_{0}^{1} \int_{z}^{1} \int_{x}^{1} f(x, y, z) d y d x d z
$$

5. Let $\mathbf{G}(x, y)=\left(x e^{x^{2}+y^{2}}+2 x y\right) \mathbf{i}+\left(y e^{x^{2}+y^{2}}+x^{2}\right) \mathbf{j}$.
(a) Show that $\mathbf{G}=\nabla f$ for some f; find such an f.
(b) Use (a) to show that the line integral of \mathbf{G} around the edge of the triangle with vertices $(0,0),(0,1),(1,0)$ is zero.
(c) State Green's theorem for the triangle in (b) and a vector field \mathbf{F} and verify it for the vector field \mathbf{G} above.

Solution

(a) If $\mathbf{G}(x, y)=P \mathbf{i}+Q \mathbf{j}, P=x e^{x^{2}+y^{2}}+2 x y, Q=y e^{x^{2}+y^{2}}+x^{2}$, note that

$$
\frac{\partial P}{\partial y}=2 x y e^{x^{2}+y^{2}}+2 x=\frac{\partial Q}{\partial x}
$$

and so \mathbf{G} is a gradient. Writing

$$
P=\frac{\partial f}{\partial x}, \quad \text { and } \quad Q=\frac{\partial f}{\partial y}
$$

we see that

$$
f(x, y)=e^{x^{2}+y^{2}}+x^{2} y .
$$

(b) Let C be the boundary of the triangle T (the student should draw a figure of T.) Since the integral of a gradient around any closed curve is zero in general, it is zero in this particular case.
(c) Green's Theorem states, in this case that

$$
\int_{C} P d x+Q d y=\iint\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y
$$

We computed that $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$ above, so the right hand side is zero as well.
6. Let W be the three dimensional region under the graph of $f(x, y)=\exp \left(x^{2}+y^{2}\right)$ and over the region in the plane defined by $1 \leq x^{2}+y^{2} \leq 2$.
(a) Find the volume of W.
(b) Find the flux of the vector field $\mathbf{F}=(2 x-x y) \mathbf{i}-y \mathbf{j}+y z \mathbf{k}$ out of the region W.

Solution

(a) The volume of W is

$$
\begin{aligned}
\iint_{1 \leq x^{2}+y^{2} \leq 2} \exp \left(x^{2}+y^{2}\right) d x d y & =\int_{\theta=0}^{2 \pi} \int_{r=1}^{\sqrt{2}} e^{r^{2}} r d r d \theta \\
& =2 \pi \times \frac{1}{2}\left(e^{2}-e\right) \\
& =\pi e(e-1)
\end{aligned}
$$

(b) The flux of \mathbf{F} is, by Gauss' theorem

$$
\begin{aligned}
\iint_{\partial W} \mathbf{F} \cdot \mathbf{d} S & =\iiint_{W} d i v \mathbf{F} d x d y d z \\
& =\iiint_{W}(2-y-1+y) d x d y d z \\
& =\iiint_{W} d x d y d z=\pi\left(e^{4}-e\right)
\end{aligned}
$$

7. Let C be the curve $x^{2}+y^{2}=1$ lying in the plane $z=1$. Let $\mathbf{F}=(z-y) \mathbf{i}+y \mathbf{k}$.
(a) Calculate $\nabla \times \mathbf{F}$.
(b) Calculate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$ using a parametrization of C and a chosen orientation for C.
(c) Write $C=\partial S$ for a suitably chosen surface S and, applying Stokes' theorem, verify your answer in (b).
(d) Consider the sphere with radius $\sqrt{2}$ and center the origin. Let S^{\prime} be the part of the sphere that is above the curve (i.e., lies in the region $z \geq 1$), and has C as boundary. Evaluate the surface integral of $\nabla \times \mathbf{F}$ over S^{\prime}. Specify the orientation you are using for S^{\prime}.

Solution

(a) We evaluate the curl by writing out the expression for the curl as a cross product of ∇ and F :

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
z-y & 0 & y
\end{array}\right|=\mathbf{i}+\mathbf{j}+\mathbf{k}
$$

(b) Parameterize C by $x=\cos \theta, y=\sin \theta, z=1,0 \leq \theta \leq 2 \pi$, where the orientation is counter-clockwise as viewed from above. Then

$$
\int_{C} \mathbf{F} \cdot \mathbf{d} s=\int_{0}^{2 \pi}(1-\sin \theta)(-\sin \theta) d \theta=\int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\pi
$$

(since the average of $\sin ^{2} \theta$ is $1 / 2$).
(c) Let us choose S to be the disk $x^{2}+y^{2} \leq 1, z=1$. Then

$$
\int_{C} \mathbf{F} \cdot \mathbf{d} s=\iint_{S} \nabla \cdot \mathbf{F} \times d S=\iint_{S} \mathbf{k} \cdot \mathbf{k} d x d y=\pi
$$

(d) Let the orientation of $S^{\prime \prime}$ be given by the outward normal. The student should draw a figure that shows $\partial S^{\prime}=C$. Then,

$$
\iint_{S}^{\prime \prime}(\nabla \cdot \mathbf{F}) \times d S=\int_{C} \mathbf{F} \times \mathbf{d} s=\pi
$$

