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Preface

The topics selected for these lectures aim to illustrate some of the ways
geometry and analysis can be used in mathematical problems of physical
interest. A recurring theme is the role of symmetry, bifurcation and Hamil-
tonian systems in diverse applications. Despite the old age of these topics
and the current explosion of interest and research, the state of knowledge is
in my opinion still very primitive. For example, very little is known about
dynamical systems that are close to a completely integrable Hamiltonian
system. The simplest classical examples, such as the harmonic oscillator,
Duffing’s equation, the spherical pendulum, the rigid body and the equa-
tions of a perfect fluid, show that this program is both interesting and
complex.

Symmetry is relevant because many examples are, or are close to, a
Hamiltonian system which is invariant under some Lie group. Such dy-
namical systems are very sensitive to perturbations in their equations; or,
if you wish, these models are qualitatively unstable. This means that they
are bifurcation points in the set of all dynamical systems. The following
paragraphs briefly describe how this theme occurs in the various lectures.

The first lecture introduces some basic ideas about Hamiltonian systems,
concentrating on the infinite dimensional case. Besides some background
notation and examples, we give two recent results of a technical nature that
can be skipped without affecting subsequent lectures; these are a new ver-
sion of Darboux’s theorem and the issue of differentiability of the evolution
operators.

Lectures 2, 6 and 7 deal with elasticity. Lecture 2 discusses the general
theory, focusing on its Hamiltonian structure and the role of symmetry
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and covariance in the basic equations. While the set–up may seem new,
the ideas are old and well known. The context, however, may be more
mathematically appealing than previous treatments. Lecture 6 describes a
bifurcation that occurs when a beam is subject to small forcing and damp-
ing. The unperturbed beam dynamics contains a homoclinic orbit, a signal
that symmetry is present. The perturbed system is shown to contain the
complex dynamics of a Smale horseshoe. Lecture 7 studies the bifurcations
that occur when a stress–free body is subjected to small surface loads.
When these loads have a certain symmetry (called an axis of equilibrium),
then the solutions can bifurcate; i.e., singularities occur in the space of all
solutions.

Lectures 3, 4, 5 and 8 deal with Hamiltonian systems per se. Lecture 3
gives background on symmetry and conserved quantities in Hamiltonian
systems. Lectures 4 and 5 give some illustrations of how this is used: sym-
plectic splittings, action angle variables, simple mechanical systems, mag-
netic fields, particles in Yang–Mills fields are touched on in Lecture 4, and
the Calogero system, the Kostant–Symes theorem and the Toda lattice are
treated in Lecture 5. Lecture 8 studies in some detail the bifurcations that
occur in level sets of the Noether conserved quantity associated with a
symmetry group. Here an explicit connection between symmetry and bi-
furcation is clear: a bifurcation occurs precisely at points in phase space
that themselves have symmetry, i.e., are fixed under a nontrivial subgroup
of the given symmetry group.

Finally, Lectures 9 and 10 describe applications to general relativity. Here
bifurcations in the space of solutions of Einstein’s equations are found to ex-
ist precisely at solutions with symmetry. This is done by writing Einstein’s
equations as a coupled system of Hamiltonian and constraint equations.
The constraints are equivalent to setting the Noether conserved quantity
associated with the group of diffeomorphisms of spacetime equal to zero.
This Hamiltonian and symmetry (or covariance) structure enables one to
exploit the ideas of Lecture 8.

All of the lectures are related to the conventional theory of Hamiltonian
systems, i.e., triples (P, ω,H) where P is a manifold called the phase space,
ω is a closed nondegenerate two–form called the symplectic form and H is a
real valued function on P called the energy or Hamiltonian. This situation
can be generalized and modified in several ways, some of which we list
below with selected recent references:

i the theory of singular Hamiltonian systems wherein H is a distribu-
tion; see Marsden (1968a) and Parker (1979).

ii Lagrangian submanifolds; see Weinstein (1971), Tulczyjew (1976) and
Weinstein (1977).

iii Degenerate symplectic forms and the Dirac theory of constraints;
see Künzle (1969), Tulczyjew (1974), Sniatycki (1974), Menzio and
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Tulczyjew (1978) and Gotay et al. (1978).

iv Forms of higher degree and field theory; see Goldschmidt and Stern-
berg (1973), Kijowski (1974), Garćıa (1974), Szczyryba (1976), Ki-
jowski and Tulczyjew (1979) and Kuperschmidt (1980).

v Superhamiltonian systems on graded manifolds; see Kostant (1978).

vi Systems for which one has a map of Hamiltonians to vector fields
H 7→ XH but no symplectic structure; see Kupershmidt and Manin
(1977).

vii Deformations of symplectic structures and Poisson algebras; see Lich-
nerowicz (1980).

viii Connections with partial differential equations, Fourier integral oper-
ators and quantizations; see Souriau (1970), Hörmander (1971), Duis-
termaat (1973), Guillemin and Sternberg (1977) and Sniatycki (1980).

ix Connections with group representations; see Kostant (1970) and Kir-
illov (1976).

x Results on periodic orbits, celestial mechanics and bifurcation of
Hamiltonian systems; see Siegal and Moser (1971), Abraham and
Marsden (1978), Weinstein (1978a) and Kummer (1979).

In addition to these topics in Hamiltonian systems, there are large num-
bers of topics and a vast literature on bifurcation theory that we shall
not treat (see Cohen and Neu (1979); some references are given in Mars-
den (1978)), on elasticity (see Truesdell and Noll (1965) and Marsden and
Hughes (1978)) and general relativity (see Misner et al. (1973) and Fischer
and Marsden (1979b),Fischer and Marsden (1979a)). In fact, we shall not
even attempt to list all of the topics of current interest that are related to
these lectures.

We require some acquaintance with functional analysis, manifolds, Lie
groups and finite dimensional Hamiltonian systems. This background can
be obtained from many standard sources such as Yosida (1971), Lang
(1972), Abraham and Marsden (1978) and Arnold (1978). Some of my
previous lectures (Ebin et al. (1972) and Marsden (1974)) on related sub-
jects may still also be of interest to some readers, although various topics
treated there are now out of date.

These lectures were originally given at the CBMS–NSF Regional Confer-
ence held in Lowell, Massachusetts, March 19–23, 1979. The second edition
maintains the spirit and topics of the original lectures, focusing on updat-
ing the material to take into account selected recent developments in the
area.
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1
Infinite Dimensional Hamiltonian
Systems

Definition 1.1. A symplectic manifold is a pair (P, ω), where P is a
C∞ Banach manifold and ω is a C∞ two–form on P , such that

i dω = 0; and

ii ω is (weakly) nondegenerate: for all x ∈ P and vx ∈ TxP (the tangent
space to P at x),

ωx(vx, wx) = 0

for all wx ∈ TxP implies vx = 0.

We now make a series of remarks concerning this definition.

1. Define the bundle map ω[ : TP → T ∗P by

ω[x(vx) · wx = ωx(vx, wx).

Condition ii in the definition is equivalent to ω[ being one–to–one.
If ω[ is onto, we call (P, ω) a strong symplectic manifold. In finite
dimensions the notions of symplectic manifold and strong symplectic
manifold coincide, but in infinite dimensions many interesting exam-
ples are not strong symplectic manifolds, as we shall see.

2. Let (P, ω) be a symplectic manifold.

(a) If TxP is a reflexive linear space, i.e., the natural injection i :
TxP → T ∗∗x P, i(vx) · αx = αx(vx) is onto, then ω[x has closed
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range if and only if ω[x is onto. [Indeed, let Y ⊂ T ∗xP be the
range of ω[x, and assume Y is closed and Y 6= T ∗xP . By the
Hahn–Banach theorem there is a φ ∈ T ∗∗x P such that φ 6= 0 and
φ(Y ) = {0}. Let φ = i(vx). Then, for any wx ∈ TxP ,

ωx(vx, wx) = −ω[x(wx) · vx = −φ(ω[x(ωx)) = 0.

Thus, vx = 0 and so φ = 0, a contradiction.]

(b) The argument in (a) shows that if TxP is reflexive, then the
range of ω[x is dense. Thus, a common situation will be that ω[x
has a range that is dense in, but unequal to, T ∗xP .

3. (a) If Q is a Banach manifold, then T ∗Q carries a canonical sym-
plectic structure ω. The form ω can be given in three equivalent
ways:

i ω = −dθ, where the canonical one–form θ is defined by θ(αq) ·
w = αq ·(Tτ∗Q ·w); here αq ∈ T ∗qQ,w ∈ Taq (T ∗Q), τ∗Q : T ∗Q→ Q
is the canonical projection and Tτ∗Q is its tangent.

ii In local representation,

ωαq ((v1, α1), (v2, α2)) = α2 · v1 − α1 · v2.

iii If β is a one–form on Q, so that β : Q → T ∗Q, then β∗θ = β
defines the canonical one–form θ and ω = −dθ.

Consult Abraham and Marsden (1978), pp. 178–9 for the proof of the
equivalence of i, ii and iii. In finite dimensions, θ =

∑n
i=1 pidq

i and
ω =

∑n
i=1 dq

i∧dpi relative to the natural coordinates (q1, . . . , qn, p1, . . . , pn).

(b) It is readily checked thatQ is reflexive if and only if the canonical
symplectic structure is a strong symplectic structure (Marsden
(1968b)).

(c) By a weak Riemannian metric on a manifold Q we mean a
smooth symmetric 2–covariant tensor 〈·, ·〉 on Q such that 〈·, ·〉q
is a (not necessarily complete) inner product at each q ∈ Q.
A weak Riemannian metric determines a smooth bundle map
ψ : TQ → T ∗Q by ψq(vq) · wq = 〈vq, wq〉q. Then Ω = ψ∗ω is a
symplectic structure on TQ, where ω is the canonical symplectic
structure on T ∗Q.

4. Reduction provides an important means of constructing symplectic
forms. We shall use this procedure later. The general context is as
follows. Let M be a Banach manifold and ωM a closed two–form.
Define its characteristic bundle by

Ex = {vx ∈ TxM |ω[M (vx) = 0}.
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Assume that E is a smooth (split) subbundle of TM .1 Then E is
integrable; i.e., if X and Y are two sections of E, so is [X,Y ]. To see
this, use the identity

i[X,Y ]ωM = LX iY ωM − iY LXωM

to get
i[X,Y ]ωM = −iY (iXdωM + diXωM ) = 0.

Frobenius’ theorem implies that locally there is a foliation F whose
tangent bundle is E. Locally, M/F is a manifold which has a unique
symplectic form ωF such that ωM = π∗FωF , where πF : M → M/F
is the projection.

Often one starts with a symplectic manifold (P, ω) and constructs a
submanifold M ⊂ P and restricts ω to M ; i.e., we set ωM = i∗ω,
where i : M → P is inclusion. If f and g are functions on P , we can
restrict them to M . If f and g are constant on leaves, they induce
functions f̂ , ĝ on M/F . Thus {f̂ , ĝ} is defined. However, {f̂ , ĝ} need
not be {f, g}̂ . There is, however, an important case when the brackets
are related, namely when M is coisotropic, i.e., when (TM)⊥ ⊂ TM ,
where (TM)⊥ is the ω–orthogonal complement. In this case F is the
foliation of the distribution (TM)⊥, and if f and g are defined on P

and are constant on leaves of F , then so is {f, g}, and {f, g}̂ = {f̂ , ĝ}.
This is readily verified. In Lectures 3 and 4 we shall develop a par-
ticular case of this procedure.

5. For functional analytic reasons, one often needs to restrict a strong
symplectic form to a dense subspace with a different topology. This
normally results in a (weak) symplectic structure. We formalize this
idea as follows.2 Let M and N be Banach manifolds with N ⊂ M
(as sets), and let i : N → M denote the inclusion map. We say that
N ⊂M is a manifold domain if:

i i : N →M is a C∞ map.

ii For each x ∈ N,Txi : TxN → TxM is an injection of TxN onto
a dense subspace of TxM .

iii Let M and N be modeled on the Banach spaces X and Y and let
Y ⊂ X be included as a dense subspace. For each point x0 ∈ N

1Roughly speaking, this means that ωx has locally constant rank. Some techniques

useful in the infinite dimensional case are found in Lang (1972) and Ebin and Marsden

(1970), Appendix A.
2This discussion is adapted from Marsden (1968b) and Chernoff and Marsden (1974).

It is related to the idea of a “varieté bimodelé” of Chevallier (1975). The linear example
Hs ⊂ L2 may help fix ideas.
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there are charts φ : U ⊂ M → X and ψ : V ⊂ N → Y about x
such that V = i−1(U) and (φ ◦ i)|V = ψ. (i.e., M and N can be
“simultaneously flattened”).

For example, if A and B are compact manifolds (and B has no bound-
ary), then the manifold of maps Hs+k(A,B) = {f : A → B|f is of
Sobolev class Hs+k} is a manifold domain in Hs(A,B); the usual
exponential charts that produce their manifold structure simultane-
ously flatten these two manifolds (see Palais (1968) for the necessary
machinery; some may find the summary in Ebin and Marsden (1970)
helpful).

If (P0, ω0) is a symplectic manifold and P ⊂ P0 is a manifold domain,
then i∗ω0 = ω is a symplectic form on P . Even if ω0 is strong, ω will
in general only be weak.

6. Now we discuss canonical forms (see [Abraham and Marsden (1978),
p. 173], Chernoff and Marsden (1974) and Weinstein (1977) for fur-
ther information).

(a) If (P, ω) is a symplectic manifold and P is a Hilbert manifold,
then P carries an almost complex structure, i.e., a smooth bun-
dle map J : TP → TP such that J2 = −I. Moreover, J is
symplectic and 〈〈vx, wx〉〉 = ωx(vx, Jwx) is a weak Riemannian
structure. The construction is as follows: write ωx(vx, wx) =
〈Axvx, wx〉x, where 〈·, ·〉x is the Hilbert inner product, and let
Jx = Ax(−A2

x)−1/2.

(b) Example Let P0 = L2(R)×L2(R) with the symplectic structure
ω0 induced from the canonical symplectic structure on L2(R)×
[L2(R)]∗ via the L2–metric:

ω0((f1, g1), (f2, g2)) = 〈g2, f1〉 − 〈g1, f2〉.

Here J is the standard complex structure associated with the
identification of P0 with the complex Hilbert space L2(R,C) :
J(f, g) = (−g, f). Here 〈〈(f1, g1), (f2, g2)〉〉 = 〈f1, f2〉L2〈g1, g2〉L2 .
Next, let P = H1(R) × L2(R), the phase space associated with
the linear wave equation 3 with ω on P given by the same
formula; i.e., regard P ⊂ P0 as a manifold domain and set
ω = i∗ω0. Associated with the Hilbert manifold structure of
P , a short computation gives

J(f, g) = (−(1−∆)−1/2g, (1−∆)1/2f)

3This example is discussed in Chernoff and Marsden (1974).
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and
〈〈(f1, g1), (f2, g2)〉〉 = 〈f1, f2〉L2 + 〈g1, g2〉L2 .

where ∆ is the Laplace operator and H1(R) has the inner prod-
uct

〈f, g〉H1 = 〈(1−∆)1/2f, (1−∆)1/2g〉L2 = 〈(1−∆)f, g〉.

(c) In this example note that the weak Riemannian structure re-
stricts naturally from P0 to P but the complex structure does
not. The same argument shows that if (P0, ω0) is a symplectic
manifold and i : P ⊂ P0 is a manifold domain, if ω = i∗ω0,
and if P0 and P are both Hilbert manifolds, then the weak Rie-
mannian structure constructed above on P is the restriction of
that constructed on P0. In this sense of manifold domains, then,
the weak Riemannian structure is canonically associated with
the symplectic structure and is independent of the Hilbert space
structure. If this weak Riemannian structure happens to be com-
plete on P0, then a special complex structure J0 : TP0 → TP0

is picked out, but note that J0 will not, in general, map TP to
itself.

(d) Suppose Q is a weak Riemannian manifold with an associated
smooth connection. Then TQ becomes a symplectic manifold
and also carries a weak Riemannian structure 〈〈·, ·〉〉 (by declar-
ing the horizontal and vertical projections to be orthogonal). By
completing each tangent space in the weak tangent bundles T̃Q
and T̃ (TQ). Then there is complex structure J on the bundle
T̃ (TQ) such that ω, J and 〈〈·, ·〉〉 stand in the correct relation-
ship (in finite dimensions this complex structure is q̇k + iq̈k).

Now we turn our attention to Darboux’s theorem: “One can always find
coordinates in which a symplectic form is constant and therefore after a
further linear change of coordinates may be put in canonical form.” The
original proof of Darboux was by induction on the dimension; see, for ex-
ample, Sternberg (1963). However, we now have available the well–known
proof of Moser and Weinstein that also works for strong symplectic forms.
This proof may be found in Abraham and Marsden (1978), p. 175, and fur-
ther information is found in Weinstein (1977). Roughly speaking, Darboux’s
theorem puts the q’s and p’s into canonical form suitable for quantization;
for some systems defined by reduction, this is a nontrivial and useful fact.

It is therefore of interest to investigate the validity of Darboux’s theorem
for (weak) symplectic forms. Without further hypotheses, the result is not
true (Marsden (1972)). There is a version due to Tromba (1976), valid for
a certain class of weak symplectic forms, but it is not appropriate for all of
those arising in examples. We present the following version of Darboux’s
theorem.
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Theorem 1.2. Let (P, ω) be a (weak) symplectic manifold. Assume that
there is a weak Riemannian metric 〈〈·, ·〉〉 on P and a complex structure
J : TP → TP (see Remark 6 above) satisfying the following conditions:

i ωx(vx, wx) = 〈〈Jx · vx, wx〉〉.

ii 〈〈·, ·〉〉 has a smooth Riemannian connection.

iii the Christoffel map (explained below) Γx : TxP × TxP → TxP has
a smooth 〈〈·, ·〉〉–adjoint; i.e., there is a smooth vector bundle map
A : TP × TP → TP such that

〈〈Γx(vx, wx), tx〉〉 = 〈〈vx, Ax(wx, tx)〉〉x.

Then there is a chart about each point x0 ∈ P in which ω is constant.

Remarks 1. In ii we require a torsion–free affine connection ∇ such
that, for smooth vector fields U, V,W , on P ,

(a) U(〈〈V,W 〉〉) = 〈〈∇UV,W 〉〉+ 〈〈V,∇UW 〉〉 and

(b) ∇UV −∇V U = [U, V ].

The connector of ∇ is the bundle map K : T 2P → TP such that
∇VW = K ◦TW ◦V ; cf. Dombrowski (1962). The Christoffel map Γ :
TP × TP → TP is defined by Γx(vx, wx) = K([wx]hvx) = K([vx]hwx),
where [wx]hvx ∈ T 2P is the horizontal lift of wx to an element of
Tvx(TP ). (In finite dimensions, Γ(vx, wx) = xi,Γijkw

jvk), where Γijk
are the usual Christoffel symbols.) Since ∇ is torsion free, Γ is sym-
metric. Notice that if TxP is completed relative to 〈〈·, ·〉〉x then Γx will
have an adjoint automatically; condition iii requires that the adjoint
maps TxP × TxP to TxP .

2. For Hilbert manifolds with strong symplectic forms, 〈〈·, ·〉〉 is a strong
metric, so the hypotheses regarding it are automatic. Thus in this case
the theorem reduces to the Moser–Weinstein theorem.

It is rather remarkable that most weak Riemannian metrics arising
in examples do have smooth connections or, equivalently, smooth
geodesic flows. The main examples we have in mind are Ebin (1970),
Ebin and Marsden (1970) and Tromba (1977). (Of course, many ex-
amples occur for which P is already linear and 〈〈·, ·〉〉 is an inner
product—it obviously has a smooth connection in that case.)

3. There is a related Morse lemma inspired by Palais (1968) and Tromba
(1976). Let f : M → R be C2 and suppose f(x0) = 0, df(x0) = 0,
and d2f(x0) is weakly nondegenerate. Assume that M has a weak
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Riemannian metric 〈〈·, ·〉〉 that has a smooth connection. Assume f
has a C1 gradient ∇f relative to 〈〈·, ·〉〉; i.e., 〈〈∇f(x), vx〉〉x = df(x) ·
vx such that D∇f(x0) : Tx0M → Tx0M is an isomorphism. Then
there is a local chart in which f is quadratic.

We refer to Tromba (1977) and Choquet-Bruhat et al. (1979) for
some nontrivial examples. This Morse lemma is useful in discussions
of elastic stability and bifurcations as well; see Ball et al. (1978),
Knops and Payne (1978) and Buchner and Schecter (1980).

4. Generalizations of the Darboux theorem (found in Weinstein (1977)
and Abraham and Marsden (1978)) may be proved by similar meth-
ods.

�

Proof of Darboux’s theorem. Since the result is local, we can assume
P is a Banach space X and that x0 = 0 ∈ X. Let ω1 be the constant
symplectic form equaling ω(0). Let ω̃ = ω1−ω and ωt = ω+ tω̃, 0 ≤ t ≤ 1.
By the (proof of the) Poincaré lemma,

ω̃ = dαwhereα(x) · y =
∫ 1

0

sω̃(sx) · (x, y)ds.

We seek a smooth vector field Yt such that iYtωt = −α. Note that α(0) = 0,
so Yt(0) = 0 as well. If this is done, the usual Weinstein–Moser proof will
complete the argument; i.e., if Ft denotes the evolution operator for Yt
with F0 = identity, then

d

dt
F ∗t ωt = F ∗t (LYtωt) + F ∗t

d

dt
ωt = F ∗t (−dα+ ω̃) = 0,

so F ∗1 ω1 = ω, and F−1
1 is the desired coordinate change. To show that Yt

exists, we write its defining equation as

(1− t)ω(x)(Yt(x), y) + tω(0)(Yt(x), y) = −α(x) · y.

By condition i of the theorem, this is equivalent to

(1− t)〈〈Jx · Yt(x), y〉〉x + t〈〈J0 · Yt(x), y〉〉0

=
∫ 1

0

s〈〈Jsx · x, y〉〉sxdx−
∫ 1

0

s〈〈J0 · x, y〉〉0ds. �

Lemma 1.3. There is an operator B(x) : X → X, depending smoothly
on x, such that, for each u, v ∈ X,

〈〈u, v〉〉x = 〈〈B(x)u, v〉〉0.
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Proof. We derive a differential equation for B(sx). We have

d

ds
〈〈u, v〉〉sx =〈〈Γsx(x, u), v〉〉sx + 〈〈u,Γsx(x, v)〉〉sx

=〈〈Γsx(x, u) +Asx(x, u), v〉〉sx
=〈〈B(sx)(Γsx(x, u) +Asx(x, u)), v〉〉0.

Thus we should have

d

ds
B(sx) = B(sx) ◦ Γsx(x, ·) +Asx(x, ·).

This equation has a unique solution with B(0) = Id, and serves to construct
B(x). �

Proof. Continuing with the proof of Darboux’s theorem, we apply the
lemma to the equation preceding it:

(1− t)〈〈B(x) · Jx · Yt(x), y〉〉0 + t〈〈J0 · Yt(x), y〉〉0

=
∫ 1

0

s[〈〈B(sx) · Jsx · x, y〉〉0 − 〈〈J0 · x, y〉〉0] ds.

Thus

[(1− t)B(x) ◦ Jx + tJ0] · Yt(x) =
∫ 1

0

s[B(sx) · Jsxx− J0 · x] ds.

For x = 0, (1 − t)B(x) · Jx + tJ0 is the identity, so in a neighborhood of 0
it is invertible. Thus Yt may be defined by

Yt(x) = [(1− t)B(x) ◦ Jx + tJ0]−1

∫ 1

0

s[B(sx) · Jsx · x− J0 · x] ds.

This therefore has the desired properties. �

Now we turn to Hamiltonian systems.

Definition 1.4. Let (P, ω) be a (weak) symplectic manifold and H :
DH → R a C1 function, where DH is a manifold domain in P . We call the
triple (P, ω,H) a Hamiltonian system. Set

DXH = {x ∈ DH |dH(x) ∈ range(i∗x ◦ ω[x)},

where ω[x : TxP → T ∗xP is defined as earlier and i∗x : T ∗xP → T ∗xDH is
restriction, the dual of the inclusion map ix : TxDH ↪→ TxP . Define

XH : DXH → TP |DXH , XH(x) = (i∗x ◦ ω[x)−1dH,

and call XH the Hamiltonian generator, or Hamiltonian vector field of H.
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Notice that

DXH ={x ∈ DH | there exists vx ∈ TxP such that
dH(x) · wx = ωx(vx, wx) for all wx ∈ TxDH},

and XH(x) = vx. Also note that for x ∈ DXH , dH(x) extends to T ∗xP .

Remarks and Examples 1. In finite dimensions we usually choose
DH = P , so that DXH = P as well. In canonical (Darboux) coordi-
nates, for which ω =

∑n
i=1 dq

i ∧ dpi, we have

XH(q, p) =
(
∂H

∂pi
,−∂H

∂qi

)
.

2. (a) Klein–Gordon equation. Let Q = L2(R3) and P0 = TQ, with
symplectic structure induced from the L2–metric (see Remark
6(b) following the definition of symplectic manifold). The energy
associated with the Klein–Gordon equation ∂2φ/∂t2 = ∆φ −
m2φ is

H(φ, φ̇) =
1
2

〈
φ̇, φ̇

〉
+

1
2
〈∇φ,∇φ〉+

m2

2
〈φ, φ〉,

whose natural domain of definition is H1 × L2 = DH . In this
example we choose P = DH with the symplectic structure pulled
back from P0. A straightforward calculation shows that DXH =
H2 ×H1 and that XH(φ, φ̇)× (φ̇,∆φ−m2φ).

(b) Schrödinger equation. Let P = H be a complex Hilbert space,
ω(φ, ψ) = − Im〈φ, ψ〉, HOP a given self–adjoint operator in H
with domain DHOP , and H(x) = 1/2〈HOPx, x〉, the associated
quadratic form (with domain D√HOP if HOP ≥ 0). A straight-
forward calculation shows that DXH = DHOP and XH(φ) =
iHOPφ corresponding to Schrödinger’s equation ∂φ/∂t = iHOPφ.
In a classical, i.e., nonquantum, situation like (a), the choice P =
DH is in agreement with the requirement that each “observable”
state ought to have finite energy, and also is in agreement with
the mathematics: in P the equations are well–posed, whereas
in P0 they are not. On the other hand, in (b) states of finite
energy are not directly observable; rather it is the transition
probabilities |〈ψ, φ〉|2 that are observable, corresponding to the
choice P = H. By Stone’s theorem, this choice is compatible
with the dynamics.

(c) For a fairly complete discussion of the linear theory, including an
abstract existence theorem, see Chernoff and Marsden (1974).
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3. Some simple nonlinear examples are discussed in Chernoff and Mars-
den (1974). In these lectures we shall consider two fairly substantial
examples, elasticity in Lecture 2 and general relativity in Lectures 9
and 10. See Abraham and Marsden (1978) for fluids and the KdV
equation.

4. Given a symplectic manifold (P, ω) and two functions f : Df ⊂ P →
R, g : Dg ⊂ P → R, their Poisson bracket is defined on DXf ∩DXg

by the usual formula

{f, g}(x) = ωx(Xf (x), Xg(x)).

�

Now we turn to the dynamics.

Definition 1.5. Let P be a Banach manifold and D ⊂ P be a manifold
domain. Let G : D → TP be a vector field with domain D. By a semiflow
for G we mean a map F : R ⊂ D × [0,∞) → D where R ⊂ D × [0,∞) is
open, with the following properties:

i F is continuous.

ii D × {0} ⊂ R and F (x, 0) = x for all x ∈ D.

iii Let t, s ≥ 0 and x ∈ D. Then

(x, t+ s) ∈ R⇔ (x, s) ∈ R and(F (x, s), t) ∈ R.

In this case, F (x, t+ s) = F (F (x, s), t).

iv For t ≥ 0,
d

dt
(i ◦ F (x, t)) = G(F (xt))

where i : D → P is the inclusion (the derivative is from the right at
t = 0). We shall write Ft(x) for F (x, t).

Remarks. 1. The association of a unique F with a given G is an
existence and uniqueness theorem. For example, in the context of
elasticity or general relativity, this is proved in Hughes et al. (1977).

2. Separate continuity in x and t sometimes implies joint continuity; see
Chernoff and Marsden (1974), Ball (1974) and Chernoff (1975).
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3. If the definition is modified to allow t ≤ 0 as well as t ≥ 0, one speaks
of a flow. This corresponds to reversibility, and may depend on the
choice of spaces.4

�

The next theorem is due to Chernoff and Marsden (1974).

Theorem 1.6. Let (P, ω,H) be a Hamiltonian system and let K : DK →
R be a C1 function. Assume:

i XH has a semiflow Ft.

ii DXH ⊂ P is a manifold domain.

iii DXK ⊃ DXH and XK : DXH → TP is continuous. Then, for each
x0 ∈ DXH and t > 0, (x0, t) ∈ R (the domain of the flow),

d

dt
K(Ft(x0)) = {K,H}(Ft(x0)).

Proof. We can work in a simultaneous chart for D = DXH and P , reduc-
ing ourselves to the Banach space case, and can assume that Ft(x0) = 0.
The restriction K|D is C1,

dK(x) · v = ωx(XK(x), v), x, v ∈ D,

and so

K(x) = K(0) +
∫ 1

0

ωsx(XK(sx), x) ds.

Thus,

K(Ft+h(x0))−K(Ft(x0))
h

=
∫ 1

0

ωsFt+h(α0) (XK(sFt+h(x0)),

Ft+h(x0)− Ft(x0)
h

)
ds.

As h→ 0, the integrand above converges uniformly in s to

ωsFt(x0)(XK(sFt(x0)), XH(Ft(x0)) = ω0(XK(0), XH(0)) = {K,H}(0),

and so

lim
h→0

K(Ft+h(x0))−K(Ft(x0))
h

= {K,H}(Ft(x0)),

as required. �

4For instance, in the KdV equation one has a flow in Hs, s ≥ 3 but only a semiflow

in the spaces of Kato (1979).
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Remarks. 1. One cannot simply use the chain rule to differentiate
K(Ft(x0)), since Ft(x0) need not be t–differentiable in the topology
of DK .

2. Taking K = H, we see that energy is conserved under rather weak
hypotheses. This may be relevant in discussing the Hamiltonian struc-
ture’s compatibility with the development of shocks in elasticity.

Results which are infinite dimensional analogues of “the flow consists
of canonical transformations” require more care. Indeed, if Ft(x) is only
continuous, the assertion F ∗t ω = ω does not make sense. For linear sys-
tems or smooth perturbations of linear systems (semilinear systems such
as ∂2φ/∂t2 = ∆φ+m2φ+F (φ)), Ft : D → D will be a smooth map and the
justification of F ∗t ω = ω is not difficult (see Segal (1962), Segal (1965) and
Chernoff and Marsden (1974).) However, for quasilinear systems occurring
in elasticity and general relativity, the situation is more delicate. We shall
just sketch a few ideas, referring to Dorroh and Graff (????) and Hughes
and Marsden (1978) for details and refinements. �

Definition 1.7. Let X and Y be Banach spaces with Y ↪→ X continuously
and densely included. A map G : Y → X is called generator differentiable
if it is Fréchet differentiable and its derivative satisfies

i

lim
||h||Y→0

||G(x+ h)−G(x)−DG(x) · h||x
||h||x

= 0

and

ii ||G(x+ h)−G(x)−DG(x) · h||X/||h||X is locally bounded in x ∈ Y
and h ∈ Y.

A map F : Y → X is called flow–differentiable if it is generator differen-
tiable and, moreover, DF (x) extends to a bounded linear operator of X to
X for each x ∈ Y .

Discussion

1. The concept of generator differentiable is useful because one can check
that, on appropriate function spaces, nonlinear differential operators
satisfy it.

2. The main result states that if G is generator differentiable and has
a semiflow Ft and if the variational equations DG(Ft(x)) for x fixed
have associated evolution operators (satisfying reasonable technical
conditions) then Ft is flow–differentiable for each t.
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3. For equations of the types in Hughes et al. (1977), these hypotheses
can be checked.

4. The results make sense in the context of general manifold domains
N ↪→M .

5. For flow–differentiable flows Ft, one can verify that the usual Lie
derivative formalism

d

dt
F ∗t α = F ∗t LGα

makes sense and is true (combine the differential calculus in Dor-
roh and Graff (????) with the calculations in Chernoff and Marsden
(1974)). In particular, for Hamiltonian systems, F ∗t ω = ω holds.

6. A satisfactory infinite dimensional version of Liouville’s theorem is
not known (to the author’s knowledge). The analogue of phase volume
µ = ωn in finite dimensions is undoubtedly a Wiener–type measure.
The work of Segal (1967) and Eells and Elworthy (see Eells (1972))
is relevant here.

7. One drawback to the concept of flow–differentiable maps is that it
probably is not strong enough to yield the existence of invariant man-
ifolds that are useful (perhaps necessary) in qualitative theory. To ob-
tain this one may need Ft : Y → Y to be differentiable from Y to Y .
See Marsden and Mccracken (1976) for conditions under which this
is true (the easiest case is that of Segal (1962) mentioned earlier; see
also Holmes and Marsden (1978)). For the KdV equation, see Ratiu
(1979).
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2
Elasticity as a Hamiltonian System

This lecture1 describes some of the mathematics of nonlinear elastodynam-
ics. For information on the mathematical and physical motivation, consult
Truesdell and Noll (1965), Rivlin (1966), Malvern (1969) or Marsden and
Hughes (1978).

Let B be a compact oriented smooth n–manifold, possibly with a bound-
ary, and S a smooth oriented boundaryless m–manifold. We call B the body
and S the (ambient) space. The configuration space consists of all defor-
mations of B in S; that is, all embeddings2 φ : B → S. Write Cs,p for the
embeddings of class W s,p. (See Figure 2.1) Although consideration of non-
smooth configurations is important in elasticity (cf. Ball (1977)), we shall
only consider ones that are at least C1.

Remarks on Cs,p

1. Cs,p is a smooth manifold modeled on W s,p(Rn,Rs) if s > (n/p) + 1 (see,
e.g., Palais (1968)). The C∞ deformations shall be denoted C.

1This section is an outgrowth of joint work done with T.J.R. Hughes. Comments

from a number of people, especially S. Antman, J. Ball and M. Gurtin, have been most
helpful.

2Physically we should only ask for immersions that need not be one–to–one on ∂B,

to allow, for example, contact due to folding, but this is technically difficult.
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X

Figure 2.1.

2. The tangent space to Cs,p at φ is given by

TφCs,p ={V : B → TS|V is of class W s,p and for all
X ∈ B, V (X) ∈ TxS wherex = φ(X)}.

3. A motion of B in S is a curve φt in Cs,p . The material velocity is defined
by

V (X, t) =
∂

∂t
φ(X, t),whereφt(X) = φ(X, t).

We can identify Vt, defined by Vt(X) = V (X, t), with an element of TφtCs,p.
The corresponding spatial velocity is defined by vt = Vt ◦φ−1

t . It is a vector
field on S with domain φt(B).

4. Different physical circumstances warrant variations in the definition. Three
examples follow.

(a) If one wishes to impose a boundary condition of place, then φ|∂B
should be prescribed; i.e., one considers a given φ∂B : ∂B → S and
lets

Cs,p∂B = {φ ∈ Cs,p|φ|∂B = φ∂B}.

One can show that Cs,p∂B is a smooth submanifold of Cs,p with

TφCs,p∂B = {V ∈ TφCs,p|V |∂B = 0}

(see Ebin and Marsden (1970) for the techniques needed to prove
this).

(b) If the deformations are to be confined to B (e.g., a fluid filling B),
one considers only maps such that φ(B) = B, i.e., Ds,p, the W s,p

diffeomorphisms of B to B. Again, Ds,p is a smooth manifold.
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(c) Let φ0 : B → S be a reference embedding, let n = m, and let dµ
be a volume element on S (i.e., dµ is a nowhere zero m–form on
S). A configuration φ is called volume preserving (relative to φ0 and
dµ) if (φ ◦ φ−1

0 )∗dµ = dµ. For s > (n/p) + 1, the volume preserving
configurations form a smooth submanifold.

�

While Cs,p is to be the configuration space, TCs,p is to be the phase space
for elastodynamics. We make some remarks on this.

1. Let dm0 be a given volume element on B called the mass density.
The mass density on φ(B) in a configuration φ will be taken to be
dm = φ∗dm0. The mass density on φ(B) is completely characterized
by the condition

∫
φ(U)

dm =
∫
U
dm0 for any open set U ⊂ B (with

smooth boundary, say) i.e., by the law of conservation of mass. For
a motion φt we have φ∗t dmt = dm0, and so if n = m,Lvtdmt =
Lvtdmt+∂dmt/∂t = 0, where Lvt is the Lie derivative and Lvt is the
“time frozen” or autonomous Lie derivative. This is the equation of
continuity. (If n 6= m, the mean curvature of φ(B) in S is involved in
the equation.)

2. Now assume that S has a Riemannian metric g. Define an inner prod-
uct on TφCs,p by

〈V,W 〉 =
∫
B
〈V (X),W (X)〉Xdm0(X),

and let K : TCs,p → R,K(V ) = 1/2〈V, V 〉 be the associated kinetic
energy function. As in Lecture 1, this inner product induces a smooth
map of TCs,p to T ∗Cs,p, and hence the strong symplectic form on
T ∗Cs,p pulls back to a (weak) symplectic form on TCs,p. The results
of Ebin and Marsden (1970) show that XK is a smooth vector field on
TCs,p. In particular, it is everywhere defined. Base integral curves of
XK are the geodesics of Cs,p and are given explicitly as follows: φt is
a geodesic in Cs,p if and only if φt(X) is a geodesic in S for each fixed
X ∈ B; i.e., 0 = At ≡ (D/Dt)Vt (acceleration = covariant derivative
of velocity).

For n = m (so the spatial velocity vt is a vector field on the open
submanifold φt(B) ⊂ S), the spatial acceleration is defined by at =
At ◦ φ−1

t . From the chain rule one gets at = ∂vt/∂t+∇vtvt.
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3. A special case of 2 is the fact that the solution of ∂u/∂t+ u · ∇u = 0
in Rn is the spatial velocity field of the motion φt(X) = X + tu0(X),
where u0 is the initial value of u. In general φt ceases to be an em-
bedding after a short time, and this solution is no longer valid.

4. The equations of an ideal fluid result if one replaces Cs,p by the
volume–preserving diffeomorphisms of B. Again it turns out that XK
is a smooth vector field, although this is by no means obvious (see
Ebin and Marsden (1970) and Marsden (1976)).

Next we discuss some useful notation.

1. Given a configuration φ : B → S, let F = Tφ be the derivative of φ,
and call F the deformation gradient.

2. Let C = φ∗g be the pullback of the metric on S, called the right
Cauchy Green tensor.

3. If φt is a motion, D = 1/2(∂C/∂t) is the material rate of deforma-
tion tensor. If n = m,D = φ∗t d, where d = Lvg is the spatial rate of
deformation tensor.

4. Let G be a Riemannian metric on B and let its associated volume
element be denoted dv. The Jacobian of a configuration φ : B → S is
denoted J : B → R and is defined by φ∗dµ = Jdv. The mass density
ρ is defined by ρ0dv = dm0 and ρdµ = dm.

5. Let w be a vector field on φ(B) and n = m. Its Piola transform
is the vector field W on B defined by W = Jφ∗w, or, equivalently,
iwdv = φ∗(iwdµ), where iw is the interior product. Let DIV W be
the divergence of W with respect to dv and div w the divergence of
w with respect to dµ. The Piola identity states that DIV W = (div
w)◦φ. (Proof . DIVWdv = Lwdv = diwdv = d(φ∗iwdµ) = φ∗diwdµ =
φ∗Lwdµ = φ∗ divw.)

Particular elastic materials are characterized by certain potential energy
functions. We will produce a map V : Cs,p → R that will serve as the
potential energy; our Hamiltonian will be H : TCs,p → R,H(Vφ) = K(Vφ)+
V(φ), where Vφ ∈ TφCs,p.

Let OS denote an orbit in MS , the space of C∞ Riemannian metrics
on S under the action by pullback of DS , the orientation preserving C∞
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diffeomorphisms of S. Thus

OS = {η∗g0|g0 is a given metric and η ∈ DS}.

The orbit consists of all metrics geometrically equivalent to a given one,
such as the Euclidean metric on R3. Likewise, let OB denote an orbit of
metrics on B. Let ΛB denote the smooth densities on B.

Definition 2.1. An elastic stored energy function W is a smooth map3

W : C × OS ×OB → ΛB

satisfying:

1. Material frame indifference. For φ ∈ B, g ∈ OS , G ∈ OB and ξ ∈ DS ,
we have

W(φ, g,G) =W(ξ ◦ φ, ξ∗g,G).

2. Locality If (φ1, g1, G1) and (φ2, g2, G2) agree on an open set U ⊂ B
(i.e., φ1 = φ2 on U, g1 = g2 on φ1(U) = φ2(U) and G1 = G2 on U),
then W(φ1, g1, G1) =W(φ2, g2, G2) on U .

If we have the identity

W(φ ◦ η, g, η∗G) = η∗(W(φ, g,G)), φ ∈ C, η ∈ DB,

we call W materially covariant.

Remarks. 1. (a) In condition 1, one can view ξ either actively or
passively; i.e., ξ ◦φ can be viewed as a superposed displacement
or as the same displacement φ in a different representation.

(b) For S = R3 and ξ an isometry, i.e., a rigid motion, condition 1
expresses the invariance ofW as a function of φ under φ→ ξ ◦φ
(interpreted either as a superposed rigid motion or as an observer
transformation). Hence the name “material frame indifference”
(although “spatial frame indifference” seems just as appropri-
ate).

(c) Condition 1 is equivalent to W depending on φ and g only
through C = φ∗g. Then material covariance reads

η∗(W(C,G)) =W(η∗C, η∗G).

3In C∞ topologies there is no canonically agreed–on differential calculus. Any one in

which the elementary rules of calculus (especially the chain rule) hold will do here, for

example, the one in Lang (1972).
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2. Condition 2 is a natural physical requirement that the elastic stored
energy in a piece of material is independent of what the material else-
where is doing. (For global constraints such as incompressibility this
need not hold.)

3. (a) Material covariance refers to the transformation property of W
under a change of reference configuration. It is closely related
to the notion of material symmetry at X ∈ B, i.e., and η ∈ DB
such that η(X) = X, (η∗G)(X) = G(X) and

W(φ ◦ η, g,G)(X) =W(φ, g,G)(X).

If, for every A ∈ SO(X,G) (the special orthogonal group of
TXB), there is an η ∈ DB that is a material symmetry at X and
TXη = A, then the material is called isotropic. One can show
that material covariance is equivalent to isotropy.

(b) Notice that DB acts on C by composition on the right while DS
acts on C by composition on the left.

4. (a) Let S2(B) denote the bundle of symmetric two–tensors on B,
and S+

2 (B) the positive definite ones. Thus a section of S+
2 (B)

is just a Riemannian metric on B. Let

Ŵ : S+
2 (B)× S+

2 (B)→ R

be a given smooth map. Define W : C × OS ×OB → ΛB by

W(φ, g,G) = Ŵ ◦ (C ×G)dv,

where C = φ∗g and dv is the volume element of G. Following
standard abuse of notation we shall write

Ŵ ◦ (C ×G)dv = Ŵ(C,G)dv,

and say that Ŵ “depends only on the point values of C and G”.
We say that Ŵ is natural if for any diffeomorphism η of B, and
points CX ∈ S+

2 (B), GX ∈ S+
2 (B),

Ŵ (η∗CX , η∗GX) = Ŵ (CX , GX) .

(b) It is readily verified that a W defined by a natural map Ŵ is a
materially covariant stored energy function. Under some addi-
tional hypotheses discussed below, the converse is also true.
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(c) (Neo–Hookean material). Here is an example of a natural W.
Let λ1, . . . λn be the eigenvalues of

√
CX (taken on TXB with

the inner product GX), and let Ŵ (CX , GX) = λ2
1 + . . .+λ2

n−n.
(Generalizations of this due to Mooney–Rivlin and Ogden are
also natural.)

�

Given a stored energy function W and keeping g,G fixed, define

V : C → R,V(φ) =
∫
B
W(φ, g,G).

We shall remain in C∞ until we have given more functional form to W; at
the moment there is no restriction on the number of derivatives of φ or g
on which W may depend.4

Now let

H : TC → R,H (Vφ) = K (Vφ) + V(φ).

(If there are body forces or surface tractions, additional terms must be
added to H). Let us formally compute the Hamiltonian vector field XH for
H. Indeed, we have already described XH. It is well known (e.g., Abraham
and Marsden (1978), p. 227) that XV is the vertical lift of −grad V. By
definition, grad V is the vector field on C such that

〈gradV(φ),W 〉 = dV(φ) ·W

for W ∈ TφC. But we can write

dV(φ) ·W =
∫
B
DφW(φ, g,G) ·W =

∫
B
〈W,DφW(φ, g,G)∗ · 1〉 dv,

which defines the adjoint of DφW. Thus grad V(φ) = ρ−1
0 DφW(φ, g,G)∗ ·1.

At this stage,DφW may be a high order differential operator. The equations
defining an integral curve of XH are therefore

ρ0At = −DφW(φt, g,G)∗ · 1 onmathcalB,

where At = DVt/Dt is the acceleration of the curve φt.

4If the theory is to couple to gravity, one could demand “minimal coupling,” i.e.,

dependence only on the point values of g and hence on first derivatives of φ alone; cf.

Hawking and Ellis (1973).
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Next let us compute the rate of change of total energy of a material
volume U ⊂ B (that is assumed to have smooth boundary) along a solution:

d

dt

{∫
U

ρ0

2
||Vt(X)||2 dv(X) +

∫
U

W(φt, g,G)
}

=
∫
U

{ρ0(At, (X), Vt(X)dv(X) +DφW(φt, g,G) · Vt}

=
∫
U

{〈−DφW(φt, g,G)∗1, Vt(X)〉dv(X) +DφW(φt, g,G) · Vt}.

If U = B, then this vanishes as it should. Now we invoke a basic axiom of
continuum physics.

Cauchy’s Axiom of Power Given a solution curve φt as above, there
exists a smooth function T of the arguments X, t and N ∈ TXB with values
in T ∗xS, where x = φt(X), such that

d

dt

{∫
U

ρ0

2
||Vt||2dv +W(φt, g,G)

}
=
∫
∂U

T (X, t,NX) · Vtda(X);

in this formula, NX is the unit outward normal to ∂U and da is the Rie-
mannian area element on ∂U .

Remarks. 1. Cauchy’s axiom says that if a piece U of material un-
dergoes a motion, then the rate of change of the kinetic plus elastic
potential energies equals the power expended by some force field on
the surface ∂U . This force field is the first Piola–Kirchhoff traction
field.

A theorem of Cauchy asserts that T is necessarily linear in NX ; we
shall omit the proof.5 Thus T may be regarded as a (time–dependent)
section of the bundle

T ∗B ⊗ φ∗t (T ∗S).

In the continuum mechanics literature such sections are examples of
two–point tensors. We shall write

T (X, t)(NX , Vt(X))

for this tensor, and call it the first Piola–Kirchhoff stress tensor.
Under the metrics g and G there is an associated tensor S which
goes by the same name. Thus S is a section of TB ⊗ φ∗t (TS). The
Piola transform (defined above) applied to the first slot of S produces

5See, for example, Truesdell and Toupin (1960), Malvern (1969) and Gurtin and

Martins (1976). The proof depends only on Cauchy’s axiom of power.
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a section of φ∗t (TS⊗TS). We can regard this as a section of TS⊗TS
over φt(B) if φt(B) ⊂ S is open. The resulting two–tensor is τ , the
Cauchy (or spatial) stress tensor. On the other hand, the two–tensor
P on B defined by pulling S back to B, i.e.,

P (X, t)(α1, α2) = S(X, t) · (α1, φt ∗ α2)

so that P is a section of TB⊗TB, is called the second Piola–Kirchhoff
stress.

2. Cauchy’s axiom may be rewritten using the divergence theorem as

d

dt

{∫
U

ρ0

2
||Vt||2dv +W(φt, g,G)(X)

}
=
∫
U

DIV(S(X, t)·Vt(X))dv(X),

where · denotes contraction in the second slot of S and DIV is the
divergence on B of the resulting vector field. Combining this with our
previous expression for the rate of change of the total energy of U
and using the arbitrariness of U yields the identity

DφW(φt, g,G)·Vt = 〈DφW(φt, g,G)∗1, Vt〉+〈DIVS, Vt〉dv+S·∇Vtdv.

We assume that an identity of this type holds for all possible solutions,
in particular, at t = 0; we can choose φ and V arbitrarily. Choose
X0 ∈ B and the fact that V and ∇V can be varied independently at
X0, to conclude that

(a) DφW(φ, g,G)∗·1 = −DIVS

and

(b) DφW(φ, g,G)·V = S·∇dv.

Locality and (b) show thatW is a function only of the point values of
the derivative of φ. (See Gurtin (1972) for a similar result.) However,
we know that W depends on φ and g only through C by material
frame indifference. Thus, W is induced by a map Ŵ. Moreover, W is
materially covariant if and only if Ŵ is natural.

3. By abuse of notation, let us write Ŵ(F, g,G), Ŵ(C,G) and Ŵ(φ, g,G)
to indicate the intended variables. The three basic stress tensors can
be related toW via the identity (b) and the chain rule; one gets three
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equivalent formulae:

First Piola–Kirchhoff stress, S =ρ0
∂ξ̂

∂F
;

Second Piola–Kirchhoff stress P =2ρ0
∂ξ̂

∂C
;

Cauchy stress τ =2ρ
∂ê

∂g
;

where6 ξ̂dm0 = Ŵ; i.e., ξ̂ is the stored energy per unit mass and ê
denotes ξ̂ ◦ φ−1.

4. In terms of S, the basic equations of motion defining the Hamiltonian
system are

ρ0At = DIVS,

where S is regarded as a function of φ through the constitutive rela-
tion S = ρ0∂ξ̂/∂F . Boundary conditions appropriate to the problem
at hand must be added as well.

5. In local coordinates, on S = R3 and ρ0 = constant, the equations of
motion read

∂2φα

∂t2
=
∑
j

∂

∂xj
[Sjα(φβ,i)] =

∑
i,j,β

∂Sjα

∂φβ,i

∂2∂β

∂xj∂xi
.

The elasticity tensor is Ajαiβ = ∂Sjα/∂φβ,i. This is a quasilinear sec-
ond order system. It is generally assumed to be hyperbolic; i.e., the
strong ellipticity (or Legendre–Hadamard condition) holds:

Ajαβ
iξαξβηjηi ≥ ε|ξ|2|η|2

for some ε > 0. Under this condition one can show that XH : TCs →
T 2Cs,2(Cs = Cs,2) defines a local flow on TCs if s > n/2 + 1, and
the set up described in Lecture 1 holds. See Hughes et al. (1977) and
Kato (1977).

6. It is generally believed that the flow defined by elasticity is valid only
for a short time, and that shocks will develop. It is not known how to
deal properly with this situation. We refer to Marsden and Hughes

6This formula for the Cauchy stress is similar to one due to Doyle and Erickson

(1956). For its relationship to the Green–Naghdi–Rivlin balance of energy arguments,

see Marsden and Hughes (1978).
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(1978) for references, and to the interesting recent work of Klainer-
man (1979).

7. The static problem consists of describing the critical points of V.
This is of special interest because the usual methods in the calculus
of variations (such as convexity or the Palais–Smale condition) do not
apply. Rather one must use weak methods developed by Morrey; this
approach has been developed by Ball (1977). It would be interesting
to see whether Ball’s results fit the context developed by Graff (1978).

8. There are many interesting open problems in elasticity related to
Remarks 6 and 7. One of these is how to describe the formation of
holes or ruptures in bodies under large stress. In this direction, re-
cent work of Ball (1982) is especially interesting. Another problem is
that of least stability: is a minimum of V dynamically stable? This
problem is subtle because of the weak nondegeneracy of the second
derivative of V at minima. See Knops and Wilkes (1973), Ball et al.
(1978) and Marsden and Hughes (1978) for further information.

9. Ideas similar to those presented here for elasticity seem to be useful
for continuum physics in general. For example, Arnold (1966) and
Ebin and Marsden (1970) use these methods to describe the Euler
equations of a fluid. More recently, the Vlasov–Maxwell equations
of plasma physics have been understood as an infinite dimensional
Hamiltonian system using the symplectic diffeomorphism group of
T ∗R3 by Morrison, Marsden and Weinstein; see Marsden and Wein-
stein (1982)).

�
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3
Symmetry and Reduction

Several of the remaining lectures are related to the interaction between
Hamiltonian systems and symmetries. This lecture reviews some of the
material we shall need. (Consult Abraham and Marsden (1978), Chapter 4
for more information.) We shall deal with the finite dimensional case first;
the generalization to infinite dimensions can be carried out in the context
of Lecture 1.

Definition 3.1. Let G be a Lie group and M a manifold. An action of
G on M is a smooth mapping Φ : G × M → M satisfying Φ(e, x) = x
and Φ(g1, g2, x) = Φ(g1,Φ(g2, x)). Let Φg : M →M be defined by Φg(x) =
Φ(g, x) = Φ(g, x). (Thus Φe = Id and Φg1,g2 = Φg1 ◦ Φg2 ; so Φ may be
regarded as a homomorphism from G to D(M), the diffeomorphism group
of M .)

Let g be the Lie algebra of G. For ξ ∈ g define the corresponding in-
finitesimal generator ξM , a vector field on M , by requiring it to be the
generator of the flow Ft = Φexp iξ; thus

ξM (x) =
d

dt
Φexp iξ(x)|t=0 = TΦx · ξ|g=e,

where Φx(g) = Φ(g, x).

Remark. 1. The orbit of a point x ∈ M is denoted by Ox = G · x =
{Φ(g, x)|g ∈ G}. This is an immersed submanifold with

Tx(G · x) = {ξM (x)|ξ ∈ g}.
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2. The adjoint action of G on g is defined by

(g, ξ) 7→ Adg ξ = Te(Rg−1 ◦ Lg) · ξ,

where Rg and Lg denote left and right translation by g respectively.
The corresponding infinitesimal generators are

ξg = ad ξ : η 7→ [ξ, η].

3. Two useful general identities are

(a) (Adg ξ)M = (Φg)∗ξM

and
(b) [ξM , ηM ] = −[ξ, η]M .

4. The coadjoint action of G on g∗ is defined by

(g, µ) 7→ Ad∗g−1 ·µ.

(Note that for linear transformations, the pullback map coincides
with the dual.) The corresponding infinitesimal generators are

ξg∗ = − ad∗ξ .

5. A theorem of Kirillov states that for any Lie group G, if µ ∈ g∗ then
the orbit of µ under the coadjoint action is a symplectic manifold.
The symplectic form ωµ is determined by

ωµ(ξg∗(µ), ηg∗(µ)) = −µ([ξ, η]).

We shall see shortly that this is a special case of a general theorem
on reduction.

�

Now we turn to the conserved quantities associated with the symmetries
of a symplectic manifold, due to Souriau and Kostant.

Definition 3.2. Let (P, ω) be a symplectic manifold and Φ an action of
a Lie group G on P . Assume the action is symplectic : Φ∗gω = ω for all
g ∈ G. A momentum mapping is a smooth mapping J : P → g∗ such that

〈dJ(x) · vx, ξ〉 = ωx(ξP (x), vx)

for all ξ ∈ g, vx ∈ TxP , where dJ(x) is the derivative of J at x, regarded as
a linear map of TxP to g∗, and 〈 ·, ·〉 is the natural pairing between g and
g∗.
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A momentum map is Ad∗–equivariant when the following diagram com-
mutes for each g ∈ G:

P P

g∗ g∗

Φg

Ad∗g−1

J J

-

-
? ?

If J is Ad∗–equivariant, we call (P, ω,G, J) a Hamiltonian G–space.

Remarks 1. Given J : P → g∗, let Ĵ : g× P → R, Ĵ(ξ, x) = 〈Ĵ(x), ξ〉
and Ĵξ(x) = Ĵ(ξ, x). The condition for a momentum map is equivalent
to

ξP = XĴξ
.

2. (Commutation relations for Ad∗–equivariant momentum maps). By
differentiating J ◦ Φg = Ad∗g−1 ◦J in g, we find that

{Ĵξ, Ĵη} = Ĵ[ξ,η].

3. (a) If H : P → R is invariant under the symplectic action Φ and J
is a momentum map for the action, then J is constant on the
orbits of XH . Indeed, H ◦ Φg = H implies that {H, ĵξ} = 0.
Moreover, the flow Ft of XH and Φg commute.

(b) The momentum map for the action Φ of G × R on P , namely
Ψ(g,t) = Φg ◦ Ft, is J ×H, the energy–momentum map.

4. (Construction of J).

(a) Suppose that ω = −dθ and the action Φ preserves θ. Then we
can choose

Ĵ(ξ, x) = iξP θ (interior product) .

Proof. Since Φ∗gθ = θ,Lξpθ = 0 (Lie derivative). Thus iξP dθ +
diξP θ = 0, or diξP − iξP ω. Thus ξP has iξP θ as a Hamiltonian. One
can check that this momentum map is Ad∗–equivariant.

(b) Suppose that G acts on Q and hence on T ∗Q. Then, as a special
case of (a), one finds that

Ĵ(ξ, αq) = 〈αq, ξQ(q)〉.
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(This reproduces the usual linear and angular momentum for n par-
ticles in R3 as a special case.) �

5. (Adjoint formalism). Let the symplectic form ω on P be related to
a Riemannian metric 〈〈 ·, ·〉〉 on P and a complex structure J on P
by the formula discussed in Lecture 1 : ω(vx, wx) = 〈〈Jvx, wx〉〉. By
definition of the momentum mapping,

〈dJ(x) · vxξ〉 = ωx(ξP (x), vx) = 〈〈JξP (x), vx〉〉.

Define the adjoint of dJ(x) : g→ TxP by

〈dJ(x) · vx, ξ〉 = 〈〈vx, dJ(x)∗ξ〉〉.

Thus JξP (x) = dJ(x)∗ξ. Since J2 = −I, we get

ξP (x) = −J ◦ [dJ(x)]∗ · ξ.

This way of relating the “Hamiltonian” J to its family of generators
{ξP } is convenient in a variety of situations.

6. General relativity provides motivation for considering situations more
general than the preceding. One possibility is to replace the group G
by a manifold E and the action Φ by an equivalence relation on P .
(For a group the equivalence classes are the orbits.) We assume that
there is a generator, i.e., a section of the bundle L(TE, TP ) of linear
maps of TeE to TxP over E × P . Thus, for each e ∈ E, x ∈ P and
ξ ∈ TeE, we have a vector ξP (x) ∈ TxP , depending linearly on ξ.
These vectors are assumed to span, as ξ varies, the tangent space to
the equivalence class of x. A momentum map is then a map

Ĵ : TE × P → R,

such that, for each ξ ∈ TeE, ξP = XĴζ
as before. The adjoint formal-

ism is unaltered in this formulation. (In general relativity there is,
secretly, a group lurking in the background, but it is masked when
dynamics is considered; see Lectures 9 and 10.)

7. Associated to a momentum map Ĵ : g × P → R is a Lagrangian
submanifold of T ∗P when J is thought of as a Morse family (see
Weinstein (1977), Lecture 6). Another one of interest is described in
Abraham and Marsden (1978), Exercise 5.31.
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8. Sometimes G represents a “gauge” group and, simultaneously, J in-
corporates the dynamics. In this case the formula ξP (x) = −J ◦
DJ(x)∗ξ shows how the dynamics changes with different choices of
gauge ξ. We will see this explicitly in general relativity later. There is
often a physical constraint J = const associated with this situation.
To appreciate this requires lengthy excursions into classical relativis-
tic field theory and the Dirac theory of constraints. In fact, these
topics are a subject of current research.

�

We now review the reduction process in the context of momentum map-
pings. The formulation we use is due to Marsden and Weinstein (1974).
The ideas will be utilized in subsequent lectures.

First we have the notation. Let J : P → g∗ be an Ad∗–equivariant
momentum mapping for a symplectic group of G on P . Let µ ∈ g∗, and
suppose J−1(µ) is a submanifold of P with tangent space at x given by ker
dJ(x) (for example, suppose µ is a regular value for J). Let

Gµ = {g ∈ G|Ad∗g−1 µ− µ},

the isotropy group of µ. Note that if G is abelian or if µ = 0, then Gµ = G.
By Ad∗–equivariance, Gµ acts on J−1(µ). Suppose J−1(µ)/Gµ is a C∞

manifold for which the canonical projection πµ : J−1(µ) → J−1(µ)/Gµ is
a smooth submersion; i.e., the action is free and proper. Set

Pµ =
J−1(µ)
Gµ

,

called the reduced phase space. (If Pµ is not a manifold for global reasons,
the constructions may still be done locally.) Let iµ : J−1(µ)→ P be inclu-
sion.

Theorem 3.3. Under the hypotheses described, there is a unique sym-
plectic structure ωµ on Pµ such that

π∗µωµ = i∗µω.

Comments 1. The proof follows from the general process of Cartan
described in Lecture 1, together with these key identities for each
x ∈ J−1(µ) :

(a) Tx(Gµ · x) = Tx(G · x) ∩ Tx(J−1(µ)).

(b) Tx(G · x) is the ωx–orthogonal complement of Tx(J−1(µ)).
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See Abraham and Marsden (1978), §4.2 for details.

2. If f and g are G–invariant, then {f, g}µ = {fµ, gµ}, where fµ is the
induced function on Pµ.

3. If H : P → R is G–invariant, then XH projects to a vector field on
Pµ, namely XHµ . Fixed points of the latter are called relative equi-
libria of XH . The stability of relative equilibria can thus be studied
using reduction (see the next lecture for an example).

4. If G is abelian and dim G = k, then the momentum mapping rep-
resents k integrals in involution; i.e., f1, . . . , fk are functionally in-
dependent and {fi, fj} = 0. Then P has dimension dim P − 2k and
represents the classical reduction due to integrals in involution. If dim
Pµ = 0 i.e., dim P = 2k, the system is completely integrable. One
can use the same definition for nonabelian or infinite dimensional
groups.1 For G = SO(3), and µ 6= 0, Gµ = S1 and reduction now
reduces to Jacobi’s “elimination of the node.”

5. If P = T ∗G and G acts on itself (and hence on P ) by left translations,
the above theorem reproduces the Kirillov theorem.

6. (Due to A. Weinstein). Reduction at a general µ can, in some sense,
be replaced by reduction at µ = 0 as follows. Let Oµ be the coadjoint
orbit through µ in g∗, and consider the product P ×Oµ be the coad-
joint orbit through µ in g∗, and consider the product P × Oµ with
symplectic structure ω 	 ωµ. Its momentum map is J = (inclusion).
Then (P × Oµ)0 and Pµ are symplectically diffeomorphic. (Related
results will occur in Example (1a) in the following lecture.)

�

1In the infinite dimensional case, this definition appears to us to be the natural one;

for example, the KdV equation is completely integrable in our sense (and everybody

else’s too); see also the recent work of Berger and Church (1979).
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4
Applications of Reduction

This lecture gives three related examples of reduction. Additional examples
are given in the next lecture. The reader may wish to “warm up” by trying
to work out the passage to center of mass coordinates for n particles as an
example of reduction.

(Moncrief ’s splitting) Let J : P → g∗ be an Ad ∗–equivariant momentum
mapping for a symplectic action of G on (P, ω). We shall split the tangent
space to P at a point x ∈ P into three summands which reflect the reduc-
tion process. The method turns out to be useful in a number of contexts,
but its original purpose was to unify various decompositions that occur in
geometry and relativity (see Moncrief (1975a) and Arms et al. (1975) for
more information).

If V and W are finite dimensional inner product spaces and T : V →W
is a linear transformation, then we have two orthogonal decompositions,

V = kerT ⊕ rangeT ∗

and
W = rangeT ⊕ kerT ∗.

�

These basic decompositions extend to the infinite dimensional case when
T or T ∗ is an elliptic operator (the splittings are called the Fredholm al-
ternative).
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Assume that the symplectic form ω on P arises from an inner product
〈〈·, ·〉〉 on P and a complex structure J, as explained in Lecture 1; thus
ω(vx, wx) = 〈〈Jvx, wx〉〉, and the adjoint formalism gives

ξP (x) = −J ◦ [dJ(x)]∗ · ξ.

We shall not immediately use an inner product on g; the adjoint dJ(x)∗ :
g→ TxP is defined by

〈〈vx, dJ(x)∗ · ξ〉〉 = 〈dJ(x) · vx, ξ〉,

where the pairing on the right–hand side is the natural one between g and
g∗.

We have
TxP = ker dJ(x)⊕ range dJ(x)∗.

(If J(x) = µ, this represents an orthogonal decomposition of TxP along
and normal to the level set J−1(µ). However, no condition on the manifold
structure of J−1(µ) is required for the validity of the decomposition).

There is another decomposition associated with the linear operator αx :
gµ → TxP, ξ 7→ ξp(x), namely,

TxP = rangeαx ⊕ kerα∗x,

where α∗x : TxP → g∗µ is given by 〈α∗x · vx, ξ〉 = 〈〈vx, αx · ξ〉〉.
The fact thatGµ preserves the set J−1(µ), i.e., Ad∗–equivariance, implies

the inclusion range αx ⊂ ker dJ(x). Thus the two decompositions may be
intersected to give Moncrief’s splitting:

TxP = rangeαx ⊕ (ker dJ(x) ∩ kerα∗x)⊕ range dJ(x)∗.

The summands represent, respectively, the tangent space to the orbit Gµ ·x
(gauge directions), the tangent space to Pµ and the orthogonal space to
J−1(µ). Using the adjoint formalism, and assuming G = Gµ for simplicity,
we get

TxP = range J ◦ dJ(x)∗ ⊕ [ker dJ(x)⊕ ker(dJ(x) ◦ J)]⊕ range dJ(x)∗.

(Action angle decomposition). 1 We shall now rearrange the summands in
Moncrief’s decomposition to produce a symplectic decomposition of TxP .
In the case when G is abelian and the system is completely integrable, this
reduces to standard action angle variables.

We shall produce a symplectic isomorphism,

TxP ≈ Tµ(G · µ)⊕ [gµ/gx ⊕ (gµ/gx)∗]⊕ T[x]Pµ,

1See Abraham and Marsden (1978), 5.21 and Mishchenko and Fomenko (1978b).
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where gµ is the Lie algebra of Gµ, the isotropy subgroup of µ, T[x]Pµ =
[ker dJ(x) ∩ kerα∗x] and gx ⊂ gµ is the Lie algebra of Gx, the isotropy
group of x for the action of Gµ.2

From the fact that Tx(G · x) is the ωx–orthogonal complement of ker
dJ(x), we see that Tx(G · x) ≈ range dJ(x)∗. On the other hand, range
αx ≈ Tx(Gµ · x). But Tµ(G · µ) ≈ g/gµ and gµ/gx ≈ Tx(Gµ · x). Now
Ad∗–equivariance implies that Gx is also the isotropy group at x for the
action of G, so g/gx ≈ Tx(G · x), Thus,

Tµ(G · µ)⊕ gµ/gx ⊕ (gµ/gx)∗ ≈Tµ(G · µ)⊕ Tx(Gµ · x)⊕ (gµ/gx)∗

≈g/gµ ⊕ gµ/gx ⊕ Tx(Gµ · x)
≈g/gx ⊕ Tx(Gµ · x)
≈Tx(G · x)⊕ Tx(Gµ · x)
≈ range dJ(x)∗ ⊕ rangeαx.

This produces the stated isomorphism, and one can check that it is symplec-
tic. Thus, locally, one has a decomposition of P into symplectic manifolds:
if µ is a regular value of J (and hence gx = {0}),

P ≈ G · µ× T ∗Gµ × Pµ.

For this decomposition of manifolds, it is interesting to start over and
take another, global point of view suggested by Alan Weinstein and Jedrzej
Sniatycki. We proceed by a series of remarks. We recall first the following
reduction lemma mentioned in Lecture 3 (throughout, µ will be a regular
value of J). �

Lemma 4.1. (a) Tx(Gµ · x) = Tx(G · x) ∩ Tx(J−1(µ)).

(b) Tx(J−1(µ)) and Tx(G · x) are ω–orthogonal complements.

As usual, G · x denotes the orbit of x ∈ P under the action of G. A
corollary of this is that the orbit Gµ·x is an isotropic submanifold of P (i.e.,
T (Gµ · x) ⊂ T (Gµ · x)⊥, where ⊥ denotes the ω–orthogonal complement).

2. Now consider the manifold J−1(Oµ), where Oµ ⊂ g∗ is the orbit of
µ under the coadjoint action. There are two natural projections (cf.
Marle (1976)):

Jµ = J |J−1(Oµ) : J−1(Oµ)→ Oµ

and
πµ : J−1(Oµ)→ Pµ;

2In Lecture 8 we will see that x is a regular value of J if and only if gx = {0}. We

will denote gx = sx in that lecture, and call it the symmetry group of x.
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πµ is the composition of the projection J−1(Oµ)→ J−1(Oµ)/G and
the natural identification of J−1(Oµ)/G with J−1(µ)/Gµ.

Let iµ : J−1(Oµ)→ P be the natural inclusion, and Ωµ the canonical
symplectic structure, on Oµ; Ωµ(ξg∗(µ̄), ηg∗(µ̄)) = 〈µ̄, [ξ, η]〉.

Proposition 4.2. 2(a) i∗µω = π∗µωµ + J∗µΩµ.

To prove this, we use the following:

2(b) Tx(J−1(Oµ)) = Tx(G·x)+ker dJ(x).

These are ω–orthogonal by Remark 1. (Note that G ·x ⊂ J−1(Oµ) by
equivariance.)

Proof of 2(b) Tx(J−1(Oµ)) = dJ(x)−1(Tµ̄(G · µ)), where µ̄ =
J(x). By Ad∗–equivariance,

dJ ◦ ξP = ξg∗ ◦ J (4.1)

(see [Abraham and Marsden (1978), p. 270]). Thus,

Tµ̄(G · µ) = {ξg∗(µ̄)|ξ ∈ g} ={dJ(x) · ξP (x)|ξ ∈ g}
={dJ(x) · v|v ∈ Tx(G · x)}

Applying dJ(x)−1 gives the result. To prove 2(a) we need another
remark.

3.

Claim 4.3. J∗µΩµ restricted to Tx(G · x)× Tx(G · x) coincides with
ω restricted to the same place.3

Proof. Let v, w ∈ Tx(J−1(Oµ)) be of the form v = ξP (n) + v′ and
w = ηP (x) + w′ where v′, w′ ∈ ker dJ(x). We prove that

J∗µΩµ(v, w) = ω(ξP (x), ηP (x)), (4.2)

3Remark 3 reduces to Kostant’s theorem on homogeneous Hamiltonian G–spaces if

G acts transitively; cf. Guillemin and Sternberg (1977).
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which implies the claim. To see 4.2, write

J∗µ(Ωµ)(v, w) =Ωµ(dJ(x) · v, dJ(x) · w)

=Ωµ(dJ(x) · ξP (x), dJ(x) · ηP (x))
=Ωµ(ξg∗(µ̄), ηg∗(µ̄)) by(1))
=〈µ̄, [ξ, η]〉( definition of Ωµ)
=〈J(x), [ξ, η]〉
={〈J, ξ〉, 〈J, η〉}(x) (by equivariance)
=ω(ξP (x), ηP (x)) sinceX〈J,ξ〉 = ξP by definition of J).

By definition of the reduced form ωµ and πµ,

π∗µωµ(ξP (x) + u, ηP (x) + v) = ω(u, v) (4.3)

for u, v ∈ ker dJ(x). The above proposition therefore follows from
4.2, 4.3 and the ω–orthogonality of Tx(G · x) and ker dJ(x). �

4. Now we are ready to discuss our local symplectic decomposition. Fix
a point x0 ∈ P . The group action defines an isotropic embedding

i : Gµ0 → Gµ0 · x0,whereµ0 = J(x0).

The symplectic normal bundle has fiber at g ∈ Gµ0 given by

Ti(TgHµ0)⊥/Ti(TgGµ0) =Tx(Gµ0 · x0)⊥/Tx(Gµ0 · x0), x = g · x0

=[Tx(G · x0) ∩ ker dJ(x)]⊥/Tx(Gµ0 · x0)(Remark 1(a))
=[Tx(G · x0) + ker dJ(x)]/Tx(Gµ0 · x0)(Remark 1(b))

=Tx(J−1(Oµ0))/Tx(Gµ · x0).(Remark 2(b))

Next, embed Gµ0 as an isotropic submanifold of T ∗Gµ0 × Pµ0 ×Oµ0

by g 7→ 0g× [g ·x0]×g ·µ0, where 0g ∈ T ∗Gµ0 is the zero element at g.

5. By Proposition 2(a), these two embeddings have naturally isomorphic
symplectic normal bundles. Thus, Weinstein (1977) isotropic embed-
ding theorem gives:

Theorem 4.4. There is a neighborhood U of Gµ0 · x0 in P and
V of Gµ0 in T ∗Gµ0 × Pµ0 × Oµ0 and a symplectic diffeomorphism
F : U → V . The construction of F shows also that it is natural with
respect to J−1(Oµ0):
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U ∩ J−1 (Oµ0) V ∩ (Gµ0 × Pµ0 ×Oµ0)

Pµ0 ×Oµ0 Pµ0 ×Oµ0

F

Identity

πµ0 × Jµ0 Project

-

-
? ?

It would be of interest to inves-
tigate when this can be done globally; for such a discussion in the
abelian case, see Duistermaat (1980). In particular, this reference
isolates a global obstruction in this case and shows that it actually
occurs in the spherical pendulum.

6. As Weinstein (1977) notes, the diffeomorphism F above still has some
ambiguity. We now show how to remove this on the infinitesimal level,
and how to relate it to our infinitesimal decomposition above. Let
〈〈·, ·〉〉 be a Riemannian metric on P that is G–invariant, and J a
complex structure, also G–invariant, such that

ω(u, v) = 〈〈Ju, v〉〉.

Fix x ∈ P , and let Wx = the 〈〈·, ·〉〉–orthogonal complement of
Tx(J−1(Oµ)). Then Wx is isomorphic to Tx(Gµ · x) by the map J;
see Lemma 4.1 (b). Identify Tx(Gµ · x) with T ∗x (Gµ · x), and hence
with g∗µ by 〈〈·, ·〉〉.

Proposition 4.5 (6a). Let (V, ω) be a symplectic vector space, E ⊂ V a
subspace and suppose

(E + E⊥)⊕W = V.

Then V has the following ω–orthogonal decomposition into symplectic sub-
spaces:

V = [W ⊕ (E ∩ E⊥)]⊕ [E ∩W⊥]⊕ [E⊥ ∩W⊥].

The proof is a direct verification.
Applying Proposition 6(a) to TxP = V,E = Tx(G · x), E⊥ = ker dJ(x)

and W = Wx ≈ g∗µ gives

Proposition 4.6 (6b). There is a symplectic decomposition

TxP ≈ (gµ × g∗µ)⊕ T[x]Pµ ⊕ TµOµ.

If µ is regular, this is the same as the decomposition with which we began
this example.
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(Example 2 Simple mechanical systems) Sometimes one can identify re-
duced Hamiltonian systems a little more explicitly than just as (Pµ, ωµHµ).
This is the case, for instance, with the simple mechanical systems studied
by Smale (1970); see Satzer (1977) and Abraham and Marsden (1978).

Let Q be a Riemannian manifold and K : T ∗Q → R the kinetic energy
(we work on the cotangent bundle for convenience only). Let G act on
Q and hence on T ∗Q; assume that the action is by isometries (leaves K
invariant), and let J : T ∗Q → g, Ĵ(ξ, αq) = αg(ξQ(q)) be the associated
momentum mapping. Assume that µ is a regular value for J and that the
action of Gµ on Q is free and proper (so Q/Gµ is a manifold).

Define a one–form αµ on Q at q by minimizing K over the αq such that
J(αq) = µ. (This set of αq is an affine subspace of T ∗xQ.) One can check
that αµ is Gµ–equivariant.

Let Qµ = Q/Gµ, let α̂µ be the one–form on Qµ induced from αµ, and
then regard (by pullback) α̂µ as a one–from on T ∗Qµ. Let

Ωµ = ω0 + dα̂µ,

where ω0 is the canonical symplectic form on T ∗Qµ.
Now T ∗Qµ ≈ {αq ∈ T ∗Q|αq · ξQ(q) = 0 for all ξ ∈ gµ}/Gµ, and we

can embed J−1(µ)/Gµ into T ∗Qµ by αq 7→ αq − αµ(q) and passing to the
quotient. One verifies that this produces a symplectic embedding

φµ : Pµ ↪→ T ∗Qµ.

If g = gµ (e.g., G is abelian) then φµ is onto.
By a simple mechanical system, we mean a Q as above together with a

G–invariant potential V : Q→ R. Thus we get a G–invariant Hamiltonian
H = K +V on T ∗Q, and hence an induced Hamiltonian on Pµ. The corre-
sponding Hamiltonian system on T ∗Qµ is also a simple mechanical system:
there is a canonically induced metric but we use the amended potential:

Vµ(q) = V (q) +K(αµ(q)).

The verification is not difficult. The presence of the αµ in the symplectic
structure Ωµ on T ∗Qµ means that the system on T ∗Qµ may be regarded
as a particle moving under the combined influence of a potential Vµ and a
magnetic potential αµ. (This phenomenon was first pointed out in a special
case by Whittaker (1959), as far as we know.) �

Example 2a A seemingly simple but interesting special case was pointed
out by Alan Weinstein. Consider n harmonic oscillators in the plane. Choose
Q = (R2)n\{0} with coordinates ((x1, y1), . . . , (xn, yn)), and let V ((x1, y1), . . . , (xn, yn)) =
1/2{α1(x2

1 + y2
1) + . . . + αn(x2

n + y2
n)}, αi > 0. Let G = S1 act on Q by

rotation in each R2, and let µ 6= 0 be given. One checks that, with the
Euclidean metric on Q,

αµ(x1, . . . , yn) =
(−y1dx1 + x1dy1) + . . .+ (−yndxn + xndyn)

x2
1 + y2

1 + . . .+ x2
n + y2

n

µ.
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Regard Q = Cn\{0} ≈ S2n−1×R+, so that S1 acting on Q gives an induced
action on the complex sphere S2n−1; its quotient is the complex projective
space CPn−1; the S1 bundle S2n−1 over CPn−1 is the Hopf fibration. Thus

Qµ ≈ CPn−1 × R+.

The metric on Qµ is dr2 + r2dΩ2, where dΩ2 is the standard metric on
CPn−1. The amended potential is given by Vµ((x1, y1), . . . , (xn, yn)) =
V ((x1, y1), . . . , (xn, yn)) +K(αµ((x1, y1), . . . , (xn, yn))) as before.

The original Hamiltonian system contains stable periodic orbits with
angular momentum µ; these are stable fixed points of the reduced system
on T ∗Qµ. However, Vµ need not have minima there. Their stability may
be viewed as an instance of magnetic stabilization. (The special case n = 2
results in the motion of a particle in CP 1 × R+ ≈ R3 − {0} under the
influence of a magnetic monopole.)4 �

(A particle moving in a Yang–Mills field). See Kerner (1968), Torrence
and Tulczyjew (1973), Sternberg (1977), Menzio and Tulczyjew (1978),
Weinstein (1978b) and Sniatycki (1979). Sternberg proceeds as follows.

Let π : B → Q be a principal G–bundle and (P, ω) a symplectic manifold.
Let G act symplectically on P and J be an Ad∗–equivariant momentum
mapping. Let τ : T ∗Q → Q, and let π̃ : B̃ → T ∗Q be the pullback bundle
by τ . Let B̃ × GP be the associated bundle over T ∗Q, i.e., (B̃ × P )/G. A
connection γ on B (A Yang–Mills field) is a splitting γb : TqQ→ g ↪→ TbB
for the sequence

0→ g→ TbB → TqQ→ 0;

i.e., γ is a g–valued one–form on B. From this we can construct a symplectic
structure ωγ on B̃×GP as follows. Let γ̃ be the induced connection on B̃.
Then the pairing 〈γ, J〉 may be regarded as a one–form on B̃ ×P . Then ω̃
be the pullback on B̃ × P of ω on P via projection on the second factor.
Then

d〈γ, J〉+ ω̃

is a two–form on B̃ × P , and one checks that it is G–invariant (see the
momentum lemma in Abraham and Marsden (1978)), and so is defined on
B̃ × GP . Let ω̃0 be the pullback of the canonical symplectic structure on
T ∗Q to B̃ × GP . Then let

Ω = ω̃0 + d〈γ, J〉+ ω̃.

One can check that Ω is nondegenerate, and so is a symplectic form.
Given a Hamiltonian H : T ∗Q→ R, we can let H̃ be H composed with

the projection B̃×GP → T ∗Q, and then the Hamiltonian system describing

4Related examples and remarks have been given by Miller (1976) and Kummer (1981).
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the motion of the particle in the Yang–Mills field is (B̃×GP, ωγ , H̃). (Usu-
ally one chooses P to be a coadjoint orbit in g∗ . . .; for electromagnetism
P is a point {e}, the charge).

Weinstein proceeds as follows. The right action of G on B lifts to a
symplectic action of G on T ∗B with momentum map JB : T ∗B → g∗; on
the fiber over b ∈ B, JB is the dual of the natural inclusion g → TbB.
The momentum map of the associated left action is −JB . The momentum
map for the action of G on T ∗B × P is thus −JB + J . From the reduced
symplectic manifold at the regular value µ = 0:5

Now let H : T ∗Q→ R and γ be given. The dual of the connection defines
a map γ∗ : T ∗B → T ∗Q, which is constant on G–orbits and so induces a
projection πγ : (T ∗B × P )0 → T ∗Q. Let Hγ = H ◦ πγ . The Hamiltonian
system is now ((T ∗B × P )0, ω0, Hγ).

These two Hamiltonian systems are isomorphic by a diffeomorphism con-
structed as follows: the map γ∗ : T ∗B → T ∗Q naturally factors through a
map γ̃∗ : T ∗B → B̃, so we get a G- equivariant map γ̃∗P : T ∗B×P → B̃×P .
The restriction of γ̃∗P to (−JB +J)−1(0) is a diffeomorphism, and hence we
get an induced diffeomorphism γG of the G–quotients, i.e., of (T ∗B × P )0

with B̃×GP . This diffeomorphism is verified to be symplectic, and to map
H̃ to Hγ . �

The situation is summarized as follows:


Modify H via

connection γ, but
use a universal

symplectic
structure


isomorphic←→


“Universal” H
but symplectic

structure depends
on γ


5This construction is an abstraction of that in Torrence and Tulczyjew (1973); the

level set (−JB + J)−1(0) plays the role of a constraint in the sense of the Dirac theory
of constraints. We remark that level sets of momentum maps seem to play this role
quite generally; we note that J−1(µ) is first class (coisotropic) if and only if g = gµ. In

particular, the constraint here is first class. (See the references in the Introduction.)
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(T ∗B × P )0 B̃ × GP
γG

πγ

-

? ?
T ∗Q T ∗Q

R

H H

@
@
@
@R

�
�

�
�	

Examples 2 and 3 are related as follows. For the special case of the
motion of a charged nonrelativistic particle in an electric potential and a
magnetic field, we consider a principal circle bundle π : B → Q over a
Riemannian manifold Q. The momentum map for the natural S1 action
on T ∗B is J(αb) · ξ = 〈αb, ξB(b)〉. The level set J−1(e) corresponds to the
charge constraint. Given a metric on B we can reduce a simple mechanical
system on B at µ = e to obtain the motion of a particle in Be ≈ Q in the
presence of a magnetic field (electromagnetic if Q is space–time6).

This discussion is in fact a reformulation of the examples in Menzio
and Tulczyjew (1978). Passing to Example 3 corresponds to shifting the
momentum from e to 0 by enlarging T ∗B to T ∗B × {e} and reducing at 0
instead. For a discussion of the relationship between the methods described
here and the original one of Kerner (1968), see Sniatycki (1979).

As Guillemin and Sternberg (1978) point out, the method of Sternberg
above is obtained if one derives the motion of a particle by the Einstein–
Infeld–Hoffman limiting procedure done on the four–dimensional coupled
Einstein–Yang–Mills system. (The limit is done as the Yang–Mills source
concentrates on a time–like line.) This hints that the Sternberg method is
“more basic”. However, one can also treat the Einstein–Yang–Mills equa-
tions as a Hamiltonian system dynamically, as in Arms (1979). It seems
that if the limit is taken here, one recovers Weinstein’s picture. Thus our
view is that both are equally basic.

There are many more applications of reduction, some of which are given
in the next lecture. For an application to the traction problem is elastic-
ity (and the “significance” of Korn’s second inequality), see Marsden and
Hughes (1978).

For an application of reduction to plasma physics, see Marsden and We-
instein (1982).

6In the relativistic case one also has a mass constraint corresponding to a level set

of the momentum map for the action of R in the homogeneous formulation ([Abraham

and Marsden (1978), p. 235]).
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5
Two Completely Integrable Systems

A Hamiltonian system with symmetry is called completely integrable when
its reduced phase space is a point. Under rather general hypotheses, Mishchenko
and Fomenko (1978b) proved that this implies complete integrability via
an abelian group; i.e., one has integrals in involution. We shall now de-
scribe two classical examples of such systems, the Calogero system and the
Toda lattice. Both are closely related to reduction, but each in a different,
somewhat unexpected way. An excellent general reference is Moser (1980).

As indicated in the previous lecture, reduction provides a method of pro-
ducing complicated Hamiltonian systems out of simple ones. This principle
applies to the Calogero system, a result due to Kazhdan et al. (1978).

Definition 5.1. The Calogero system is the system of n particles on the
line, i.e., P = T ∗Rn, with

H(q1, . . . , qn, p1, . . . , pn) =
1
2

∑
p2
i +

1
2

∑
i6=j

1
(qi − qj)2

.

Remarks 1. The system is translation invariant, so that p1 + · · ·+pn
is conserved. Passing to the center of mass coordinates (reduction),
we shall assume p1 + . . .+ pn = 0, q1 + · · ·+ qn = 0. As we shall see,
this system is completely integral. The n−1 independent integrals in
involution, H = f1, . . . , fn−1, will be exhibited as traces of powers of
a certain matrix.
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2. The Calogero system is related to the KdV equation ut − 3uux +
(1/2)uxxx = 0 in the following way, called a pole expansion. Consider
the locus

L = {(q, p) | gradH(q, p) = 0} =

(q, 0)

∣∣∣∣∣∣∣
n∑

j,k=1
k 6=j

(qj − qk)−3 = 0

 .

The restriction to L of the f2–flow q̈i = 6
∑
k 6=j(qj − qk)−2 is the

same as the time–reversed KdV flow of u(x, t) = i
∑n
j=1(x−qj(t))−2.

L = ∅ if all qj are real. If qj are complex and n = d(d+1)/2 for some
d ∈ N, L 6= ∅ and its closure L̄ is diffeomorphic to Cd; see Airault
et al. (1977) and Chudnovsky and Chudnovsky (1977).

3. Another interesting pole expansion whose complete integrability is
not known is one associated to the two–dimensional Euler equations
by a vortex approximation. One ends up with n one–dimensional
particles moving via the Hamiltonian

H(
→
x1, . . . ,

→
xn) = − 1

4π

∑
i6=j

ΓiΓj log || →x i −
→
x j ||,

where
→
x i∈ R2 and Γi are constants. (See Chorin and Marsden (1979),

p. 85.) The vector (Γ1, . . . ,Γn) is a discretization of the vorticity and
plays the role of µ ∈ g∗ in reduction.

4. A bridge between the equations one is studying and Lie group meth-
ods is the Lax equation. We shall bypass this for economy and pass
directly to the Lie group structure associated with the Calogero sys-
tem. The next remark will be the general context.

5. Let G be a semisimple Lie group with Killing form 〈·, ·〉, and let G
act on g× g by two copies of the adjoint representation

Φg(ξ, η) = (Adg ξ,Adg η).

The infinitesimal generator of ξ ∈ g is

ξg×g = (ad ξ, ad ξ).

Put on g×g = Tg the symplectic structure associated with the Killing
form

ω((ξ1, η1), (ξ2, η2)) = 〈η2, ξ1〉 − 〈ξ2, η1〉.
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The above action is clearly symplectic, and the associated momentum
map is given by

J : g× g→ g∗, J(ξ, η) = 〈[η, ξ], ·〉.

Thus, if ε ∈ g∗ ≈ g, the isotropy group of ε is

Gε = {g ∈ G | Adg ε = ε},

and the reduced space

(g× g)ε =
J−1(ε)
Gε

is a symplectic manifold.

If f1, . . . , fn are functions in involution on g× g and are G–invariant,
then the corresponding induced functions (fi)ε on (g × g)ε are also
in involution by our general remarks on reduction. For the Calogero
system one can find f1, . . . , fn by inspection, although the direct dis-
covery of (f1)ε, . . . , (fn)ε is by no means transparent.

6. Now consider a specific case of Remark 5. Make the following choices:
G = SU(n), so that g = su(n) = n × n traceless skew Hermitian
matrices, and

ε = −


0 i . . . i

i . . . i
...

... i . . . i

i
... i 0

 .

One computes that J−1(ε) = {(η, ξ)| there is a g ∈ G such that
η = Adg δ, ξ = Adg λ, where δ is some diagonal matrix

δ =

 q1 0
. . . . . .
0 qn


and λ = (λij) is of the form λij = 1/(qi−qj), i 6= j with λij arbitrary}.
Also,

Gε =

g ∈ G|g has


1
1
...
1

 as an eigenvector

 .

It follows that (g×g)ε is identifiable with the set of pairs (δ, λ) of the
stated form and hence with T ∗(Rn), where pj = iλij , minus collision
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points where qi = qj for some i 6= j. The reduced symplectic form is
exactly ωε =

∑
k dpk ∧ dpk. Define H : g × g → R by H(η, ξ) = 1/2

Re trace (ξ2). This is G–invariant, and a computation shows that
the reduced Hamiltonian Hε is minus the Calogero Hamiltonian. On
g× g, Hamilton’s equations are

λ̇ = −[ζ, λ], (a Lax–type equation) ,

δ̇ = −(gradH)(λ)− [ζ, δ],

where

ζjk = iδjk
∑
k 6=l

1
(qk − ql)2

− i(1− δjk)
1

(qj − qk)2
.

Let fk(η, ξ) = 1/(k+ 1) Re trace (ξk+1), k = 1, . . . , n, so that f1 = H
and (fk)ε = 1/(k+ 1) trace (λk+1). Since the fk are functions only of
ξ, it is obvious that {fk, fj} = 0 and hence {(fk)ε, (fj)ε} = 0. Cheval-
ley’s theorem1 implies independence of the fk (see Moser (1980) for
a direct proof). This proves complete integrability of the Calogero
system.

7. Similar things hold for the Moser–Sutherland system in which one
uses the potential 1/ sin2(qi − qj) and G = SU(n). This time it is
convenient to use G acting on TG rather than on g×g. For the sinh−2

potential or p–potential (p = Weierstrass p–function), one replaces G
by “Kac–Moody groups.”

�

Next we turn to the Toda lattice. This time we shall get the integrals in
involution not by inspection but by the application of the Kostant–Symes
theorem (see Kostant (1979) and Symes (1979), Symes (1980)). We shall
formulate it in a way that clarifies the role of reduction.2 The setup is as
follows.

Let (P, ω,G, J) be a Hamiltonian G–space. Let i : R→ P be a symplectic
submanifold that is invariant under a subgroup H ⊂ G. Thus, (R, i∗ω,H, j)
is a Hamiltonian H–space, where the momentum mapping is j = πh∗ ◦
J |R, πh∗ : g∗ → h∗ being the canonical projection and

1Let g be a Lie subalgebra of sl(n). Then the functions gk(A) = tr(Ak), k = 2, . . . , n,

are independent. This may be regarded as a theorem of algebraic geometry.
2What follows represents joint work with T. Ratiu. See Ratiu (1980a) for more infor-

mation. Another approach which directly uses Weinstein’s co–normal reduction theorem

(Weinstein (1977), pp. 25–26) and Remark 4 in Lecture 1 was recently obtained by Symes

(1980).
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Assumptions 1. The Lie algebra splits g = h⊕ t, where the sum is a
vector space sum.

2. µ ∈ h∗ is a regular value for j and Hµ acts freely and properly
on j−1(µ), so the reduced space Rµ is a manifold. Assume each
x ∈ j−1(µ) is a regular point for J .

3. For any ξ, η ∈ t, one has the identity

{Ĵξ | R, Ĵη | R} = {Ĵξ, Ĵη} | R.

�

Remark on Assumption 3. An example of sufficient conditions to check
the validity of 3 is as follows. Suppose P = T ∗Q1 and R = T ∗Q2, where
Q2 ↪→ Q1 and where J is induced by a cotangent action; i.e., the lift of
an action on Q1 and H leaves Q2 invariant; assume that the infinitesimal
generators {ξQ1 | ξ ∈ t} are integrable, producing a foliation F of manifolds
whose tangent space meets TxQ2 only in {0} for each x ∈ Q2. (Roughly
speaking, there is a K–action for a subgroup K ⊂ G whose orbits are trans-
verse to the H–invariant subspace Q2). Then an easy computation in local
coordinates shows that each side of the required identity is zero. �

Theorem 5.2. Let Assumptions 1, 2 and 3 hold and let f and g be G–
invariant functions on P that are constant on each surface J−1(µ̂), where
µ̂ ∈ {µ} ⊕ t.3 Then

{fµ, gµ} = 0 onRµ,

where fµ and gµ are the functions induced on Rµ by f and g.

Proof. The conclusion is equivalent to {f | R, g | R}(x) = 0 for x ∈
j−1(µ). Since f and g are G–invariant, Xf (x) and Xg(x) belong to ker TxJ .
Since f and g are constant on J−1(µ̂), where µ̂ = J(x) ∈ {µ} ⊕ t∗, Xf (x)
and Xg(x) are ω–orthogonal to ker TxJ . Therefore Xf (x) and Xg(x) belong
to Tx(Gµ̂ · x) (see Comment 1 following the main theorem on reduction in
Lecture 3). Thus there exist ξη ∈ gµ̂ such that

Xf (x) = ξP (x) andXg(x) = ηP (x).

Write, according to the decomposition g = h⊕ t,

ξ = ξ′ + ξ′′ and η = η′ + η′′,

3Secretly, this means that f and g are constant when reduced by µ̂.
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so that
Xf (x) = ξ′P (x) + ξ′′P (x) = ξ′R(x) + ξ′′P (x)

(since H leaves R invariant and ξ′ ∈ h), with a similar formula for Xg(x).
The following Lie algebra identity holds:

〈µ̂, [ξ′′, η′]〉 = −〈µ̂, [ξ′′, η′′]〉.

Indeed, η ∈ gµ̂, so 〈µ̂, [ξ′′, η]〉 = 0.
Now TxP = TxR⊕ (TxR)⊥, a symplectic orthogonal decomposition. Let

πx : TxP → TxR be the projection onto the first factor. One has this
general fact for symplectic submanifolds:

Xf |R(x) = πx ·Xf (x).

Thus

{f | R, g | R}(x) =ωx(πx ·Xf (x), Xg|R(x))
=ωx(Xf (x), Xg|R(x))
=ωx(ξ′R(x) + ξ′′P (x), Xg|R(x))
=ωx(ξ′R(x), Xg|R(x)) + ω(ξ′′P (x), Xg|R(x)).

The first term vanishes by conservation of j on R. Thus

{f | R, g | R}(x) =ωx(ξ′′P (x), Xg|R(x))
=ωx(ξ′′P (x), πx ·Xg(x))
=ωx(ξ′′P (x), η′R(x) + πx · η′′P (x))
=ωx(ξ′′P (x), η′P (x)) + ωx(ξ′′P (x), πx · η′′P (x))

={Ĵξ′′ , Ĵη′}(x) + ωx(πx · ξ′′P (x), πx · η′′P (x))

=Ĵ[ξ′′,η′](x) + {Ĵξ′′ | R, Ĵη′′ | R}(x),

by Ad∗–equivariance of J . The first term is 〈µ̂, [ξ′′, η′]〉 = −〈µ̂, [ξ′′, η′′]〉 by
our earlier remark. By Assumption 3, the second term is {Ĵξ′′ , Ĵη′′}(x) =
〈µ̂, [ξ′′, η′′]〉, so they cancel and {f | R, g | R}(x) = 0 as required. �

Corollary 5.3. (Kostant–Symes theorem). Let G be a Lie group with
H ⊂ G a Lie subgroup. Assume g = h ⊕ t a vector space sum, where
[t, t] ⊂ t; i.e., t is a Lie subalgebra.

Let f, g : g∗ → R be two functions that are constant on coadjoint orbits
in g∗. Then, for µ ∈ h∗,

{fµ, gµ} = 0,

where fµ and gµ are the restrictions of f and g to the coadjoint orbit of µ
in h∗.
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Proof. Apply the theorem with P = T ∗G and R = T ∗H, recalling that
passing to the reduced manifolds is equivalent to restricting to coadjoint
orbits (see Lecture 3). The condition [t, t] ⊂ t implies the identity in As-
sumption 3 by the remark on Assumption 3. �

One can vary the hypotheses and assume, instead of [t, t] ⊂ t, that [h, t] ⊂
t. This is useful in the n–dimensional rigid body; see Manakov (1976),
Mishchenko and Fomenko (1978b),Mishchenko and Fomenko (1978a), Adler
and Van Moerbeke (1980), Adler and Moerbeke (1980) and Ratiu (1980b),
Ratiu (1980c).

Our second completely integrable system, the Toda lattice, is defined as
follows.

Definition 5.4. The nonperiodic Toda lattice is the Hamiltonian system
of n particles on the line with

H(q1, . . . , qn, p1, . . . , pn) =
1
2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1 .

Since Toda’s original paper in 1967, there has been a great deal of work on
this system and its relation to the KdV equation. See for example Flaschka
(1974), Moser (1975),Mckean (1979) and Kostant (1979). We shall confine
ourselves to demonstrating its complete integrability using the Kostant–
Symes theorem. We proceed to do this by a number of steps, and then
make some additional remarks.

1. The system is translation–invariant, so that total momentum p1 +
· · · + pn is conserved. Passing to the center of mass coordinates (re-
duction!), we can assume p1 + · · ·+ pn = 0 and

∑
qi = 0.

2. Let bi = −pi and ai = eqi−qi+1 , and

L =


b1 a1 0
a1 b2 a2

a2

an−1

bn
0 an−1

 , B =


0 a1 0
−a1 0 a2

−a2 0
an−1

0
0 −an−1

 .

The equations of motion can now be written in Lax form:

L̇ = [B,L], H =
1
2

traceL2.

Since B is skew, this implies that the eigenvalues of L are constant
in time, the isospectral property.
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3. Now let g = sl(n,R), t = so(n,R) and h = lower triangular matrices.
Let us identify h∗ with the upper triangular matrices (the orthogonal
complement of h with respect to the Killing form (A,B) = trace
(AB∗)). Let A→ A+ denote taking the upper triangular part of the
matrix A. Let

µ =


0 1 0

0 1
0 1

. . .
1

0 0

 ∈ h∗,

and compute that the coadjoint orbit of µ in h∗ consists of the ma-
trices

L+ =


b1 a1 0

b2
an−1

0 bn

 ,
and that the canonical symplectic structure on this coadjoint orbit is

ω =
n−1∑
i=1

dbi ∧
n−1∑
j=1

dαj
aj

=
n∑
i=1

dqi ∧ dpi.

The Lax equations are just the Hamilton equations for L+ on this
coadjoint orbit with Hamiltonian H(A) = 1/2 trace A2.

4. Let fk : g∗ → R, fk(A) = (1/(k+1)) trace (Ak+1), so f1 = H. Clearly,
fk is constant on coadjoint orbits in g∗ by invariance of the trace un-
der conjugation. Thus, by the Kostant–Symes theorem, the fk are
in involution on coadjoint orbits in h∗. They are independent by the
Chevalley theorem,4 so the Toda lattice is completely integrable.

5. Kostant (1979) generalizes this procedure to any simple Lie algebra.

6. The periodic Toda lattice is a Hamiltonian system on orbits of Kac–
Moody Lie algebras; see Adler and Van Moerbeke (1980), Adler and
Moerbeke (1980).

4See footnote 1, p. ?.
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7. There is a great deal of algebraic geometry behind the Toda lattice
and the KdV equation. See the lectures of Mckean (1979) for details
and references.

8. The group underlying the KdV equation is not yet completely un-
derstood. The work of Adler (1979) and Ebin and Marsden (1970)
and comments of Duistermaat suggest that there is good reason both
for technical purposes (see Ratiu (1979)) and aesthetic interest, to re-
gard the KdV equation as a right invariant Hamiltonian system on the
group of invertible Fourier integral operators. (See Ratiu and Schmid
(1981).)
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6
Bifurcations of a Forced Beam

Symmetries1 in physical systems are often associated with bifurcations.
The remaining lectures all illustrate various facets of this philosophy. This
lecture illustrates a particular case of a completely integrable Hamiltonian
system undergoing a dynamic symmetry breaking bifurcation as an external
parameter is varies.

A physical model will help motivate the analysis. One considers a beam
that is buckled by an external load Γ, so that there are two stable equi-
librium states and one unstable (see Fig. 6.1). The whole structure is then
shaken with a transverse periodic displacement f cosωt. The beam moves
due to its inertia. In a (related) experiment (see Moon and Holmes (1979)
and Tseng and Dugundji (1971)), one observes periodic motion about the
two stable equilibria for small f , but as f increases, the motion becomes
aperiodic or “chaotic.” The mathematical problem is to develop theorems
to explain this bifurcation.

Chaotic motion in dynamical systems is now a burgeoning industry; the
results given here represent one mechanism among many. See, for exam-
ple, Cohen and Neu (1979) for a survey of some of the current papers,
and Guckenheimer (1979) for a related mechanism in reaction–diffusion
equations.

1This lecture is based on joint work with Philip Holmes. For further background and
related work, see Holmes (1979a), Holmes (1979b), Chow et al. (1980) and Holmes and

Marsden (1978), Holmes and Marsden (1980).
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z

Figure 6.1. A buckled beam undergoing periodic forcing.

There are a number of specific models that can be used to describe the
beam in Figure 6.1 One such model is the following p.d.e. for the deflection
w(z, t) of the center line of the beam:

ẅ + w′′′′ + Γw′′ = κ

(∫ 1

0

[w′]2dζ
)
w′′ = ε(f cosωt− δẇ),

where · = ∂/∂t,′= ∂/∂z,Γ = external load, κ = stiffness, δ = damping,
and ε is a parameter used to measure the relative size of f and δ. We use
the “hinged” boundary conditions w = w′′ = 0 at z = 0, 1. We also assume
the beam is in its first buckled state, π2 < Γ < 4π2.

A simpler model is obtained by looking for “lowest mode” solutions of
the form w(z, t) = x(t) sin(πz). Substituting into the p.d.e. and taking the
inner product with sin(πz), one finds the following Duffing type equation
for x:

ẍ− βx+ αx3 = ε(γ cosωt− δx),

where

β = π2(Γ− π2) > 0, α =
κπ4

2
, γ =

4f
π
.

The methods used are inspired by Melnikov (1963); see also Arnold
(1964) and Holmes (1979a). We shall set it up in an abstract fashion that
applies to the above p.d.e.

It is known that the time t–maps of the Euler and Navier–Stokes equa-
tions written in Lagrangian coordinates are smooth. Thus the methods of
this paper apply to these equations, in principle. On regions with no bound-
ary, one can regard the Navier–Stokes equations with forcing as a perturba-
tion of a Hamiltonian system (the Euler equations; see Ebin and Marsden
(1970)). Thus, if one knew a homoclinic orbit for the Euler equations, then
the methods of this paper would produce infinitely many periodic orbits
with arbitrarily high period, indicative of turbulence. No specific examples
of this are known to us (one could begin by looking at T 2 and studying
Arnold (1966)).
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Similar situations probably arise in traveling waves and the current–
driven Josephson junction. For example, an unforced sine–Gordon equation
with damping studied by M. Lévi seems to possess a homoclinic orbit (cf.
M. Levi and Miranker (1978)). Presumably the ideas will be useful for the
KdV equation as well.

Abstract hypotheses and technical lemmas. We consider an evolu-
tion equation in a Banach space X of the form

ẋ = f0(x) + εf1(x, t),

where f1 is periodic of period T in t.
Assumption 1

(a) Assume f0(x) = Ax+ F (x), where A generates a C0 one–
parameter group of transformations on X and where F :
X → X is C∞, F (0) = 0, DF (0) = 0.

(b) Assume f1 : X × S1 → X is C∞, where S1 = R/(T ), the
circle of length T .

(c) Assume F ε
t is globally defined, for ε ≥ 0 sufficiently small.

Assumption 1 implies that the associated suspended autonomous
system on X × S1,

ẋ = f0(x) + εf1(x, θ), θ̇ = 1,

has a smooth local flow, F ε
t (by Segal (1962)).

In examples, Assumption 1(c) may sometimes be proved using
energy estimates. This is related to the next assumptions (see
Lecture 1 for the terminology).
Assumption 2
Assume that the system ẋ = f0(x) (the unperturbed system) is
Hamiltonian with energy H0 : X → R. Assume that there is a
symplectic two–manifold Σ ⊂ X invariant under the flow F 0

t ,
and that the origin p0 = 0 ∈ Σ is a saddle point and has a
homoclinic orbitx0(t); i.e.,

p0 = lim
t→+∞

x0(t) = lim
t→∞

x0(t).

See Figure 6.2 (a). In specific applications one must be able to
calculate with the orbit x0(t), either explicitly or numerically.
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In the p.d.e. example above, x0(t) is known analytically (see
below). Let x0 = x0(0), a conveniently chosen point on the orbit.

= stable manifold of

Figure 6.2. (a) Phase portrait on Σ for ε = 0. (b) Perturbation of invariant
manifolds, ε > 0.

Next we introduce a nonresonance hypothesis.
Assumption 3

(a) Assume that the forcing term f1(x, t) in (3) has the form

f1(x, t) = A1x+ f(t) + g(x, t),

where A1 : X → X is a bounded linear operator, f is pe-
riodic with period T, g(x, t) is t–periodic with period T and
satisfies g(0, t) = 0, Dxg(0, t) = 0, so g admits the estimate

||g(x, t)|| ≤ const ||x||2,

for x in the neighborhood of 0.

(b) Suppose that the “linearized” system

ẋL = AxL + εA1xL + εf(t)

has a T–periodic solution xL(t, ε) such that xL(t, ε) = O(ε).

For finite dimensional systems, this can be replaced by the
assumption that 1 does not lie in the spectrum of eTA; i.e., none
of the eigenvalues of A resonate with the forcing frequency.

For the beam problem, with f(t) = f(z) cosωt, Assumption
3(b) means that ω 6= ±λn, n = 1, 2, . . . , where iλn are the purely
imaginary eigenvalues of A. This is seen by solving the compo-
nent forced linear oscillator equations. As we shall see, more
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delicate nonresonance requirements would be necessary for gen-
eral (smooth) T–periodic perturbations.

Next, we need an assumption that A1 contributes positive
damping and that p0 = 0 is a saddle.
Assumption 4

(a) For ε = 0, eTA has a spectrum consisting of two simple real
eigenvalues e±λT , λ 6= 0, with the rest of the spectrum on
the unit circle.

(b) For ε > 0, eT (A+εA1) has a spectrum consisting of two sim-

ple real eigenvalues eTλ
±
ε (varying continuously in ε from

perturbation theory; cf. Kato (1977)) with the rest of the
spectrum, σεR, inside the unit circle |z| = 1 and obeying the
estimates

C2ε ≤ dist(σεR, |z| = 1) ≤ C1ε

for C1, C2 positive constants.

In general it can be awkward to estimate the spectrum of eTA

in terms of the spectrum of A. Some information is contained in
Hille and Phillips (1957) and Carr (1981). For the beam problem
with ε = 0, it is sufficient to use these two facts or a direct
calculation:

(a) If A is skew adjoint, then σ(etA) = closure of etσ(A).

(b) IfX = X1⊕X2, whereX2 is finite dimensional (the eigenspace
of the real eigenvalues in the beam problem) and B1 is skew
adjoint on X1 and B2 : X2 → X2 is a (bounded) linear op-
erator, then

σ(et(B1⊕B2)) = closure(eσtB1) ∪ etσ(B2).

The estimate dist (σεR, |z| = 1) ≥ C2ε guarantees that

Lε = Id−eT (A+εA1)

is invertible and
||L−1

ε || ≤ const /ε.
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Finally, we need an extra hypothesis on the nonlinear term.
We have already assumed that B vanishes at least quadratically,
as does g. Now we assume that B vanishes cubically.

Assumption 5

B(0) = 0, DB(0) = 0, D2B(0) = 0.

This means that in a neighborhood of 0,

||B(x)|| ≤ const ||x||3.

(Actually B(x) = o(||x||2) would do.)
The necessity of having B vanish cubically is due to the possi-

bility of the spectrum of A accumulating at zero. If this can be
excluded for other reasons, Assumption 5 can be dropped and
Assumption 4 simplified. There is a similar phenomenon for or-
dinary differential equations noted by Jack Hale; namely, if the
linear system

d

dt

 x
ẋ
y

 =

 ẋ
x
−εy


is perturbed by nonlinear terms plus forcing, to guarantee that
the trivial solution (0, 0, 0) perturbs to a periodic solution as in
Lemma 6.1 below, one needs the nonlinear terms to be O(|x|+
|ẋ|+ |y|)3.

Consider the suspended system with its flow F ε
t : X × S1 →

X × S1. Let P ε : X → X be defined by

P ε(x) = π1 · (F ε
T (x, 0)),

where π1 : X × S1 → X is the projection onto the first factor.
The map P ε is just the Poincaré map for the flow F ε

t . Note that
P 0(p0) = p0, and that fixed points of P ε correspond to periodic
orbits of F ε

t .

Lemma 6.1. For ε > 0 small, there is a unique fixed point pε
of P ε near p0 = 0; moreover, pε − p0 = O(ε); i.e., there is a
constant K such that ||pε|| ≤ Kε (for all (small) ε).

For ordinary differential equations, Lemma 6.1 is a standard
fact about persistence of fixed points, assuming 1 does not lie in
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the spectrum of eTA (i.e., p0 is hyperbolic). For general partial
differential equations, the validity of Lemma 6.1 can be a deli-
cate matter. However, the same ideas can be used to prove this
and the following technical lemma (see Holmes and Marsden
(1980) for details).

Lemma 6.2. For ε > 0 sufficiently small, the spectrum of
DP ε(pε) lies strictly inside the unit circle with the exception of

the single real eigenvalue eTλ
+
ε > 1.

The method

1. From invariant manifold theory (Hirsch et al. (1977)), there
are two invariant curves for P ε emanating from the fixed
point pε, say W u(pε) and W ss(pε), that correspond to the
two eigenvalues ±λ of the unperturbed system. See Figure
6.2 (b).

The Poincaré map P ε was associated with the section X×
{0} inX×S1. Equally well, we can take the sectionX×{t0}
to get Poincaré maps P ε

t0
. By definition,

P ε
t0

(x) = π1(F ε
T (x, t0)).

There is an analogue of Lemmas 1 and 2 for P ε
t0

. Let Pε(t0)
denote its unique fixed point and W ss(pε(t0)) and wu(pεt0))
be its strong stable and unstable manifolds. Assumption 4
implies that the stable manifold W s(pε) of Pε has codimen-
sion 1 in X. The same is then true of W s(pε(t0)) as well.

2. Let γε(t) denote the periodic orbit of the (suspended system
with γε(0) = (pε, 0). We have

γε(t) = (pε(t), t).

The invariant manifolds for the periodic orbit γε are de-
noted W ss(γε),W

s(γε) and W u(γε). We have

W s(pε(t0)) =W s(γε) ∩ (X × {t0}),
W ss(pε(t0)) =W ss(γε) ∩ (X × {t0}),
W u(pε(t0)) =W µ(γε) ∩ (X × {t0}).

See Figure 6.3.
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identify

H

Figure 6.3. Invariant manifolds of the suspended system.

3. Our goal is the study of how W u(pε(t0)) and W s(pε(t0)) in-
tersect. Preparatory to this goal, we study the perturbation
of solution curves in W ss(γε),W

s(γε) and W u(γε).

Choose a point, say x0(0), on the homoclinic orbit for
the unperturbed system. Choose a codimension–one hyper-
plane H transverse to the homoclinic orbit at x0(0). Since
W ss(pε(t0)) is Cr close to x0(0), it intersects H in a unique
point, say xsε(t0, t0). Define (xsε(t, t0), t) to be the unique in-
tegral curve of the suspended system with initial condition
xsε(t0, t0). Define xuε (t, t0) in a similar way.

The initial conditions xsε(t0, t0) and xuε (t0, t0) are not con-
veniently computable. This difficulty turns out not to be
important; as we shall see, this problem is taken care of by
the boundary conditions at t→ ±∞. We have

xsε(t0, t0) = x0(0) + εvs +O(ε2),

and
xuε (t0, t0) = x0(0) + εvu +O(ε2),

by construction, where ||O(ε2)|| ≤ const · ε2, and vs and vu

are fixed vectors. Notice that

(P ε
t0

)n(ysε(t0)) = xsε(t0 + nT, t0)→ pε(t0) asn→∞.
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Since xsε(t, t0) is an integral curve of a perturbation, we can
write

xsε(t, t0) = x0(t− t0) + εxs1(t, t0) +O(ε2),

where xs1(t, t0) is the solution of the first variation equation,

d

dt
xs1(t, t0) = Df0(x0(t− t0)) · xs1(t, t0) + f1(x0(t− t0), t),

with xs1(t0, t0) = vs.

4. Let ω denote the (weak) symplectic form on X associated
with the Hamiltonian generator f0. Define the Melnikov
function by

∆ε(t, t0) = ω(f0(x0(t− t0)), xsε(t, t0)− xuε (t, t0))

and set ∆ε(t0) = ∆ε(t0, t0).

5. Let d = xsε(t0, t0) − xuε (t0, t0), and let dΣ be the com-
ponent of d along Tx0Σ by the symplectic decomposition
X = Tx0Σ ⊕ (Tx0Σ)⊥. To leading order, d is parallel to Σ.
Suppose that ∆ε has a simple zero as a function of t0. This
means that dΣ changes its orientation relative to f0(x0) as
t0 changes. Therefore, xuε (t0, t0) must cross from one side of
W s(pε) to the other near x0. This is the main idea behind
the proof of the following:

Lemma 6.3. If ε is sufficiently small and ∆ε(t0) has a sim-
ple zero at some t0 and maxima and minima that are at least
O(ε), then W u(pε(t0)) and W s(pε(t0)) intersect transversally
near x0(0).

6. The following formula is used to verify the condition that
∆ε have a simple zero:

∆ε(t0) = −ε
∫ ∞
−∞

ω(f0(x0(t− t0), f1(x0(t− t0), t)dt+O(ε2).
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Proof. Write

∆ε(t, t0) = ∆+
ε (t, t0)−∆−ε (t, t0) +O(ε2),

where

∆+
ε (t, t0) = ω(f0(x0(t− t0)), εxs1(t, t0))

and

∆−ε (t, t0) = ω(f0(x0(t− t0)), εxu1(t, t0)).

Now

d

dt
∆+
ε (t, t0) =ω(Df0(x0(t− t0)) · f0(x0(t− t0)), εxs1(t, t0))

+ ω(f0(x0(t− t0)), ε{Df0(x0(t− t0)) · xs1(t, t0)

+ f1(x0(t− t0), t)}).

Since f0 is Hamiltonian, Df0 is ω–skew. Therefore

d

dt
∆+
ε (t, t0) = ω(f0(x0(t− t0)), εf1(x0(t− t0), t));

i.e.,

−∆+
ε (t0, t0) = ε

∫ ∞
t0

ω(f0(x0(t− t0)), f1(x0(t− t0), t)) dt.

Similarly,

∆−ε (t0, t0) = ε

∫ t0

−∞
ω(f0(x0(t− t0)), f1(x0(t− t0), t)) dt.

so adding gives the stated formula. �

The expression
∫∞
−∞ ω(f0(x0(t − t0)), f1(x0(t − t0), t) dt is an

“averaged bracket” over the orbit x0(t); if f1 is Hamiltonian
(time–dependent), this is just an integrated Poisson bracket over
the orbit x0(t). The power of Melnikov’s method rests in the fact
that this formula renders the leading term of ∆ε(t0) computable.
Before drawing consequences of transversal intersection, we dis-
cuss some examples.
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Example 1 ẍ − βx + αx3 = ε(γ cosωt − δẋ). Here the unper-
turbed system is ẍ− βx+ αx3 = 0; i.e.,

d

dt

(
x
ẋ

)
=

(
ẋ

βx− αx3

)
,

which is Hamiltonian in X = R2 = Σ with

H(x, ẋ) =
ẋ2

2
− βx2

2
+
αx4

4
.

The flow of this system is the familiar figure–eight pattern (Fig.
6.4) with a homoclinic orbit given by

x0(t)

√
2β

α
sech(

√
βt).

Figure 6.4. The homoclinic orbit in Duffing’s equation.

The Melnikov function is

∆ε(t0) =− ε
∫ ∞
−∞

ω

(
ẋ

βx− αx3

)
,

(
0

γ cosωt− δẋ

)
dt+O(ε2)

=− ε
∫ ∞
−∞

ẋ(γ cosωt− δx) dt+O(ε2),

where x stands for x0(t − t0) =
√

2β/α sech
√
β(t − t0). This

integral may be computed by using residues:

∆ε(t0) = ε

{
2γπω

√
2

α

(
cosh

(
πω

2
√
β

))−1

sinωt0 +
4δβ3/2

3α

}
+O(ε2).

Thus, if

γ > γc ≡
2δβ3/2

3ω
√

2α
cosh

(
πω

2
√
β

)
.
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Then for ε small, ∆ε has simple zeros and so the stable and
unstable manifolds have transversal intersection. �

Example 2 The differential equation of the beam:

ẅ + w′′′′ + Γw′′ − κ
(∫ 1

0

[w′]2dζ

)
w′′ = ε(f cosωt− δẇ),

w = w′′ = 0 at z = 0, 1.

The basic space is X = H2
0 × L2, where H2

0 denotes the H2

functions on [0, 1] satisfying the boundary conditions w = 0 at
z = 0, 1. For x = (w, ẇ) ∈ X, write the equation as

dx

dt
= f0(x) + εf1(x),

where
f0(x) = Ax+B(x),

A

(
w
ẇ

)
=

(
ẇ
−w′′′′

)
, D(A) =

{
(w, ẇ) ∈ H4 ×H2|w = w′′ = 0 = ẇ at z = 0, 1

}
,

B

(
w
ẇ

)
=

(
0

κ
(∫ 1

0
[w′]2dζ

)
w′′ − Γw′

)
,

and

f1

(
w
ẇ

)
=

(
0

f cosωt− δω̇

)
.

The methods of Holmes and Marsden (1978) show that the equa-
tion generates a global flow F ε

t X → X consisting of C∞ maps
for each ε and t. If x0 lies in domain of the (unbounded) operator
A, then F ε

t (x0) is t–differentiable and the equation is satisfied.
For ε = 0, the equation is Hamiltonian with

ω((w1, ẇ1), (w2, ẇ2)) =

∫ 1

0

{ẇ2(z)w1(z)− ẇ1(z)w2(z)} dz

and

H(w, ẇ) =
1

2
||ẇ||2L2 −

Γ

2
||w′||2L2 +

1

2
||w′′||2L2 +

κ

4
||w′||4L2 .
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The invariant symplectic two–manifold Σ is the plane in X
spanned by the functions (a sinπz, b sin πz), and the homoclinic
loop is given by

ω0(z, t) =
2

π

√
Γ− π2

κ
(sinπz) sech(tπ

√
Γ− π2).

By direct calculation one shows that the spectral and nonres-
onance conditions are met for δ > 0 and j2π2(j2π2 − Γ) 6=
ω2, j = 2, 3, 4 . . .. The real eigenvalues for ε = 0 are λ =
±π(Γ − π2)1/2, while the rest are on the imaginary axis at
λn = ±nπ(Γ− n2π2)1/2, n = 2, 3 . . ..

The perturbation assumptions on the saddle point and its
stable and unstable manifolds are valid because of the form of
the equations: ẋ = (linear generator) + (smooth map). The
proof can be given in the context of Holmes and Marsden (1978).
The calculation of the Melnikov function now reduces to that
of the Duffing equation in Example 1. With α, β, γ related as
given earlier, we find that the stable and unstable manifolds of
(0, 0) intersect transversally if γ > γε. (For ε > 0 the unstable
manifold leaves Σ, so one cannot directly deduce the results for
Example 2 from Example 1.) �

Consequences of transversal intersection If the hypotheses above
hold, we end up with a Poincaré map P ε : X → X that has
a hyperbolic saddle point pε which has a one–dimensional un-
stable manifold intersecting a codimension–one stable manifold
transversally. For X = R2, this situation implies that the dy-
namics contains a horseshoe (see Smale (1967)). For instance,
one can conclude the existence of infinitely many periodic points
with arbitrarily high period. Since the flow is globally attract-
ing, this also suggests the presence of a strange attractor (cf.
Holmes (1979)). See Figure 6.5.

For X = R2 similar conclusions hold, as has been shown by
an elegant argument of Conley and Moser; Moser (1973). The
attractive feature of their method is that it basically reduces
the proof to one of finding explicit estimates on what P ε does to
horizontal and vertical strips near the saddle point. This enables
one to generalize the argument to Banach spaces X, and in
particular to the beam example. One can conclude, for instance,
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that (some power of) the map P ε on its nonwandering set Λ is
conjugate to a shift on two symbols, that the periodic points are
dense in Λ, and that there exist periodic solutions of arbitrarily
high period. See Holmes and Marsden (1980) for details.

image of R under a
power of

R

Figure 6.5. Horseshoes

The same methods can be used to study subharmonic bifur-
cations of the periodic orbits in Figure 6.4 Bifurcations near the
homoclinic loop are especially interesting (see Chow et al. (1980)
and recent work of Holmes and Greenspan). In addition, Feigen-
baum (1978) subharmonic sequences, Newhouse sinks (New-
house (1974)) and the Henon (1976) map all occur in this bifur-
cation.

Similar methods can be used to study horseshoes in Hamilto-
nian systems such as in the Sitnikov problem (Moser (1973)),
the motion of vortices (Ziglin (1980)), the pendulum–oscillator
and rigid bodies, as well as Arnold diffusion (Holmes and Mars-
den [in preparation]). What year

is the paper
by Holmes
and Mars-
den(inpreparation)?
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7
The Traction Problem in Elastostatics

Some1 interesting singularities in the solution manifold for the
traction problem in elastostatics were discovered by Signorini
in the 1930’s. These investigations led to an extensive litera-
ture; especially noteworthy are Stoppelli (1958), Grioli (1962),
Truesdell and Noll (1965), Van Buren (1968) and Capritz and
Podio-Guidugli (1974). The methods are generally so analytic
that their geometric beauty gets lost. The purpose of this lec-
ture is to take the first few steps in a program using geometric
methods; further details are available in Chillingworth et al.
(1982).

The problem. Let Ω ⊂ R3 be an open bounded set with smooth
boundary; assume 0 ∈ Ω. Let C be the space of W s,p maps
φ : Ω̄ → R3, s > 3/p + 1 such that φ(0) = 0 and φ is a W s,p

diffeomorphism onto its image.
As in Lecture 2, let F = Tφ and let C be the right Cauchy–

Green tensor. Let the stored energy function W be a function
of the point values of C, and let T = ρ0∂W/∂F be the first
Piola–Kirchhoff stress tensor.

1Based on joint work with D.R.J. Chillingworth and Y.H. Wan.
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Assume that the undeformed state is stress–free, i.e., T = 0
when φ = identity, and assume that strong ellipticity holds.

Let B : Ω→ R3 denote a given body force (per unit volume)
and τ : ∂Ω → R3 a given surface traction per unit area. These
are dead loads; i.e., the equilibrium equations we are studying
are

DIV T +B = 0 inOmega,

T ·N = τ on ∂Ω.

Let L be the space of pairs l = (B, τ) of loads of class W s−2,p

on Ω and W s−3/2,p on ∂Ω, such that∫
Ω

B(X)dV (X) +

∫
∂Ω

τ(X)dA(X) = 0;

i.e., the total force is zero. By the divergence theorem, if l is
a set of loads satisfying the equilibrium equations for some φ,
then l ∈ L.

If we were studying the displacement problem, it would follow
directly from the implicit function theorem that for any B near
zero, there would be a unique φ near the identity satisfying the
equilibrium equations. For the traction problem the kernel of the
linearized equations consists of infinitesimal rigid body motions
and the implicit function theorem fails. In fact, the solution set
bifurcates near the identity, and the geometry of the rotation
group SO(3) plays a crucial role.

Definitions and notation

1. Let Φ : C → L be defined by

Φ(φ) = (−DIV T, T ·N),

so that the equilibrium equations are Φ(φ) = l.

2. Let
Cl{u ∈ TidC | Du(0) is symmetric }

(we automatically have u(0) = 0 as well), and let the equi-
librated loads be those whose torque in the reference con-
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figuration is zero; i.e.,

Le =

{
l ∈ L

∣∣∣∣∫
Ω

X ×B(X)dV (X) +

∫
∂Ω

X × τ(X)dA(X) = 0

}
.

From linear elasticity we know that

DΦ(id)|Cl : Cl → Le

is an isomorphism. (See for instance Marsden and Hughes
(1978) for this standard proof.)

3. Let SO(3) act on C and L in the obvious way. For Q ∈
SO(3), φ ∈ C and l ∈ L, let

(Q, φ) 7→ Q ◦ φ and(Q, l) 7→ (Q ◦B,Q ◦ τ) = Ql.

For l ∈ L; let Ol denote the SO(3) orbit of l,

Ol = {Ql | Q ∈ SO(3)}.

4. Let l ∈ Le. Then l is said to have no axis of equilibrium if,
for all ξ ∈ so(3), the Lie algebra of SO(3)ξ 6= 0 we have

ξl /∈ Le;

i.e., any rotation of l destroys the equilibrium. If l has an
axis of equilibrium, then there is a vector e ∈ R3 such that
rotations of l about e map l into Le, as is readily checked.

Lemma 7.1. (Da Silva’s theorem). Let l ∈ L. Then Ol∩Le 6=
∅.

Proof. Define the astatic load map k : L →M3(3×3 matrices)
by

k(l) = k(B, τ) =

∫
Ω

B(X)⊗XdV (X) +

∫
∂Ω

τ(X)⊗XdA(X),

so that l ∈ Lε if and only if k(l) is symmetric. Now k is SO(3)
equivariant,
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L M3

L M3

k

k

so(3) so(3)

-

-
? ?

where the action on M3 is (Q,A) 7→ QA; i.e.,

k(Ql) = Qk(l).

The result is now obvious from the polar decomposition. �

6. Notice that Φ is also equivariant from material frame in-
difference:

C L

C L

Φ

Φ

so(3) so(3)

-

-
? ?

Thus, to study the solutions
of Φ(φ) = l for a given l, we can assume that l ∈ Le.

No axis of equilibrium Suppose now that l ∈ Le is given and
has no axis of equilibrium. The main theorem in this case is due
to Stoppelli (1958), which we prove in a series of remarks.

Lemma 7.2. (a) dim Ol = 3 and

(b) TlOl ⊕ Le = L.

Proof. If dim Ol < 3, there would be a ξ 6= 0, ξ ∈ so(3) such
that ξl = 0, which contradicts ξl /∈ Le. Thus (a) holds. Also, by
the no–axis–of–equilibrium assumption, TlOl ∩ Le = {0}. Since
Le has codimension three in L and (a) holds, we get (b). �

2. Let Φ̃ be the restriction of Φ to Cl, regarded as an affine
subspace of C centered at the identity. As remarked before,

DΦ̃(id) : Cl → Le
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is an isomorphism. In particular, it is one–to–one, and so
for Φ̃ restricted to a neighborhood of the identity,

range Φ̃ ≡ N

is a submanifold of L tangent to Le at the origin. (See
Figure 7.1) By the above lemma,

{Ql | Q ∈ a neighborhood U of Id ∈ SO(3)}

id
0

Figure 7.1. The geometry of Stoppelli’s theorem.

is a neighborhood of l in the normal direction to Le. Thus

{λQl | Q ∈ U, λ ∈ (−ε, ε)}

is a cone in the normal bundle to Le.
Since N is tangent to Le at 0, for λ sufficiently small Oλl
will intersect N .2 Thus, for λ sufficiently small, there is a
unique Q in a neighborhood of the identity such that

Φ ¯(φ) = λQl

has a unique solution φ̄ ∈ Cl. Thus φ = Q−1φ̄ solves Φ(φ) =
λl. Thus we have proved.

Theorem 7.3. (Stoppelli (1958)). Suppose l ∈ Le has no axis
of equilibrium. Then, for λ sufficiently small, there is a unique
φ̄ ∈ Cl and Q in a neighborhood of the identity such that φ =
Q−1φ̄ solves the traction problem

Φ(φ) = λl.

2This explains the somewhat mysterious estimates needed in Stoppelli’s arguments;

see Van Buren (1968) for a good account.
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Axis of equilibrium (sketch). The full story of the geometry
of the solution space when there is an axis of equilibrium is
a complicated one. We shall confine ourselves in the following
series of remarks to highlighting a few crucial points.

1. Let
Ψ = k ◦ Φ̃ : Cl →M3.

An application of Gauss’ theorem shows that Ψ is the total
stress,

Ψ(φ) =

∫
Ω

TdV,

where T is the first Piola–Kirchhoff stress tensor. The idea
now is the following. To see how the range of Φ̃ meets or-
bits in L, we study the way Ψ meets in M3 and then use
information about the map k.

2. The kernel of k consists of those loads l for which every
axis e ∈ R3 is an axis of equilibrium. This is a calculation.

3. The map k, the decomposition M3 = Skew ⊕ Sym into
skew symmetric and symmetric matrices and the L2–inner
product on L produce a decomposition into orthogonal sub-
spaces:

L ≈ Le ⊕ Skew ≈ (ker k⊕Sym) ⊕ Skew .

We can express N uniquely as the graph of a smooth map
F : Le → Skew satisfying F (0) = 0 and DF (0) = 0, since
N is tangent to Le at 0. (Remarkably enough, direct cal-
culation using Ψ shows that D2F (0) can be computed us-
ing only data obtained from linearized elasticity.) Define a

rescaled map F̃ : R × Le → Skew by F̄ (λ, l) = F (λl)/λ2.
The problem of how Ol meets N now becomes that of solv-
ing the equation

Skew(QA) = λF̄ (λ, l)

for Q, where A = k(l) and Skew (QA) = 1/2((QA) −
(QA)T ) is the skew part of QA.
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This equation is now to be solved by the Lyapunov–Schmidt
procedure in bifurcation theory; this procedure is briefly re-
viewed below in a formulation relevant to this problem.

4. The first step in a bifurcation analysis is to study zeros
of Skew (QA), i.e., to study how the orbits of the SO(3)
action on M3 by left multiplication, meet Sym, the sym-
metric matrices. This is done by a straightforward analysis
and matrix computation. It turns out that there are ex-
actly five types of orbits, called types 0, 1, 2, 3 and 4. They
are summarized in Table 7.1.

It is interesting that these are the only cases that can arise,
and that some of them were not discussed in detail by Sig-
norini and Stoppelli. Additional solutions were missed because
not enough parameters where included to give a full neighbor-
hood description. Indeed, cases 2, 3 and 4 can be very com-
plicated. Also notice that the global properties of the rotation
group are involved in a crucial way; for example, if a load l has
an axis of equilibrium that is simple (type 1, the case considered
by Stoppelli) then there is a rotation (far from the identity) Q
such that Ql has no axis of equilibrium.

In particular, by the previous theorem, there is always a solu-
tion of type 1, although it may not be near the identity. (This
is consistent with the results of Ball (1977).)

Figure 7.2 illustrates a few simple examples of loads of the
form (0, τ) of types 1, 2, 3 and 4.

Lyapunov–Schmidt procedure. We develop the bifurcation anal-
ysis in a series of remarks.

1. First we recall the classical procedure. Let X,Λ and Y be
Banach spaces and f : X × Λ → Y a Ck map, k ≥ 1. Let
Dxf(x, λ) be the (Fréchet) derivative of f with respect to
x, a continuous linear map of X to Y . Let f(x0, λ0) = 0
and let

X1 = kerDxf(x0, λ0).
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Type 1. Type 2.

Type 3.

Type 4.

Figure 7.2. Load types.

Assume X1 has a closed complement X2, so that X = X1⊕
X2. Also, assume

Y1 = rangeDxf(x0, λ0)

is closed and has a closed complement Y2. If X1 and Y2 are
finite dimensional, thenDxf(x0, y0) is a Fredholm operator.
Write Y = Y1 ⊕ Y2, and let P : Y → Y1 be the projection.
By the implicit function theorem, the equation

Pf(x1 + x2, λ) = 0

has a unique solution x2 = u(x1, λ) near x0, λ0, where x =
x1 + x2 ∈ X = X1 ⊕X2. Thus, the equation f(x, λ) = 0 is
equivalent to the bifurcation equation

(I − P )f(x1 + u(x1, λ), λ) = 0,

a “system of dim Y2 equations in dim X1 unknowns”. This
reduction of f(x, λ) = 0 to the bifurcation equation is the
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Lyapunov–Schmidt procedure.

2. Next we recall a general topological context for bifurcation
of vector fields that will be applied to our situation. Let M
and Λ be manifolds and X : M×Λ→ TM a vector field on
M depending on parameters λ ∈ Λ. We seek the zeros of X.
For λ = λ0 suppose the zero set S is a smooth compact sub-
manifold. Assume that M carries a Riemannian metric and
that the range of DxX(x, λ0) is the orthogonal complement
to TxS. The normal bundle E to TS trivializes a neighbor-
hood U of S; so, for each x ∈ U , let Px : TxM → TxSπ(x)

be the orthogonal projection to the fiber Sπ(x) over π(x),
where π : E → S is the projection. By the inverse function
theorem, there is a unique section φλ : S → E such that
PxX(ϕλ(x), λ) = 0 for x ∈ S and λ in a neighborhood of

λ0 (assume, e.g., that M is compact.) Let X̃(x, λ) be the
orthogonal projection of X(x, λ) onto the tangent space to

the graph of φλ at a point x on the graph. Thus, X̃(x, λ)
is a vector field on the graph of φλ, and finding its zeros is
clearly equivalent (for small λ) to finding zeros of X. We

call the equation X̃(x, λ) = 0 on the graph of φλ the bifur-
cation equation.

3. The scheme just sketched actually fits in with our problem.
We let M = SO(3),Λ = R ×M3, λ0 = (0, A0) and let X
be Skew (QA) − λF̄ (λ, l) regarded as a left invariant vec-
tor field on SO(3). (Recall that Skew is the Lie algebra of
SO(3).) For A0 of type 1, the zero set of X(Q, λ0) is two
points and a circle. The hypotheses in the above procedure
can be checked by a calculation, so the bifurcation equation
becomes the study of vector fields on S1. One now has to do
some calculations in singularity theory to analyze it: one
finds under hypotheses on the linearized elasticities that
as (λ,A0) vary, one encounters up to four cusps. Likewise
for type 2 one analyzes vector fields on RP2 and double
cusps occur, so that up to nine solutions can occur locally
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in SO(3) (and twelve globally in SO(3)).

4. In carrying out the analysis, the variational (or Hamilto-
nian) nature of the problem can be exploited. Solutions of
the equilibrium equations are critical points for the func-
tional

Vl(φ) =

∫
Ω

W (φ)+

∫
Ω

φ(X)·B(X)dV (X)+

∫
∂Ω

φ(X)·τ(X)dA(X)

(see Lecture 2). This function is needed to study the sta-
bility of solutions. One should note, however, that stability
here is taken in the sense of minima of Vl; whether or not
this implies dynamic stability is unknown (see Ball et al.
(1978) and references therein).

5. It is hoped that methods like these will be useful in other
problems as well. For example, Rivlin has found seven ho-
mogeneous solutions for incompressible deformations of a
cube. His analysis, described in Gurtin (1981), bears some
similarities to the problem here. One would like to know, for
example, whether there are any other (nonhomogeneous)
solutions. Recently, some progress on this problem has been
made by J. Ball and D. Scheaffer.

6. The analysis of this problem shows that the equations of
elastostatics are linearization unstable when there is an
axis of equilibrium; i.e., perturbation expansions are not
always literally valid, but need some adjustment. This phe-
nomenon is actually shared by a number of other problems,
as the following lectures will demonstrate.
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8
Bifurcations of Momentum Mappings

Bifurcation theory1 is a vast subject dealing with qualitative
changes in systems, usually as some parameter is varied. The
previous two lectures gave specific examples of this, one dynamic
and one static. This lecture is concerned with bifurcations of the
level sets J−1(µ) of the momentum mapping of a Hamiltonian
system with symmetry, as the momentum µ ∈ g∗ is varied. The
crucial question in this study, and the one we concentrate on, is
the structure of the set J−1(µ0) when µ0 is a critical value of J .
Figure 8.1 illustrates a very simple case of what is going on.

For general background on this topic of “topology and me-
chanics,” see Smale (1970) and Abraham and Marsden (1978),
§4.5. The results of this lecture are an extension and refinement
of part of these previous results and are, as far as we know, new.

The main example that motivated this abstract study is the
occurrence of singularities in the space of solutions of Einstein’s
equations, described in Lectures 9 and 10. However, the reader
may wish to think about some simpler examples while proceed-
ing. For example, the total angular momentum functions for 1

1This section is based on joint work of J.M. Arms, V. Moncrief, and J. Marsden

(Arms et al. (1981)).
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y

x

Figure 8.1. The level sets of J−1(µ), for J(x, y) = x2 − y2, bifurcate at µ = 0.
(This is a “piece” of the angular momentum map J(x, y, ẋ, ẏ) = xẏ − ẋy, which
has a nondegenerate critical point at (0, 0, 0, 0) ∈ R4.)

or 2 particles moving in R3 are already interesting at the crit-
ical case of zero total angular momentum.2 Another beautiful
example is the “north pole” and the Huygens solutions for the
spherical pendulum; see Duistermaat (1980).

Let (P, ω,G, J) be a Hamiltonian G–space. If x0 ∈ P, µ0 =
J(x0), and if

dJ(x0) : TxP → g∗

is surjective (with split kernel), then locally J−1(µ0) is a man-
ifold and {J−1(µ) | µ ∈ g∗} forms a regular local foliation of a
neighborhood of x0. Thus, when dJ(x0) fails to be surjective,
we look for bifurcations. We shall begin by relating this idea to
symmetries.

Definition 8.1. Let Sx0 = the component of the identity of
{g ∈ Gµ0|gx0 = x0}, called the symmetry group of x0. Its Lie
algebra is denoted sx0, so

sx0 = {ξ ∈ gµ0|ξP (x0) = 0}.

1. Recall that Gµ0 is the isotropy group of µ0 = J(x0) rela-
tive to the coadjoint action of G on g∗, and gµ0 is its Lie

2For one particle, the answer is as follows. J−1(0) = {(x, p) ∈ R3×R3 | x× p = 0} ≈
a cone over M , where M is a compact three–manifold which is S2 × S1 ∼, where ∼ is

the equivalence relation (x, z) ∼ (−x,−z).
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algebra; see Lecture 3.

2. Assume that P carries a (weak) metric 〈〈·, ·〉〉 and a com-
plex structure J, so that we can use the adjoint formalism
described in Lecture 4. Below we shall also need the as-
sumption that the action of G on TP commutes with J.

3. We note that

Sx0 = {g ∈ G | g · x0 = x0} and sx0 = {ξ ∈ g | ξP (x0) = 0}.

Indeed, let g ∈ G and g · x0 = x0. Thus J(g · x0) =
J(x0) = µ0. By Ad∗–equivariance, J(g · x0) = Ad∗g−1 J(x0),
so Ad∗g−1µ0 = µ0 and so g ∈ Gµ0 .

Lemma 8.2. dJ(x) is surjective iff sx = {0}; i.e., x has “no
symmetries” (not counting discrete symmetries).

Proof. From the adjoint formalism,

range dJ(x) = g∗ ⇔ ker dJ(x)∗ = {0}

and
−J ◦ dJ(x)∗ξ = ξP (x),

so the result is clear. �

Thus, the only way a (local) bifurcation can occur is near
points with symmetries. To examine the situation near such
points we perform a reduction (as above, called the Lyapunov–
Schmidt procedure) in the following remarks. From now on, we
shall assume that µ0 = 0 for simplicity, so that gµ0 = g.

1. Fix x0 ∈ P with sx0 6= {0}, let J(x0) = 0 and let C =
J−1(0), the solution space we are interested in. Let

P : g∗ → range dJ(x0),

be the orthogonal projection associated with the splitting

g = range dJ(x0)⊕ ker dJ(x0)∗.
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This construction requires an inner product on g∗; assume
(·, ·)x0 is an inner product invariant under Sx0 relative to
which dJ(x0)∗ is taken, so P is defined.

2. The equation J(x) = 0 is equivalent to the equations

PJ(x) = 0, (I − P)J(x) = 0.

The map PJ : P → range dJ(x0) is a submersion at x0,
and so

CP = {x | PJ(x) = 0}
is a smooth manifold in a neighborhood of x0.

3. Note that
Tx0CP = ker dJ(x0),

since dPJ(x0) = dJ(x0),

4. Thus C = f−1(0), where f : CP → ker dJ(x0)∗ is given by

f(x) = (I − P)J(x).

5. Note that df(x0) = 0.

These remarks reduce the problem of investigating the level
sets of J to that of f . Since df(x0) = 0, the reduced problem
is essentially a problem in singularities of mappings. The most
basic result to try in this context is the Morse lemma; it will
yield a picture of the level sets like that in Figure 8.1.3 It is
a remarkable fact about momentum mappings that under rea-
sonable hypotheses, the Morse lemma is always applicable when
dim ker dJ(x0)∗ = 1. To see this, we shall pass to a slice Sx0

and show that within Sx0 , J has an identifiable nondegenerate
critical manifold. We do this in the following series of remarks.

1. Assume that the action of G on P admits a slice at x0, i.e.,
a submanifold Sx0 ⊂ P containing x0 and satisfying:

3For the use of the Morse lemma in the context of more traditional bifurcation theory,

see Nirenberg (1974).
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i If g ∈ Sx0 , then g · Sx0 = Sx0 .

ii If g · Sx0 ∩ Sx0 6= ∅ then g ∈ Sx0 .

iii There is a local cross–section χ : G/Sx0 → G defined in a
neighborhood of the identity coset such that the map Sx0×
G/Sx0 → P : (x, u)→ χ(u) ·x gives a local diffeomorphism
of Sx0 ×G/Sx0 with P .

For instance, compact groups acting on manifolds have slices (cf.
Palais (1957)), and so does the diffeomorphism group acting on
the space of metrics (cf. Ebin (1970)).

(a) More specifically, we shall assume for convenience that Sx0

has been chosen to be an “affine slice”: a ball in the sub-
space of Tx0P orthogonal to the orbit of x0, namely,

Sx0 = ballinker(dJ(x0 · J)),

where we identify ker dJ(x0) ◦ J with an affine subspace
of P and assume P is open in a linear space or has been
localized. The ball is taken in a Riemannian metric4 on
Tx0P invariant under Sx0 .

2. From the slice properties, it follows that there is a neigh-
borhood V of x0 such that if x ∈ V then Sx is conjugate
to a subgroup of Sx0 . Denote by Nx0 those x ∈ V such
that Sx is conjugate to Sx0 itself; i.e., Nx0 consists of ele-
ments of the same symmetry type as x0 (or elements of the
same “orbit type”). It is known (see, for instance, Hermann
(1968)) that Nx0 is a smooth manifold.

It is clear that the orbit G · x0 ⊂ Nx0 , but in interesting
examples Nx0 will be strictly larger.

3. From properties of the slice,

4In infinite dimensions a strong metric is required; cf. Lectures 9 and 10. We acknowl-

edge the helpful remarks of R. Palais concerning slices.
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Nx0 ≡Nx0 ∩ Sx0

={x ∈ Sx0 | Sx = Sx0}
={x ∈ Sx0 | ξP (x) = 0 forall ξ ∈ sx0}.

Now Nx0 is the set of points of fixed symmetry type for the
action of Sx0 on Sx0 , so it too is a smooth manifold. Since
ξP (x) = −J ◦ dJ(x)∗ξ,

Tx0Nx0 ={u ∈ ker(dJ(x0) ◦ J) | dx(dJ(x0)∗ · ξ) · u = 0 forall ξ ∈ sx0}
={u ∈ ker dJ(x0) ◦ J|〈ξ, d2J(x0)(u, v)〉 = 0 forall v ∈ Tx0P and ξ ∈ sx0}.

4. We have range (−J◦dJ(x0)∗) ⊂ ker (dJ(x0)), and so range
(dJ(x0)∗) ⊂ ker (dJ(x0) ◦ J). Therefore, ker dJ(x0)+ ker
(dJ(x0)◦J) ⊃ ker (dJ(x0))+ range dJ(x0)∗ = Tx0P . Hence
CP and Sx0 intersect transversally at x0, and so CP ∩ Sx0 is
a manifold near x0 with tangent space

Tx0(CP ∩ Sx0) = ker dJ(x0) ∩ ker(dJ(x0) ◦ J),

which is one of the components (“true degrees”) in Mon-
crief’s decomposition (see Lecture 4).

5. Let

g∗x0
={ν ∈ g∗ | Ad∗g−1 ν = ν for all g ∈ Sx0}
={ν ∈ g∗ | 〈ν, [ξ, η]〉 = 0 for all ξ, η ∈ sx0},

i.e., points of g∗ with the same symmetry as x0. By Ad∗–
equivariance, if x ∈ Nx0 , then J(x) ∈ g∗x0

. Thus dJ(x0) :
Tx0Nx0 → g∗x0

. One can show that

dJ(x0)∗ : g∗x0
→ Tx0Nx0 ,

and so
dJ(x0) ◦ dJ(x0)∗ : g∗x0

→ g∗x0
.
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We claim that the map PJ : Nx0 → Pg∗x0
≡ (range dJ(x0))∗x0

is a submersion. Indeed, let ν ∈ range dJ(x0) and have the
same symmetry as x0 (as above). Now dJ(x0) ◦ dJ(x0)∗ :
(range dJ(x0))∗x0

→ (range dJ(x0))∗x0
is an isomorphism,

so we can write ν = dJ(x0) ◦ dJ(x0)∗η for η ∈ g∗x0
. Thus

dJ(x0)∗η ∈ Tx0Nx0 .

We have proved that Nx0 ∩ CP is a smooth manifold.

6. In fact,Nx0∩CP = Nx0∩C. In other words, elements ofNx0∩
CP are actually solutions. This follows from differentiating
〈ξ, J(x)〉 in x to get

d〈ξ, J(x)〉 · u = 〈ξ, dJ(x) · u〉 = 〈dJ(x)∗ξ, u〉.

If x ∈ Nx0 and ξ ∈ sx0 this vanishes identically. Therefore
〈ξ, J(x)〉 vanishes onNx0∩CP. But this means (I−P)J(x) =
0, so J(x) = 0.

Thus, solutions of J(x) = 0 with the same symmetry type
as x0 and in the slice at x0 form a smooth manifold.

7. Consider f : CP ∩ Sx0 → ker dJ(x0)∗;x 7→ (I − P)J(x),
as introduced earlier. The calculation just done shows that
Nx0∩CP is a manifold of critical points for f ; i.e., dJ(x) = 0
if x ∈ Nx0 ∩ CP. We want to determine to what extent
Nx0 ∩ CP is a nondegenerate critical manifold for f . For
dim ker dJ(x0)∗ = 1, this will literally be true.

8. We have

〈ξ, d2f(x0) · (u, v)〉 = 〈ξ, d2J(x0) · (u, v)〉.

If ξ ∈ ker dJ(x0)∗ and u ∈ Tx0Nx0 , then this vanishes for all
v ∈ Tx0(CP ∩ Sx0) by the expression for Tx0Nx0 in Remark
3 above. The degeneracy space for f at x0 is, by definition,
all u ∈ Tx0(CP ∩ Sx0) such that d2f(x0)(u, v) = 0 for all
v ∈ Tx0(CP ∩ Sx0). We claim that the degeneracy space is
exactly Tx0Nx0. To prove this, we proceed as follows:
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(a) (Gauge invariance of d2J). For ξ ∈ g, u ∈ ker dJ(x0)
and v ∈ range J ◦ dJ(x0)∗, we claim that

〈ξ, d2J(x0)(u, v)〉 = 0.

Indeed, (from [Abraham and Marsden (1978), Prop.
4.1.26i] and the fact that the action is symplectic), we
have this identity for momentum mappings:

〈ξ, dJ(g−1x) · u〉 = 〈Adg ξ, dJ(x) · u〉.

If this is evaluated at x = x0 and u ∈ ker dJ(x0), we
get the identity

〈ξ, dJ(g−1x0) · u〉 = 0.

Differentiation in g then yields the result.

(b) Suppose now u ∈ ker dJ(x0)∩ ker dJ(x0) ◦ J, and
〈ξ, d2J(x0)(u, v)〉 = 0 for all v ∈ ker dJ(x0)∩ ker (dJ(x0)◦
J). By gauge invariance, we also have 〈ξ, d2J(x0)(u, v)〉 =
0 for all v ∈ ker dJ(x0). To complete the argument we
need one more ingredient.

(c) (J–invariance of d2J). Assume that the original action
commutes with J (i.e., J◦TΦg = TΦg ◦J). Then, since
J is symplectic, differentiation of this relation in g and
employing the definition of J gives

〈ξ, d2J(x0)(u, v)〉 = 〈ξ, d2J(x0) · (Ju, Jv)〉

for ξ ∈ ker dJ(x0)∗ and u, v ∈ Tx0P .

Returning to Remark 8(b), we have 〈ξ, d2J(x0)(u, v)〉 = 0 for
fixed u ∈ ker dJ(x0)∩ ker dJ(x0) ◦ J and all v ∈ ker dJ(x0).
Now let w ∈ range dJ(x0)∗. Then

〈ξ, d2J(x0)(u,w)〉 = 〈ξ, J2J(x0)(Ju, Jω)〉 = 0

by gauge invariance. Now v+w is a general element of Tx0P , so
〈ξ, d2J(x0)(u, v)〉 = 0 for all v ∈ TxP . Thus u ∈ Tx0Nx0 .

We summarize our finds as follows.
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Theorem 8.3. Let f : CP ∩ Sx0 → ker dJ(x0)∗, x 7→ (I −
P)J(x). Then Nx0 ∩C is a smooth manifold of critical points for
f . Moreover, the degeneracy space for d2f at a point x ∈ Nx0∩C
is exactly Tx(Nx0 ∩ C).

In particular, if dim ker dJ(x0)∗ = 1, then Nx0 ∩ C is a non-
degenerate critical manifold for f and so5 C ∩ Sx0 is a cone
×(Nx0∩Sx0) and hence C itself is a cone ×(Nx0∩Sx0)×(G/Sx0),
in a neighborhood of x0.

The surprising thing is that the singularity in C is necessarily
quadratic, even though no explicit nondegeneracy assumption is
made on J . A simple example may help here.

Example. Let H : R2 → R be a Hamiltonian with a critical
point at the origin. Suppose H has all its orbits periodic of
the same period. Then H has a nondegenerate critical point at
(0, 0). This follows from the above theorem by using G = S1

acting by the flow of XH .6 �

In the case where dim ker dJ(x0)∗ > 1, we expect C to look
like “cones on cones”. To really prove this, we begin with the
case of quadratic J . We shall prove directly that C ∩ Sx0 is
diffeomorphic to the zero set of (I − P)d2J(x0)(u, u) [for u ∈
Tx0Sx0 ], without any appeal to degeneracy spaces. This case
is already interesting and applies to three nontrivial examples:
zero angular momentum for n particles in R3, the constraint
equations in gauge theory (see below and Arms (1980)) and
the supermomentum constraint in relativity (see the next two
lectures).

We shall prove this claim in the next series of remarks.

1. Our assumptions are as above, except that now assume P
is (open in) a linear space and J is quadratic; i.e., in a
neighborhood of x0 ∈ P where J(x0) = 0, we have

J(x0 + h) = dJ(x0) · h+Q(h),

5See Bott (1954), or use a parameterized Morse lemma.
6In fact, as Alan Weinstein pointed out, in a neighborhood of (0, 0) the equivariant

Darboux theorem shows that it is a harmonic oscillator.
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where Q(h) = (1/2)B(h, h) and B(u, v) = d2J(x0)(u, v).

2. Now dJ(x0) ◦ dJ(x0)∗ is an isomorphism of range dJ(x0)
onto itself. Let this map be denoted ∆, so ∆: range dJ(x0)→
range dJ(x0). Let G = ∆−1 ◦ P : g∗ → range dJ(x0), the
“Green’s function” for ∆. The crucial map we deal with is

F : P → P, F (x) = x+dJ(x0)∗ ◦G ◦Q(h), h = x−x0.

This map is inspired by a similar one used in deformations
of complex structures by Kuranishi (1965) and is used in
Atiyah et al. (1978).7

3. Clearly DF (x0) = id, so that F is a local diffeomorphism
in a neighborhood of x0.

4.

Claim 8.4. F takes a neighborhood of x0 in CP to a neigh-
borhood of x0 in {x0}+ ker dJ(x0).

Proof. We need to show that

x ∈ CP ⇔ F (x)− x0 ∈ ker dJ(x0).

Now

dJ(x0)·(F (x)−x0) = dJ(x0)·h+dJ(x0)◦dJ(x0)∗◦G◦Q(h).

But from its definition we clearly have dJ(x0) ◦ dJ(x0)∗ ◦
G = P, and so

dJ(x0)(F (x)− x0) =dJ(x0) · h+ PQ(h)

=P(dJ(x0) · h+Q(h))

=P(J(x0 + h)).

The assertion is thus obvious. �

7Suggestions on this point by L. Nirenberg and I. Singer are gratefully acknowledged.
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5. F maps Sx0 to Sx0 .

Proof. Recall that Sx0 is (a ball in) {x0}+ ker (dJ(x0) ◦ J).
Then

dJ(x0) ◦ J(F (x)− x0) =dJ(x0) ◦ J(h+ dJ(x0)∗ ◦G ◦Q(h))

=dJ(x0) ◦ J(h),

since dJ(x0) ◦ J ◦ dJ(x0)∗ ≡ 0. The assertion is then clear.
�

Thus F is a local diffeomorphism:

F : CP ∩ Sx0 → {x0}+ ker dJ(x0) ∩ ker(dJ(x0) ◦ J).

(Recall from above that CP ∩Sx0 is a manifold; F actually is an
explicit chart for it.) So far we have not really used the fact that
J is quadratic. Now we will.

Theorem 8.5. F maps C ∩ Sx0 locally one–to–one onto the
cone Cx0 = {x0}+ [(Id−P)Q]−1(0). Thus, C ≈ Cx0 ×G/Sx0.

Proof. We need to show that, for x ∈ CP ∩ Sx0 ,

(Id−P)Q(F (x)− x0) = 0⇔ (Id− P)J(x) = 0.

By Claim 4, F (x) − x0 ∈ ker dJ(x0), so, letting P̂ be the pro-
jection onto ker dJ(x0), we have

F (x)− x0 = P̂(F (x)− x0) = P̂(h+ dJ(x0)∗ ◦G ◦Q(h)) = P̂h.

Thus

(Id−P)Q(F (x)− x0) =(Id−P)Q(P̂h)

=(Id−P)Q(h− (Id−P̂)h)

=(Id− P){Q(h)−B(h, (Id− P̂)h}

+
1

2
B((Id− P̂)h, ((Id− P̂)h).
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Now, by J–invariance of d2J(x0),

(Id−P) ◦B(h, (Id−P̂)h) = (Id−P) ◦B(Jh, J(Id−P̂)h).

But Jh ∈ ker dJ(x0) since h ∈ ker dJ(x0) ◦ J, as x ∈ Sx0 .

Thus, by gauge invariance of d2J(x0), B(Jh, J(Id−P̂)h) = 0

since J(Id−P̂)h ∈ range J ◦ dJ(x0)∗. Thus,

(Id−P)Q(F (x)− x0) = (Id−P)Q(h) = (Id−P)J(x),

since J(x) = dJ(x) · h+Q(h). This proves the theorem. �

In finite dimensions, there is a proof that does not require
J to be quadratic. The idea is to work in CP ∩ Sx0 which is
a symplectic manifold such that Sx0 acts on it, with the fixed
point x0. (We still assume that our group action has a slice as
above.) In a neighborhood of x0 there is a symplectic chart in
which the group action is linear, by the equivariant Darboux
theorem (Weinstein (1977), p. 24). These coordinates make the
momentum map j = (I−P)J |(CP∩Sx0) for this action homoge-
neous quadratic yielding the desired conclusion. Details about
this cone can then be obtained from our determination of the
degeneracy spaces in the theorem on p. 72.

Gauge theory .8 Existence and uniqueness theory for the Cauchy
problem shows that the structure of singularities in the solution
space of the four–dimensional Yang–Mills field equations on a
fixed background space–time is the same as that for the con-
straint equations. These constraint equations are well known
and may be described as follows: Let M be a fixed compact
three–manifold (a Cauchy surface in the fixed background space–
time). Let π : B → M be a principal G–bundle and let U de-
note the space of (W s,p, s > 3/p+1) connections on this bundle.
Elements A ∈ U represent vector potentials for gauge fields re-
stricted to M . Let P = T ∗U be the basic symplectic space,
elements of which are pairs (A, η); η represents the generalized
electric field density. Assume g, the Lie algebra of G, carries an
adjoint–action invariant inner product (·, ·), so that T(A,η)(T

∗U)

8This example is due to Judy Arms.
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(elements of which are denoted (b, θ)) carries a preferred L2–
inner product 〈〈·, ·〉〉. This, the canonical symplectic structure
and the complex structure J(b, θ) = (−θ, b) (appropriately du-
alized by (·, ·)) are in the correct relationship.

The constraint equations are J(A, η) = 0, where J(A, η) is the
gauge covariant divergence of η using the connection A. In fact,
J is the momentum map for the action of the group G of bundle
automorphisms of B on P . This is the group G in the general
theory; its Lie algebra is g, the g–valued functions on M . The
dual g∗ is the g∗–valued densities; thus J : P → g∗. The adjoint
operator dJ(A, η)∗ is elliptic and so one can construct a slice
using ker (dJ(A, η)◦J); the spaces here are infinite dimensional,
but ellipticity of dJ(A, η)∗ validates the technical points.

Moreover, J is quadratic. The quadratic term Q is

Q(b, θ) = [b, θ],

where b and θ are perturbations of A and η, so h = (b, θ),
and [b, θ] is the bracket in g. (From this simple form gauge and
J–invariance can be verified directly.) The preceding theorem
therefore applies. For gauge fields, infinitesimal symmetries of
(A, η) are A–covariant constant g–valued functions on B that
commute with η. The existence of such symmetries implies that
the gauge field is reducible to a field with a smaller gauge group
H ⊂ G,H 6= G. The space N(A,η)∩C consists of solutions of the
constraint equations which are reducible to the gauge group H;
the rest of the solution set containing the conical singularities
consists of solutions with a gauge group K intermediate between
H and G, the conical singularities of specified symmetry type K
then fit together to produce the entire conical singularity in the
constraint set C = {(A, η)J(A, η) = 0}. Finally, we remark that
the space of solutions modulo gauge transformations seems to be
a stratified symplectic manifold. (The details of the needed slice
theorem and related technical facts have recently been proved
by J. Rogulski.)
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9
The Space of Solutions of Einstein’s
Equations: Regular Points

This lecture1 will be devoted to a discussion of the following
main theorem.

Theorem 9.1. Let V be a four–manifold, (4)g0 a Lorentz met-
ric on V and M ⊂ V a compact spacelike three–manifold. As-
sume (V, (4)g0) is a globally hyperbolic2 space–time satisfying the
vacuum Einstein equations:

Ein((4)g0) = 0

where Ein((4)g0) = Ric((4)g0) − (1/2)R((4)g0)(4)g0 denotes the
Einstein tensor of (4)g0.

Let E denote the set of all (globally hyperbolic) solutions of
Einstein’s vacuum equations (in a suitable Sobolev topology).
Then

1This lecture is based on joint work with A. Fischer and V. Moncrief. See Fischer

and Marsden (1973), Fischer and Marsden (1979b), Fischer and Marsden (1979a) and
Moncrief (1975b), Moncrief (1975a).

2Basic definitions in general relativity may be found in Hawking and Ellis (1973) or

Misner et al. (1973).
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E is a smooth manifold in a
neighborhood of (4)g0 with

tangent space the space of solutions
of the linearized Einstein equations

⇔ (
(4)g0 has no Killing fields,i .e.,

infinitesimal symmetries.

)

Before embarking on the strategy of proof, we make a few pre-
liminary remarks.

1. If (4)g is near (4)g0, then M will still be spacelike for (4)g. In
fact, M will be a Cauchy surface. (See Budic et al. [1978].)

2. The topology on E is actually that of Hs convergence on
compact sets of V . Since V ≈M×R is noncompact, this is
a Fréchet topology. However, using the initial value formu-
lation of the Einstein equations, explained below, we can
restrict attention to a compact neighborhood of M and
hence to a Banach space setting.

3. The compactness of M is important. In the noncompact
case, symmetries of the background metric (4)g0 do not
preclude E being a manifold. For example, if (4)g0 is the
Minkowski metric on R4 (with symmetry group the Poincaré
group), then E is a manifold near (4)g0, if appropriate asymp-
totic conditions are built in. This is related to the fact that
asymptotically flat space–times have a well–defined energy
and angular momentum, whereas cosmological space–times
(i.e., those with compact Cauchy surfaces) do not. For de-
tails of this case, see Choquet-Bruhat et al. (1979) and
Cantor (1979).

4. In some sense the results of this and the next lecture are
special cases of the theory in Lecture 8, with the symmetry
group being the group of diffeomorphisms of V . There are
quite a few steps required to nail this down precisely, which
are outlined below.
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5. For analogous results in geometry for the scalar curvature
equation, see Fischer and Marsden (1975).

6. For the situation in gauge theory, see Atiyah et al. (1978)
and Arms (1979), Arms (1980). The main ideas carry over
for pure gauge theory and for gauge theory coupled to grav-
ity. (For the coupling of gravity to matter fields the answer
seems to depend on how the problem is formulated, i.e.,
what physical quantities are taken to be the basic vari-
ables.)

As we shall see shortly, the breakdown of the manifold picture
for E near a vacuum metric with symmetries is closely related
to the breakdown of linear perturbation theory about a sym-
metrical background (with compact Cauchy surfaces). We first
give a brief history of this linearization stability problem as it
occurs in gravity.

1. Brill and Deser (1973) considered perturbations of the flat
metric on T 3 × R and discovered the first example of this
trouble in perturbation theory. They found in going to a
second order perturbation analysis that they had to read-
just the first order perturbations in order to avoid inconsis-
tencies at second order. This was the first hint of a conical
structure for E near solutions with symmetry.

Similarly Signorini (1930) had found a difficulty in the trac-
tion problem in elasticity by this perturbative approach; see
Lecture 7.

2. Fischer and Marsden (1973) found general sufficient condi-
tions for E to be a manifold in terms of the Cauchy data
for vacuum spacetimes.

3. Choquet-Bruhat and Deser (1973) proved a version of the
theorem that E is a manifold near Minkowski space, which
was later improved by Choquet-Bruhat et al. (1979).
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4. Moncrief (1975b) showed that the sufficient conditions de-
rived by Fischer and Marsden for the compact case were
equivalent to the requirement that (V, (4)g0) have no Killing
fields. This then led to the link between symmetries and
bifurcations explained in Lecture 8, and completed the im-
plication “⇐” in the theorem.

5. Moncrief (1975a) discovered the general splitting of grav-
itational perturbations; the generalization to momentum
maps was found by Arms et al. (1975) and was described
in Lecture 4.

6. Moncrief (1976) discovered the space–time significance of
the second order conditions that arise when one has a
Killing field and identified them with conserved quantities
of Taub. This is described in Lecture 10.

7. Arms and Marsden (1979) used the second order conditions
of Brill and Deser, as generalized by Fischer, Marsden and
Moncrief, to complete the implication “⇒”.

8. The description of the conical singularity in E near a space-
time with symmetries is due to Fischer et al. (1980) for one
Killing field and to Arms, Fischer, Marsden and Moncrief
in the general case. This situation is discussed in the next
lecture.

In Lecture 8 we saw that linearization, bifurcation and symme-
try phenomena are all related. Let us begin here with a general
treatment of linear perturbations.

Let f be a map between two Banach spaces X, Y ,

f : X → Y

(the argument works just as well if X, Y are Banach manifolds),
and consider trying to solve

f(x) = 0
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near x0, where x0 is a solution. The linearized equations are

Df(x0) · h = 0.

From the implicit function theorem, if

Df(x0) : X → Y

is surjective, then the solution set f−1(0) is a manifold near x0

and ker Df(x0) is its tangent space.
Technically we need, in the infinite dimensional case, some

splitting property. This follows from ellipticity of either Df(x0)
or its adjoint.

We define linearization stability of the equations f(x) = 0 as
follows.

Definition 9.2. The equation f(x) = 0 is called linearization
stable at a solution X0 if all h ∈ X satisfying the linearized
equations are integrable, i.e., if there exists a C1 curve x(λ),
where λ is the curve parameter, of solutions of the exact equa-
tions such that x(0) = x0, x

′(0) = h.

Remarks 1. Think of the solution of the linearized equation
as providing the first term in a perturbation series about
x0,

x(λ) = x0 + λh+
λ2

2!
h(2) + · · · .

The idea of linearization stability is to decide whether x0 +
λh is a good first approximation to a curve of solutions.
If Df(x0) is surjective, then f−1(0) is a manifold and all
solutions of Df(x0) · h = 0 form its tangent space. In this
case it is obvious that perturbations can be extended to
curves of solutions.

2. What goes wrong with the above argument in interesting
examples such as gravity is that Df(x0) fails to be surjec-
tive at some point, so that we do not know whether we
have got a manifold, or whether, if so, its tangent space
coincides with ker Df(x0).
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3. A simple example is provided by

f : R2 → R, f(x, y) = x2 − y2.

The solution set is clearly a cone with vertex at the origin.
However, Df(0, 0) = 0, so that any tangent vector satis-
fies the linearized equations at this point. Thus linearizing
this is misleading, and must be adjusted by considering
quadratic corrections. In this problem the exact equation
is purely quadratic, so that second order corrections would
clearly suffice to decide integrability. One could, however,
add higher order terms to the f in this example to bend the
cone. Then it would be a nontrivial statement that exact
solution curves would be directions of the perturbations ad-
justed to satisfy the second order conditions. We will derive
the general second order conditions in the next lecture.

�

In general relativity or Yang–Mills theory, one is dealing with
hyperbolic equations and there are no direct invertibility or split-
ting properties to use in the four–dimensional context. Thus we
want to pass to the Cauchy problem, and split the problem into
one of the initial value equations and evolution equations. In
this initial value form of the theory, we can use elliptic theory
and proceed as outlined above. Therefore we need to consider
the dynamics of general relativity from the initial value or ADM
(Arnowitt et al. (1962)) point of view. We follow the formulation
of Fischer and Marsden (1979b).

Let (V, (4)g) be a space–time satisfying Ein ((4)g) = 0. The
equations follow from the well–known Hilbert variational prin-
ciple with Lagrangian density,

L = dµ(4)gR((4)g),

where R((4)g) is the scalar curvature of (4)g and dµ(4)g its asso-
ciated volume element. We want to split the Einstein equations
into initial value equations and evolution equations, after in-
troducing suitable dynamical variables. The technique for doing
this is well known, so we shall just summarize the results.
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First we need some notation. Let M be a compact three–
manifold, and define

Emb(M,V, (4)g) = { set of all spacelike embeddings of M intoV4}.

This space (which is not a group) will play a role analogous
to that of a symmetry group for a Hamiltonian system. The
natural occurrence of this space of embeddings is a reflection of
the true symmetry group

D = four–dimensional diffeomorphisms of V,

which the space–time formulation of Einstein’s equations has.
Though Emb (M,V, (4)g) is not a group, it will act rather like
a group on the solution set of the Einstein equations, and we
shall be able to use techniques similar to those developed in
Lectures 3, 4 and 8 for Hamiltonian systems with symmetry
groups. The space Emb (M,V4,

(4)g) is in fact a C∞ infinite
dimensional manifold (see Palais (1968) and Ebin and Marsden
(1970)), with tangent space at i ∈ Emb (M,V, (4)g) given by

Ti Emb(M,V, (4)g) = {(4)X : M → TV |(4) X(x) ∈ Ti(x)V }.

If you like, you can think of such a manifold of maps as a space of
sections of a fiber bundle (M×V → πM). Notice that the space
of embeddings also plays a key role in elasticity; see Lecture 2.)

We can decompose any (4)X in Ti Emb into a piece normal
to the embedded hypersurface in V and a piece tangent to this
surface. If we let (4)Z designate the unit future pointing normal
field to i(M), then we can write

(4)X = N (4)Z +X,

where X is tangent to i(M). This decomposition defines the
lapse function N and the shift vector field X of the ADM for-
malism. Using i to pull these objects back to M , we can think of
N and X as a function and a vector field on the three–manifold
M ; see Figure 9.1.
The analogue of g (the gauge Lie algebra) is
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M i

X

Figure 9.1. The lapse and shift.

Ti Emb(M,V4,
(4)g)

= { space of N ’s and X’s }
≈ C∞(M)×H∞(M) = C∞ functions ×C∞ vector fields,

where we have used pullback by i to identify the space of N ’s
and X’s with the space of functions and vector fields on M ,
and have worked in C∞ for simplicity. Note that there is no
“identity” element of Emb (M,V4,

(4)g). Now define

g = i∗(4)g = the first fundamental form of i(M)

regarded as a Riemannian metric on M ,

and

k = the second fundamental form of i(M) regarded

as a symmetric two–tensor on M .

One can regard (g, k) as an element of TM, where M is the
space of Riemannian metrics of M . We now define

π = µ(g)((trace k)g − k)#

which is a contravariant two–tensor density on M . We now re-
gard (g, π) as an element of T ∗M, where here is meant the L2

dual space which is naturally provided by the ADM variational
principle. Thus π is in the L2 dual to TgM (not the Sobolev
dual defined by the topology on M).
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Now define the constraint maps

Φ : T ∗M→ (C∞(M)×H∞(M))∗, Φ(g, π) = (H(g, π),J (g, π)),

where

H(g, π) = µ(g)−1

(
π · π − 1

2
(traceπ)2

)
− µ(g)R(g),

and
J (g, π) = −2πij|j = 2δπ;

here R(g) is the curvature scalar of g, µ(g) its volume element
and “|” represents covariant differentiation with respect to g.
Yielding to the spiral of inflation of “super” geometric quantities
in relativity, we define the super–momentum map

J(g, π)(N,X) =

∫
M

〈(N,X),Φ(g, π)〉 =

∫
M

(NH +H · J ).

The following theorem (in a form first suggested by Fischer
around 1973) geometrizes the content of the ADM formalism.

Theorem 9.3. Let iλ be any curve in Emb (M,V4,
(4)g), and

let (N(λ), X(λ)) and (g(λ), π(λ)) be the corresponding curves
induced by iλ. Then the equations

i Φ(g, π) = 0,

ii
∂

∂λ

(
g(π)
λ(π)

)
= −J◦DΦ(g(λ), π(λ))∗· (N(λ), X(λ))

are equivalent to Ein ((4)g) = 0 on the part of space–time swept
out by iλ(M).

It is well known that the evolution equations ii preserve the
constraints i, so that the latter need only be imposed on an
initial surface. In the above formula DΦ(g, π)∗ is the L2–adjoint
of DΦ(g, π), and J is the complex structure associated with
the L2–metric 〈〈·, ·〉〉 on T ∗M and the symplectic structure (see
Lecture 1).

For comparison recall the situation for a Hamiltonian G–space
(G,P, ω, J). There we found that the generators of the group
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associated with the moment map J were the Hamiltonian vector
fields

ξP (x) = −J ◦DJ(x)∗ · ξ.
Here (N,X) plays the role of ξ = an element of the Lie algebra
g. In the case of Hamiltonian G–spaces we required the property
of Ad∗–equivariance, which gave

{Ĵ(ξ), Ĵ(η)} = Ĵ([ξ, η]),

where {·, ·} was the Poisson bracket and [·, ·] was the Lie algebra
bracket. In relativity, the analogous property of Poisson brackets
of the moment map does not hold on all of phase space, but
instead only on the subset defined by the constraints J = 0.
This is one of the “penalties” of the fact that Emb (M,V4,

(4)g)
is not a group, though it acts like a group on solutions of the
field equations.

The equations Φ(g(λ)π(λ)) = 0 are equivalent to the normal–
normal and normal–tangential projections of the Einstein equa-
tions to the hypersurfaces iλ(M). The adjoint form of the evo-
lution equations (ii above) provides a first order form for the
remaining tangential–tangential projections of Ein ((4)g) to the
hypersurfaces iλ(M). The contracted Bianchi identities obeyed
by Ein ((4)g) ensure that if i holds on an initial surface then
these constraints will be automatically propagated by ii.

The main theorem now is a formal consequence of our work
in Lecture 8. There we showed that J−1(0) is a manifold near
x0 when x0 has no symmetries; we did this by identifying ker
dJ(x0)∗ with symmetries, and concluded that if there were no
symmetries, then J is a submersion.

There are a number of issues that must be overcome to really
carry this out. First of all, Emb is not a group, so one must verify
directly the steps where this is used. On a formal level this causes
no difficulties. Secondly, there are the technical issues caused by
the infinite dimensional nature of the problem.

Finally, there is the initial value theory which must be used
to propagate our information on the constraint space J−1(0) to
that on space–time itself. All of these issues have, in fact, been
overcome (see the references cited earlier).
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10
The Space of Solutions of Einstein’s
Equations: Singular Points

The main result1 to be discussed in this lecture is as follows.

Theorem 10.1. Let (V, (4)g0) be a globally hyperbolic vacuum
spacetime with a compact Cauchy hypersurface of constant mean
curvature. Let E denote the space of solutions of the Einstein
vacuum equations, as in Lecture 9.

Suppose the space of Killings fields for (4)g0 has dimension
k ≥ 1. Then:

1. E has a conical singularity at (4)g0 in the sense that E ≈ C×
(manifold), where C is the zero set of a quadratic form with
values in Rk.

2. A solution (4)h of the linearized equations D Ebin ((4)g0)(4)h =
0 is integrable if and only if the conserved quantities of Taub
vanish; i.e., for every Killing field (4)X of (4)g0.∫

M

(4)X · [D2 Ein((4)g0) · ((4)h, (4)h)] · (4)Zdµ = 0

where (4)Z is the forward point unit normal to M .

1Based on joint work with J. Arms, A. Fischer and V. Moncrief.
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Discussion. 1. Notice that we have added the condition
that (V, (4)g0) admit a hypersurface of constant mean cur-
vature. This is required for technical reasons in the proof. It
is believed to be a relatively harmless assumption; indeed,
any perturbation of (4)g0 has a hypersurface of constant
mean curvature as well (Choquet-Bruhat et al. (1979) and
they are believed to exist under rather general conditions
(Marsden and Tipler (1980)).

2. One way of viewing the result is through perturbation se-
ries. Suppose one wishes a convergent expansion about the
background (4)g0,

(4)g(λ) = (4)g0 + λ(4)h+
λ2

2
(4)h2 + . . . ;

such an expansion can be performed if and only if the Taub
quantities formed from (4)h and the Killing fields of (4)g0

vanish. It is rather remarkable that the only obstruction
to forming perturbation series occurs at second order. The
complexity of the Einstein tensor might naively be expected
to produce a more complicated solution set. The “reason”
it has only quadratic singularities is that secretly the Ein-
stein tensor conceals a momentum mapping.

3. The main idea for the proof of part 1 of the theorem is
already contained in Lectures 8 and 9. There are a number
of important points, however; one has to check that the
slice theorem is valid and one has to be very careful about
the fact that Emb (M,V, (4)g0) is not a group and how to
express, in terms of Cauchy data, the fact that (4)g0 and
(4)g have the same symmetry type. The spacelike gauges
are dealt with using the diffeomorphism group of M , while
the timelike gauges require using the constraint of constant
mean curvature. However, with this care in mind, the out-
line of the proof is the same as that in Lecture 8 using the
momentum map of Lecture 9. The details are a rather long
story: see Fischer et al. (1980) and Arms et al. (1982).
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4. A model problem involving homogeneous cosmologies, where
the conical structure can be seen explicitly, has been given
by Jantzen (1979).

5. A good example of the theorem is the description of sym-
metry breaking in the flat universe T3×R; if the time sym-
metry is broken, one passes to a Kasner universe (Bianchi
type 1) and if a spacelike symmetry is then broken one gets
a Gowdy universe. Each of these symmetry losses involves
a conical singularity in the solution space.

6. The conical singularities in the solution space entail diffi-
culties with other issues such as quantization (see Moncrief
(1978)) and notions of “general solutions” (see Barrow and
Tipler (1979)).

7. The solution manifold for asymptotically flat space–times
is nonsingular, as was mentioned earlier. However, the dif-
ficulties in the cosmological case still arise if one studies
perturbations of the total energy and angular momentum.

�

The rest of the lecture will be devoted to explaining how the
Taub quantities come in. This can be done by a complicated
calculation relating D2 Ein directly to D2J and invoking the
general results in Lecture 8. However, we can also proceed di-
rectly from the space–time point of view. Since this is simpler
and more instructive, we shall do so.

We begin with the general procedure for discovering second
order conditions. Again, let f : X → Y be a smooth map and
let x0 ∈ X, f(x0) = 0. Suppose that Df(x0) is not surjective but
has closed range, and let h ∈ X satisfy the linearized equations

Df(x0) · h = 0.
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Recall that h is integrable if there is a C1 curve x(λ) in X such
that

f(x(λ)) = 0, x(0) = x0, x′(0) = h.

Now differentiate f(x(λ)) = 0 successively with respect to λ to
obtain

Df(x(λ)) · x′(λ) = 0,

D2f(x(λ)) · (x′(λ), x′(λ)) +Df(x(λ)) · x′′(λ) = 0,

so that, setting λ = 0, we get

0 = D2f(x0) · (h, h) +Df(x0) · x′′(λ).

Now let l ∈ Y ∗ be such that l 6= 0 and l = 0 (as a linear func-
tional) on the range of Df(x0). Such an l exists, since Df(x0) is
not surjective, by the Hahn–Banach theorem. The above equa-
tion, paired with l, then gives

〈l, D2f(x0) · (h, h)〉 = 0,

since l paired with Df(x0) · x′′(0) ∈ range (Df(x0)) gives zero.
Thus we have the quadratic restrictions on h:

〈l, D2f(x0)·(h, h)〉 = 0 for all l such that l = 0 on the range of Df(x0).

Remarks 1. It is possible, of course, that these quadratic
constraints are an identity on the solutions of Df(x0) ·h =
0. In that case one should proceed as above and look for
cubic or higher order constraints on h.

2. We have considered l to lie in the dual space Y ∗. However,
if we have an inner product 〈〈·, ·〉〉 on Y we could use this
to define the pairing in the above argument; this is what
happens in practice.

3. The above method is well known in bifurcation theory as
a technique for finding the directions of bifurcation.
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4. In singularities of mappings, 〈l, D2f(x0) · (h, k)〉 is called
the “intrinsic second derivative” of f at x0.

�

Let us now see how this idea works for the Einstein equations.
To do this, we shall need a few preliminary calculations.

Lemma 10.2. If Ein ((4)g) = 0 and (4)h is any symmetric two
tensor, then

δ[DEin((4)g) · (4)h] = 0,

where δ = δ(4)g is the divergence with respect to (4)g.

Proof. The contracted Bianchi identities assert that δ Ein
((4)g) = 0. Differentiation with respect to (4)g gives the iden-
tity

[Dδ((4)g) · (4)h] · Ein((4)g) + δ[DEin((4)g) · (4)h] = 0,

where δ((4)g) = δ(4)g indicates the functional dependence of δ

on (4)g, and [Dδ((4)g) · (4)h]· Ein ((4)g) is the linearized diver-
gence operator acting on Ein ((4)g). The lemma follows since
Ein ((4)g) = 0. �

Lemma 10.3. Suppose Ein ((4)g) = 0 and D Ein ((4)g) · (4)h =
0. Then

δ[D2 Ein((4)h) · ((4)h, (4)h)] = 0.

Proof. This follows from differentiating the contracted Bianchi
identities twice to give

[D2δ((4)g) · ((4)h, (4)h)] · Ein((4)g) + [Dδ((4)g) · (4)h] · (D Ein((4)g) · (4)h)

+Dδ((4)g) · (4)h · (D Ein((4)g) · (4)h) + δD2 Ein((4)g) · ((4)h, (4)h) = 0,

and then using the hypotheses Ein ((4)g) = 0 and D Ein
((4)g) = 0. �

Proposition 10.4 (Taub (1970)). Suppose Ein ((4)g) = 0, DEin((4)g)·
(4)h = 0 and (4)X is a Killing field for (4)g. Then the vector field

(4)T = (4)X · [D2 Ein((4)g) · ((4)h, (4)h)]

has zero divergence. (Here the first “·” denotes contraction.)
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Proof. From Lemma 10.2, the bracketed quantity has zero
divergence. Thus (4)T is the contraction of a Killing field and a
symmetric divergence–free two–tensor field, and hence has zero
divergence. �

As a consequence, if Σ1 and Σ2 are two compact spacelike
hypersurfaces, then∫

Σ1

(4)T · (4)ZΣ1d
2Σ1 =

∫
Σ2

(4)T · (4)ZΣ2d
3Σ2,

where (4)ZΣi , i = 1, 2, is the unit forward pointing normal to Σi

and d3Σi is its Riemannian volume element.

Lemma 10.5. Suppose Ein ((4)g) = 0, (4)X is a Killing field
of (4)g, (4)h is a symmetric two–tensor field and Σ is a compact
spacelike hypersurface. Then

B(Σ, h) ≡
∫

Σ

(4)X · [DEin((4)g) · (4)h] · (4)ZΣd
3Σ = 0.

Proof. By Lemma 10.1.1, DEin((4)g) · (4)h is divergence free,
and since (4)X is a Killing vector field, (4)X · [DEin((4)g) · (4)h]
is a divergence–free vector field. Thus for two spacelike compact
hypersurfaces, B(Σ1,

(4)h) = B(Σ2,
(4)h). Choose Σ1 and Σ2 dis-

joint and replace (4)h by a symmetric two–tensor (4)k that equals
(4)h on Σ and vanishes on a neighborhood of Σ2. Then

B(Σ1,
(4)h) = B(Σ1,

(4)k) = B(Σ2,
(4)k) = 0. �

5. Now we are ready to connect these ideas with linearization
stability. If Ein ((4)g) = 0 and D Ein ((4)g) · (4)h = 0, we call
(4)h an infinitesimal deformation. An actual deformation is
a smooth curve (4)g(λ) of Lorentz metrics through (4)g0

satisfying Ein ((4)g(λ)) = 0. We say (4)h is integrable if, for
every compact set C ⊂ V4, there is an actual deformation
(4)g(λ) defined on C such that (4)g(0) = (4)g0 on D and

d

dλ
(4)g(λ)|λ=0 = (4)h onD.
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By the chain rule, every integrable (4)h is an infinitesimal
deformation. A spacetime is called linearization stable if
every infinitesimal deformation is integrable.

In the presence of Killing fields, the necessary second order
condition for integrability is as follows.

Proposition 10.6 (Second order conditions). Suppose Ein
((4)g0) = 0, (4)X is a Killing field of (4)g0 and (4)h is integrable.
Then the conserved quantity of Taub vanishes identically when
integrated over any compact spacelike hypersurface Σ:∫

Σ

(4)X · [D2 Ein((4)g0)((4)h, (4)h)] · (4)ZΣd
3Σ = 0.

Proof. Differentiation of Ein ((4)g(λ)) = 0 twice with respect
to λ at λ = 0 gives the identity

D2 Ein((4)g0) · ((4)h, (4)h) +D Ein((4)g0) · (4)k = 0,

where (4)k = (d2/dλ2)(4)g(λ)|λ=0. Contracting with (4)X, inte-
grating over Σ and using Lemma 4 gives the result. �

Our main theorem says not only that are these conditions nec-
essary for integrability but that they are sufficient as well.

We saw in Lecture 8 that gauge invariance of d2J(x0) is a
crucial part of the analysis. We conclude this lecture by show-
ing how to obtain the required identities on the space–time
(these identities can then be projected to the geometrodynami-
cal data).

1. If F : V4 → V4 is a diffeomorphism, then

Ein(F ∗(4)g) = F ∗(Ein((4)g)),

where F ∗ denotes the pullback of tensors. This equation as-
serts the covariance of the Einstein operator. The infinites-
imal version of covariance is the following:

Proposition 10.7. Let (4)X be any vector field on V , and (4)h
a symmetric two–tensor field. Then

DEin((4)g) · (L(4)X
(4)g) = L(4)X(Ein((4)g))
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and

D2 Ein((4)g) · ((4)h, L(4)X
(4)g) +DEin((4)g)L(4)X

(4)h

= L(4)X(DEin((4)g) · (4)h),

where L(4)X denotes Lie differentiation.

Proof. Let F be the flow of (4)X, and F0 = idV , the iden-
tity diffeomorphism on V . (Of course, Fλ may be only locally
defined.) Thus, locally,

Ein(F ∗λ
(4)g) = F ∗λ Ein((4)g).

Differentiating this relation in λ gives

DEin(F ∗λ
(4)g) · F ∗λ (L(4)X

(4)g) = F ∗λ (L(4)X Ein((4)g)).

Setting λ = 0 gives the first relation. Then, differentiating this
result with respect to (4)g gives the second relation. �

2. If Ein ((4)g) = 0, it follows that

DEin((4)g) · L(4)X
(4)g = 0

for any vector field (4)X. Perturbations of the form L(4)X
(4)g

are gauge perturbations, so this equation shows that the
linearized Einstein operator D Ein ((4)g) is gauge invariant
if (4)g is a solution to the empty space equations. Similarly,
if (4)h solves the linearized equations

DEin((4)g) · (4)h = 0,

then we have the gauge invariance identity

D2 Ein((4)g) · ((4)h, L(4)X
(4)g) +DEin((4)g) · L(4)X

(4)h = 0

for any (4)X. We shall use this relationship to prove gauge
invariance of Taub’s conserved quantities (4)T .

3. The next proposition establishes the gauge invariance of
Taub’s conserved quantities (4)T when integrated over a
hypersurface.
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Proposition 10.8. Let Ein ((4)g) = 0, (4)X be a Killing field
of (4)g,D Ein ((4)g) · (4)h = 0 and (4)Y an arbitrary vector field.
Then, for any compact space–like hypersurface Σ,∫

Σ

(4)X · [D2 Ein((4)g)((4)h+ L(4)Y
(4)g, (4)h+ L(4)Y

(4)g)] · (4)ZΣd
3Σ

=

∫
Σ

(4)X · [D2 Ein((4)g)((4)h, (4)h)] · (4)ZΣd
3Σ.

Proof. By the bilinearity of D2 Ein ((4)g), we need only show
that ∫

Σ

(4)X · [D2 Ein((4)g)((4)k, L(4)Y
(4)g)] · (4)ZΣd

3Σ = 0,

where (4)k = (4)h+L(4)Y
(4)g satisfies D Ein ((4)g) · (4)k = 0. But

this follows by contracting the gauge invariance identity with
(4)X, integrating over Σ and using Lemma 4 above. �

With these identities one can now plug into the machinery of
Lecture 8.

As was the case with Yang–Mill fields, we expect that E/D is
a stratified set, each stratum being a symplectic manifold.

There are many other impressive applications of “global anal-
ysis” to general relativity which we have not mentioned. Perhaps
the most spectacular of these is the solution of the positive mass
conjecture by Schoen and Yau (1979c). There are

several papers
by Schoen
and Yau in
1979, which
one is the
correspond-
ing paper?
Schoen and
Yau (1979c),
Schoen and
Yau (1979f),
Schoen and
Yau (1979d),
Schoen and
Yau (1979a),
Schoen and
Yau (1979e),
Schoen and
Yau (1979b)
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