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Abstract: For a given skew symmetric real n x n matrix N, the bracket [X, Y]y =
XNY — YNX defines a Lie algebra structure on the space Sym(n, N) of symmetric
n x n real matrices and hence a corresponding Lie-Poisson structure. The purpose of
this paper is to investigate the geometry, integrability, and linearizability of the Hamilto-
nian system X = [X2, N1, or equivalently in Lax form, the equation X = [X, XN+N X]
on this space along with a detailed study of the Poisson geometry itself. If N has distinct
eigenvalues, it is proved that this system is integrable on a generic symplectic leaf of the
Lie-Poisson structure of Sym(n, N). This is established by finding another compatible
Poisson structure.

If N is invertible, several remarkable identifications can be implemented. First,
(Sym(n, N), [-, -]) is Lie algebra isomorphic with the symplectic Lie algebra sp (n, N~ 1)
associated to the symplectic form on R” given by N~!. In this case, the system is the
reduction of the geodesic flow of the left invariant Frobenius metric on the underlying
symplectic group Sp(n, N~!). Second, the trace of the product of matrices defines a
non-invariant non-degenerate inner product on Sym(n, N) which identifies it with its
dual. Therefore Sym(n, N) carries a natural Lie-Poisson structure as well as a compatible
“frozen bracket” structure. The Poisson diffeomorphism from Sym(n, N) to sp(n, N -1 )
maps our system to a Mischenko-Fomenko system, thereby providing another proof of
its integrability if N is invertible with distinct eigenvalues. Third, there is a second
ad-invariant inner product on Sym(n, N); using it to identify Sym(n, N) with itself and
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composing it with the dual of the Lie algebra isomorphism with sp(n, N~!), our system
becomes a Mischenko- Fomenko system directly on Sym(n, N).

If N is invertible and has distinct eigenvalues, it is shown that this geodesic flow on
Sym(n, N) is linearized on the Prym subvariety of the Jacobian of the spectral curve
associated to a Lax pair formulation with parameter of the system. If, on the other hand,
N has nullity one and distinct eigenvalues, in spite of the fact that the system is com-
pletely integrable, it is shown that the flow does not linearize on the Jacobian of the
spectral curve.
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1. Introduction

The problem and discussion of the results. Fix N € so(n), the space of skew symmetric
n X n matrices, also regarded as the Lie algebra of SO(n), the n-dimensional proper
orthogonal group. This paper continues the analysis, begun by Bloch and Iserles in [5],
of the following set of ordinary differential equations on Sym(n), the linear space of
n X n symmetric matrices:

X =[X2, N]. (1.1)

Here, X € Sym(n), X denotes the time derivative, and initial conditions are denoted
X(0) = Xo € Sym(n). It is easy to check that (X%, N] e Sym(n), so that if the initial
condition is in Sym(n) then X (#) € Sym(n) for all t. As will be seen shortly, this sys-
tem is Hamiltonian and, despite its quadratic dependence on X, conservation of energy
guarantees that solutions of (1.1) exist for all # € R.

Because of the obvious identity [Xz, N] =[X,XN+NX]= X2N—NX2,Eq. (1.1)
may be rewritten in the Lax form

X =[X,XN+NX], (1.2)

again with initial conditions X (0) = X € Sym(n).!

Define the N-bracket by [X, Y]y := XNY — YNX. It is easy to check that this
makes Sym(n) into a Lie algebra and with this structure it will be denoted Sym(n, N).
The structure of this Lie algebra is completely analyzed in the present paper. Using the
trace inner product, identify Sym(n, N) with its dual and endow it with the associated
Lie-Poisson structure. As will be done below, it is straightforward to show that the sys-
tem (1.1) is Hamiltonian with respect to this Lie-Poisson structure with Hamiltonian

1 Integrable equations that bear a formal resemblance to Eq. (1.1); that is, to (1.2), in the context of free
associative algebras are given in [18 and 24].
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equal to the quadratic form defined by the Frobenius metric. Interestingly, the system is
also Hamiltonian with respect to a compatible “frozen” Poisson structure; this provides a
bi-Hamiltonian structure for Eq. (1.1). We study the Poisson geometry on Sym(n, N) for
both Poisson structures and, in particular, determine the generic leaves and the Casimir
functions of both Poisson structures relative to which the system (1.1) is bi-Hamiltonian.
The Poisson geometry in the case N is not invertible turns out to be particularly rich.

A key result of the paper is that if N has distinct eigenvalues (one of which could be
zero), this system is integrable on the generic symplectic leaf of Sym(n, N) (of either
the Lie-Poisson or the frozen Lie-Poisson structures). The proof makes use of the Lax
pair with parameter found in [5] to find a class of integrals that, as we show using the
preceding bi-Hamiltonian structure together with a technique inspired by [22], are in
involution.? Related work on bi-Hamiltonian structures may be found in [17 and 6].
Independence is proved directly.

We show that if N is invertible, the Lie algebra Sym(n, N) is isomorphic to the
symplectic Lie algebra sp(n, N~!), where the symplectic form on R” is given by N !
Thus, in this case, the system (1.1) is Lie-Poisson on (the dual of) sp(n, N —1), and so
the system is the (Euler-Poincaré or Lie-Poisson) reduction of the geodesic flow on the
underlying symplectic group, denoted by Sp(n, N 1), relative to the Frobenius metric.

If N is invertible there is a Poisson diffeomorphism from sp(n, N ~Hto Sym(n, N),
the inverse of which maps our system to a Mischenko-Fomenko system (see [19-21])°,
thereby providing another proof of integrability in the case that N is invertible with
distinct eigenvalues. In addition, by identifying the symmetric matrices with themselves
by an an ad-invariant inner product if N is invertible (as opposed to the standard iden-
tification by the trace of the product used before which is valid in general, even if
N is not invertible), our flow can be seen as a Mischenko-Fomenko flow on its dual. A
byproduct of our work is thus the bi-Hamiltonian structure for the associated Mischenko-
Fomenko system on sp(n, N~!). Bi-Hamiltonian structures for Mischenko-Fomenko
systems were first discussed in [6,17], and later in [22]. We also note that the sequence
of integrals we produce by our Lax pair with parameter method on Sym(n, N) is not
produced by shifting the arguments in Casimir functions. Relative to the Lie- Poisson
structure on Sym(n, N), our method for analyzing this system appears to be fundamen-
tally different from completely integrable systems either of rigid body or Toda type (on
symmetric matrices) and none of the standard involution theorems (see e.g. [25]) seem
to be applicable.

Since the system (1.1) is integrable and its integrals are polynomials, one would
expect that this system may be algebraically completely integrable (as defined, for exam-
ple, in [3]). It turns out that the situation is quite involved.

If N is invertible and has all eigenvalues distinct, then the linearization criterion in
[3 or 11] applies and the system is linearizable on the Jacobian of the associated spectral
curve. In spite of this fact, we could not prove that the system is algebraically completely
integrable. However, the spectral curve has an involution, and thus the system is in fact
linearizable on a Prym variety.

If N has odd size, distinct eigenvalues, and nullity one, we show by the concrete study
of the case n = 5 that the system (1.1) is not linearizable on the Jacobian of the spectral
curve. On the other hand, it was already shown that the system is integrable, so this

2 A related result on bi-Hamiltonian structures for ri gid body type equations with a parameter can be found
in [7]. Note that the bi-Hamiltonian structure in the present paper is for the equations without parameter,
which is more relevant for the present study.

3 We thank A. Bolsinov for this observation and the referee for a related observation.
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situation is an example of an integrable system all of whose integrals are polynomials
but whose flow does not linearize on the Jacobian of the spectral curve.

The structure of the paper. In Sect. 2, the Lie algebra structure on the space of sym-
metric matrices induced by N is introduced and in the case in which N is invertible, the
isomorphism with sp(n, N~') is set up. In Sect. 3, two compatible Poisson structures
are defined and the associated bi-Hamiltonian structure is analyzed, and the symplec-
tic leaves and Casimir functions of both Poisson structures are determined. In Sect. 4
the system (1.1) is shown not to directly lie in this family. However, the dual of a Lie
algebra isomorphism defines a Poisson isomorphism from sp(n, N~!) to Sym(n, N);
its inverse maps (1.1) to a Mischenko-Fomenko system on sp(n, N~') if N has dis-
tinct eigenvalues. This fact provides a proof of complete integrability of (1.1) if N is
invertible with distinct eigenvalues. Section 5 returns to the system (1.1) on Sym(n, N),
presents the Lax pair with parameter, and finds a new family of functions containing
the right number of functionally independent integrals of motion; this set of functions
is thus a candidate for the Liouville integrals. In Sect. 6 involutivity of these integrals is
shown using the bi-Hamiltonian structure and Sect. 7 proves the independence of these
functions provided that N has distinct eigenvalues and is either invertible or has nullity
one. Finally, Sect. 8 is devoted to the proofs of the linearization statements given above.

2. The Lie Algebra and the Euler-Poincaré Form

Regarding N as a Poisson tensor on R”, the bracket of two functions f, g is defined in
the standard way as

{f.gly = (VNI NVg. 2.1)

The Hamiltonian vector field associated with a function / (with the convention that
F@) =Xn@@) - Vf(z) ={f, h}(2))is easily checked to be given by

Xn(z) = NVh(2). 2.2)
Quadratic functions. For each X € Sym(n), define the quadratic Hamiltonian Qx by

1
0x(2) := EZTXZ, zeR".

Let Q := {Qx | X € Sym(n)} be the vector space of all such functions. Note that the
map Q : X € Sym(n) — Qx € Q is an isomorphism. Using (2.2) it follows that the
Hamiltonian vector field of Q x has the form

X0, (z) = NXz. (2.3)
The Poisson bracket of two such quadratic functions is easy to work out.

Lemma 2.1. For X, Y € Sym(n), we have

{Ox, Orly = Oix.v1y» (2.4)

where, as earlier, [X,Y]y = XNY — YNX € Sym(n). In addition, Sym(n) is a
Lie algebra relative to the Lie bracket [-, -]y and with this structure will be denoted
Sym(n, N). Therefore, Q : X € (Sym(n, N), [-,-ly) — QOx € (Q, {-,-}n) is a Lie
algebra isomorphism.
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Proof. Using (2.1), we have

(VOx) @) N (VQy) (2) = (X2)T NYz =T XNYz
%ZT (XNY —YNX)z=Qrx.viy -

{Ox. Oyly (@)

Recall that the notation Qy is reserved only for symmetric matrices V. Since X,
Y € Sym(n, N) implies that [X, Y]y = XNY — YNX € Sym(n, N) we can write
Q\x,y]y in the preceding equation.

The bracket [-, -]y on Sym(n, N) is clearly bilinear and antisymmetric. The Jacobi
identity follows by a straightforward direct verification. O

It is a general fact that Hamiltonian vector fields and Poisson brackets are related by

(X5, Xe] = —X(1.0, (2.5)

where the bracket on the left-hand side is the Jacobi-Lie bracket. Thus, it is natural to
look at the corresponding algebra of Hamiltonian vector fields on the Poisson manifold
(R™, {-, -}n) associated to quadratic Hamiltonians. If we take f = Qx and ¢ = Qy,
with Xy = NX and X, = NY, and recall that the Jacobi-Lie bracket of linear vector
fields is the negative of the commutator of the associated matrices, then we have the
following result, which can also be verified directly.

Proposition 2.2. Equations (2.4) and (2.5) imply
N[X,Y]y =[NX, NY]. (2.6)

Letting LH denote the Lie algebra of linear Hamiltonian vector fields on R” relative
to the commutator bracket of matrices, (2.6) states that the map

X € (Sym(n, N), [, -ln) = NX € (LH, [-,])

is a homomorphism of Lie algebras®.

Invertible case. If N is invertible, then this homomorphism is an isomorphism. In addi-
tion, the non-degeneracy of N implies that n is even and that R” is a symplectic vector
space relative to the symplectic form defined by N~!, that is, (u, v) — u - N~ v for
u,v € R". Therefore, the Lie algebra (LH, [+, -]) is isomorphic to the Lie algebra
sp(n, N~1) of linear infinitesimally symplectic maps of R” relative to the symplectic
form defined above by N~!. Recall that elements Z € sp(n, N!) are characterized by
the identity Z" N~! + N=1Z = 0 which is equivalent to the statement that N~ Z is a
symmetric 7 x n matrix. Thus NX € sp(n, N~!) is equivalent to X = X, as expected.

We summarize these considerations in the following statement that can also be found
in [27] at the end of Remark 22 in Sect. 44, p. 245.

Proposition 2.3. Let N € so(n). The map Q : X € (Sym(n, N), [, ]ly) — Ox €
(9, {-, -}n) is a Lie algebra isomorphism. The map ® : X € (Sym(n, N), [-, -]ly) —
NX € (LH,[-,-]) is a Lie algebra homomorphism and if N is invertible it induces an
isomorphism of (Sym(n, N), [-, -1n) with sp(n, N—h.

4 We thank Gopal Prasad for suggesting isomorphisms of this type; they are closely related to well-known
properties of linear Hamiltonian vector fields, as in [16], Prop. 2.7.8.
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Noninvertible case. Assume that N is a general skew- symmetric matrix, not necessarily
invertible. We shall determine now the structure of the Lie algebra (Sym(n, N), [-, -1n).
The point of departure is the fact that if N is non-degenerate, then X € (Sym(n, N),
[, In) = NX € (LH,[,]) = (sp(n, N=YH [, -]) is a Lie algebra isomorphism.
Recall that if R” has an inner product, which we shall take in what follows to be the usual
dot product associated to the basis in which the skew-symmetric matrix N is given, and
L : R* — R"isalinear map, then R” decomposes orthogonally as R” = im L’ @ker L.
Taking L = N in this statement and recalling that N = —N, we get the orthogo-
nal decomposition R = im N @ ker N. Let 2p = rank N and d := n — 2p. Then
N := N|imn : im N — im N defines a non-degenerate skew symmetric bilinear form
and, by the previous proposition, (Sym(2p), [-, -]5) is isomorphic as a Lie algebra
to (sp(2p, N=YH, [, ]. In this direct sum decomposition of R”, the skew- symmetric
matrix N takes the form
N 0
v=[5 ]

where N is a (2p) x (2p) skew-symmetric non-degenerate matrix.

The Lie algebra (Sym(2p), [+, -]5) acts on the vector space M 2,)xa of 2p) x d
matrices (which we can think of as linear maps of ker N to im N) by S - A := SNA,
where S € (Sym(2p), [-,-15) and A € Mp)xq. Indeed, if S, 5" € Sym(2p) and
A € M@p)xa, then

[S,8]y A= (SNS'—S'NS)YNA=SNS'NA—S'NSNA
=S5-(5-A)—-5-(S-A). (2.7)
Now form the semidirect product Sym(2p) 8 M 2p)xa- Its bracket is defined by
[(S, A), (8", AN = (IS, 15, S- A" = 5" - A)
= (SNS' —S'NS,SNA' — S'NA) (2.8)

forany S, " € Sym(2p) and A, A" € M2p)xad-
Next, define the Sym(d)-valued Lie algebra two-cocycle

C : Sym(2p) ® M2pyxa x Sym(2p) © M@pyxa — Sym(d)
by
C((S, A), (S, A) = ATNA = (AHTNA (2.9)
forany S, §" € Sym(2p) and A, A" € M 2,)xa. The cocycle identity

C(I(S, A), (", AN1, (8", A") + C(I(S', A, (8", A, (S, A))
+C([(S", A"), (S, A)], (8", A") =0

for any S, 8, §” € Sym(2p) and A, A’, A” € M(2p)xq is a straightforward verifica-
tion. Now extend Sym(2p) ® M 2p)xa by this cocycle. That is, form the vector space
(Sym(2p) ® Mpyxa) ® Sym(d) and endow it with the bracket

[(S,A, B), (S, A/, BN : = (SNS'— S'NS,SNA' — S'NA,
ATNA — (A’)TA'/A) (2.10)

forany S, §" € Sym(2p), A, A" € Mp)yxa, and B, B’ € Sym(d).
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Proposition 2.4. The map

W ((Sym(2p) ® M2pyxa) ® Sym(d), [, 19) — (Sym(n, N), [+, -1v)
given by
S A
WU (S, A, B) := [AT B:| (2.11)
is a Lie-algebra isomorphism.

Proof. 1t is obvious that W is a vector space isomorphism, therefore only the Lie-
algebra homomorphism condition needs to be verified. So, let (S, A, B), (S', A’, B") €
(Sym(2p) ® M@pyxa) ® Sym(d) and compute
W([(S,A,B), (S, A, B))=W(SNS' —S'NS,SNA'—S'NA, ATNA'— (AT NA)
_[ SNS'—S'NS  SNA'—S'NA
T (SNA' = S'NA)T ATNA' — (AHTNA
[ S Al[NO S A s Al[NO][ S A
(AT Blloo||AanT B | AT B ||0o0]||AT B
=[W(S, A, B), W(S'", A", By
as required. O

For a different description of the structure of this Lie algebra using its Levi decom-
position and not involving cocycles see [27], Sect. 44, Remark 22, p. 245.

Euler—Poincaré form. The Euler—Poincaré form for the equations can be derived as
follows. Identify Sym(n, N) with its dual using the positive definite inner product

(X, Y) :=trace (XY), for X,Y € Sym(n, N). (2.12)

Remark. The inner product (X, Y)) is not ad-invariant relative to the N-bracket, but the
bilinear form

kn(X,Y) :=trace(NXNY), (2.13)

is invariant, as is easy to check. Note that for N invertible xy is non-degenerate and
hence an inner product and provides another method of identifying Sym(n) with its
dual. We shall return to this observation at the end of Sect. 4.

Define the Lagrangian/ : Sym(n, N) — RontheLiealgebra (Sym(n, N), [-, -]n) by

I(X) = %trace (X2) - %trace (XXT) =~ (X, X). (2.14)

1
2
Proposition 2.5. The equations

X =[X2, N] (2.15)
5

are the Euler-Poincaré equations
algebra (Sym(n, N), [+, -]1n)-

corresponding to the Lagrangian (2.14) on the Lie

5 Fora general discussion of the Euler-Poincaré equations, see, for instance, [16].
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Proof. Recall that the general (left) Euler-Poincaré equations on a Lie algebra g associ-
ated with a Lagrangian / : g — R are given by

d *
77 D1(E) = ad; DIE),

where DI(£) € g* is the Fréchet derivative of [ at £&. Equivalently, for each fixed € g,
we have

d
7; PUE) - = DIE) - 1§, nl. (2.16)

In our case, letting & = X and = Y arbitrary, time- independent, Egs. (2.16) become

d
— (X, Y) = (X, [X, Y]n)

dt
(X, XNY —YNX);

that is,
trace (XY) = trace (X(XNY — YN X))
— trace ((XZN - NXZ)Y),

which gives the result. O

3. Poisson Structures

Two compatible Poisson structures on Sym(n, N) are introduced in this section. Their
associated Poisson geometry is studied in detail. These two structures together with the
bi-Hamiltonian methodology will be the key to proving integrability of (1.1).

Two Poisson structures. Identifying Sym(n, N) with its dual using the inner product
(-, -)) defined in (2.12), endows Sym(n, N) with the the (left, or minus) Lie-Poisson
bracket

{f. g}y (X) = —trace [X (V f(X)NVg(X) — Vg(X)NV f(X))], (3.1)

where V f is the gradient of f relative to the inner product (-, -)) on Sym(n, N).
Later on we shall also need the frozen Poisson bracket

{f. glpn (X) = —trace (V f(X)NVg(X) — Vg(X)NV f(X)). (3.2)

It is a general fact that the Poisson structures (3.1) and (3.2) are compatible in the sense
that their sum is a Poisson structure (see e.g. Exercise 10.1-5 in [16]).

For what follows it is important to compute the Poisson tensors corresponding to
the above Poisson brackets. Recall that the Poisson tensor can be viewed as a vector
bundle morphism B : T*(Sym(n, N)) — T(Sym(n, N)) covering the identity. It is
defined by B(dh) = {-, h}y for any locally defined smooth function 4 on Sym(n, N).
Since Sym(n, N) is a vector space, these bundles are trivial and hence the value By at
X € Sym(n, N) of the Poisson tensor B is a linear map By : Sym(n, N) — Sym(n, N)
by identifying Sym(n, N) with its dual using the inner product (-, -)).
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Proposition 3.1. Denote the value at X € Sym(n, N) of the Poisson tensors corre-
sponding to the Lie-Poisson (3.1) and frozen (3.2) brackets by Bx and Cy, respectively.
Then for any Y € Sym(n, N) we have

Bx(Y) =XYN — NYX, (3.3)
Cx(Y)=YN—NY. 34

Proof. Let f and g be locally defined smooth functions on Sym(n, N). The definition
of By gives

(VIA(X), Bx(Vg(X)) = {f, gIn(X)
= —trace [X (V f(X)NVg(X) — Vg(X)NV f(X))]
= trace [V f(X) (XVg(X)N — NVg(X)X)]
= (Vf(X), XVg(X)N — NVg(X)X),

which implies (3.3) since any ¥ € Sym(n, N) is of the form Vg(X), where
g(X) = (X, Y)). Similarly, the definition of Cx gives

(VFX), Cx(Vg(X)) = {f, gtrn(X)
= —trace (V f(X)NVg(X) — Vg(X)NV £(X))
= trace [V f(X) (Vg(X)N — NVg(X))]
= (Vf(X), Vg(X)N — NVg(X))),

which proves (3.4). O

Hamiltonian vector fields. Let us determine the Hamiltonian vector fields associated
to a smooth function for both Poisson brackets. Recall that if g is a Lie algebra, the
Lie-Poisson equations defined by 7 € C°(g*) relative to the minus Lie- Poisson
bracket are

= ad:;kh/‘m H“,

where € g*.
We shall identify Sym(n, N)* with itself via the inner product (-, -)). Therefore, for
any X, Y, Z € Sym(n, N), we have

<<(ad§’)* X, Z>> — (X, [V, ZIn) = trace (XYNZ — XZNY)
— trace (XYN — NYX)Z) = (XYN — NYX, Z)),
and hence
(ad’y")* X = XYN — NYX.

If h € C*(Sym(n, N)), we denote by Vi(X) the gradient relative to the inner product
{(, ). Therefore, the Lie-Poisson equations for 7 € C*°(Sym(n, N)) are

. N *
X = (add), ) X,
that is,

X = XVh(X)N — NVh(X)X. (3.5)
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Similarly, Hamilton’s equations for the frozen bracket are

X = Vh(X)N — NVh(X). (3.6)
In particular, if h1(X) = trace(X?)/2, Eq. (3.5) becomes X = [X?, N]. Similarly, if
h(X) = trace(X?)/3, Eq. (3.6) becomes X = [X2, N].

If N is invertible, we have seen that there is an ad-invariant inner productky (X, Y) =
trace(N X NY). Therefore, we can identify Sym(n, N)* with itself using the inner prod-

uct k. Denote by (ad]}y )% the adjoint relative to «y of the N-adjoint map adl)y (2) =
[Y, Z]n,forany Z € Sym(n, N). Todetermine it,let M, Y, Z € Sym(n, N) be arbitrary
(M is thought of as an element in the dual), compute

KN ((ad?)fM, Z) =Ny (M, Y, Z]y) =trace (NMN(YNZ — ZNY))
=trace (N(MNY —YNM)NZ) =ky (MNY —YNM), Z),

and conclude that
.
(ad)) M = MNY — YNM =M, Y]y.

If h € C®°(Sym(n, N)), denote by VN1 (M) the gradient relative to the inner product
k. Therefore, the Lie-Poisson equations for 4~ € C*°(Sym(n, N)) are

M = (adN

th<M>)T M=m, VNh(M)]N. (3.7)

For example, if 7 (M) = trace(N>M N>M)/2, then for any S € Sym(n, N) we get
trace(N2MN2S) = dh(M) - S = ky (VN h(M), s)
= trace (NVNh(M)NS),
and hence
VNh(M) = NMN,
so Hamilton’s equations (3.7) are
M =[M,NMN]y. (3.8)

Note that if /(X) = (X, X)) /2 = trace(X?)/2 then the Legendre transform
M :=VN[(X) = N"'XN~! gives the Hamiltonian

h(M) =k (M, X) —1(X) = %trace(NzMNzM).

Hence the Lie-Poisson equation (3.8) is equivalent to the Euler-Poicaré equation (2.15).
One can check this fact explicitly: substituting for M in terms of X in (3.8) gives (2.15)
and vice versa.
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Generic leaves. Next, the dimension of the generic leaves of the two Poisson brack-
ets are determined. The Lie-Poisson bracket is treated first. The following proposition
follows from [27], Sect. 44, Prop. 23, p. 245. We give below an elementary proof.

Proposition 3.2. Let n = 2p + d, where 2p = rank N. The generic leaves of the Lie—
Poisson bracket {-, -}y are 2p(p + d)-dimensional.

Proof. As in the proof of Proposition 2.4, we orthogonally decompose R” = im N &
ker N sothat N = N|im N : im N — im N is an isomorphism. In this decomposition
the matrix N takes the form

N 0
v=[o ]
and, according to the isomorphism W in Proposition 2.4, the matrix X can be written as
S A
=)

where § € Sym(2p), B € Sym(d), and A € M 3,)xq. Therefore, if

u ¢
Y = [CT Di| € Sym(n, N)

with U € Sym(2p), D € Sym(d), C € M 2))xa, the Poisson tensor of the Lie-Poisson
bracket {-, -} takes the form (see Proposition 3.1)

Bx(Y) = XYN — NYX
_[s Alfu C][~N o] _[~N oO][U C|[S A
— AT B||cT D||0 0 0 o|lcT D||AT B
_[SUN-NUS+ACTN — NCA" —-NUA - NCB
- ATUN + BCTN 0 :

Since N is invertible, the kernel of By : Sym(n, N) — Sym(n, N) is therefore given
by all U € Sym(2p), D € Sym(d), and C € M 2p)xq such that

SUN —NUS+ACTN —NCAT =0 and UA+CB=0.

To compute the dimension of the maximal symplectic leaves, we assume that the matrix
X is generic. So, supposing that B is invertible, we have C = —UAB~! and

(s—AB~'AT)UN - NU (5 - aB~'AT) =0.
Since S — AB~'AT e Sym(2p) is given, this condition is identical to the vanishing

of the Poisson tensor on the dual of the Lie algebra (Sym(Z D, N ) [ -] /\7) evaluated at

S — AB7'AT. But N is invertible so, according to Proposition 2.3, this Lie algebra is
isomorphic to sp(2p, N~!) whose rank is p. Therefore, the kernel of the map

U e Sym@2p, N) — (S - AB_IAT) UN - NU (S - AB—lAT) e Sym2p, N)

for generic S — AB~' AT has dimension p.
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Since C = —UAB™! is uniquely determined and D € Sym(d) is arbitrary, we see
that the dimension of the kernel of By for generic X has dimension p +d(d + 1) /2.
Thus, the dimension of the generic leaf of the Lie—Poisson bracket {-, -}y is

1 1
F@P+d)2p+d+ 1)~ p—Zdd+1)=2p(p +d),

as claimed in the statement of the proposition. O

Proposition 3.3. All the leaves of the frozen Poisson bracket {-, -}py are

(1) 2p(p + d)-dimensional if N is generic, that is, all its non-zero eigenvalues are
distinct, and
(i) p(p + 1+ 2d)-dimensional if all non-zero eigenvalue pairs of N are equal.

Proof. Proceeding as in the proof of the previous proposition and using the same notation
for N, X, and Y, the Poisson tensor of the frozen bracket takes the form

_ _[u C][~N o0 N o|[U C
CX(Y)_YN_NY_[CT DHO o]_[o 0][CT D]
_[uN-NU NC
- CTN 0 |
Thus, since N is invertible, the kernel of C x isgivenbyallU € Sym(2p), D € Sym(d),

C € M(pyxa such that C =0and UN — NU = 0.
Since N is non-degenerate, there exists an orthogonal matrix Q such that

= 7| 0 \%4
where V = diag(vy,...,vp) and v; € R,v; #0foralli =1,..., p. Therefore,
—_IIN T — 7| O Vv 7| O 1%
0=UN-NU=UQ [—V 0]Q—Q [—V 0} QU
o7 r| 0 V| |0 V T
(a4 TS o)
is equivalent to
~1 0 1% 0 V]~
U[_V 0]_|:—V O]U:O, 3.9)
where U := QU Q7 e Sym(2p). Write
~ Un Un
U =
o v)

with U1 and Uy symmetric p X p matrices and Uy, an arbitrary p x p matrix. Then
(3.9) is equivalent to

Up=VUuv-'=v7luyv and UL, =-v-'Upv =-vUupv''. @3.10)
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(i) Assume now that v; # v; if i # j. Since VU, V™! = V~-lU  V is equivalent
to V2U,1V~2 = Uy, it follows that
v2
_lzull,ij =uiL,ij forall i,j=1,...,p,
J

where u1,;; are the entries of the symmetric matrix Uy;. Since the fraction on the left
hand side is never equal to one for i # j, this relation implies that u1;;; = 0 for all
i # j.Thus Uy is diagonal and Uy = Ujy. A similar argument shows that Uy, is diag-
onal. However, then it follows that U, = —U 1T2 which implies that U1, = 0. Therefore,
the kernel of the map U +— UN — NU is p-dimensional.

Concluding, the dimension of every leaf of the frozen Poisson structure equals % Q2p+
dRp+d+1)—p— %d(d+ 1) =2p(p+4d).

(i) The other extreme case is when v; = v; =: v foralli,j = 1,..., p. Then
V = wl, where I is the identity matrix, and (3.10) becomes U, = Uiy,
U sz = —Ujy. Therefore, the kernel of the map U +— UN — NU has dimension equal

o 3p(p+ D+ 3p(p—1)=p’.
Concluding, the dimension of every leaf of the frozen Poisson structure equals % Q2p+
dQ2p+d+1) - p*— %d(d+ D=pp+1+2d). O

Casimir functions. The next job will be to determine Casimir functions for both brack-
ets. Here is the main result.

Proposition 3.4. Let the skew symmetric matrix N have rank 2p and size n := 2p +d.
Choose an orthonormal basis of R*P*? in which N is written as

0o VvV 0
N=|-V 0 0],
0 0 0
where V is a real diagonal matrix whose entries are vy, ..., Vp.

(i) Ifvi # vj foralli # j, then p +d(d + 1)/2 Casimir functions for the frozen
Poisson structure (3.2) are given by

. 1
Cp(X) =trace(E;X). i=1.....p+-dd+]1).

where Ej; is any of the matrices

Stk 0 0 0O 0 O
0 Sw Of, 0O 0 O
0 0 O 0 0 Su»

Here Sk is the p X p matrix all of whose entries are zero except the diagonal (k, k)
entry which is one and Sgp, is the d x d symmetric matrix having all entries equal
to zero except for the (a, b) and (b, a) entries that are equal to one.
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Ifvi=vjforalli, j=1,..., p, then p2 +d(d + 1)/2 Casimir functions for the
frozen Poisson structure (3.2) are given by

. 1
Ci(X) = trace(E; X), i=1,...,p%+ A+ 1),

where E; is any of the matrices

Siy 0 0 0 A 0 0 0 O
0 Su O], Ay 0 0], 0 0 O
0 0 O 0 0 0 0 0 Su

Here Sy is the p x p symmetric matrix having all entries equal to zero except
for the (k,l) and (1, k) entries that are equal to one and Ay, is the p X p skew
symmetric matrix with all entries equal to zero except for the (k, 1) entry which is
1 and the (L, k) entry which is —1.

Denote
- 0 %4
N= [_V O] .

The p +d(d + 1)/2 Casimir functions for the Lie-Poisson bracket {-, -}y on the
open set det(B) # 0 (see (2.11)) of Sym(2p + d) are given by

1 _ 2k
k . _ —1 4T\ -1 _
C(X)._Zktrace([(S AB~'A )N ] ) for k=1,....p
and
1
CK(X) = trace(X Ey), for k:p+1,...,p+§d(d+l),

where Ej. is any matrix of the form

0 0 O
00 O
0 0 Sw

In the special case when N is full rank the Casimir functions are just

CEX) = - trace (XN—l)Zk for k=1,...,p

Proof. To prove (i), recall from Proposition 3.3(i) that the kernel of the Poisson tensor

1

Cx has dimension p + 5d(d + 1). Moreover, if E belongs to this kernel, then the linear
function given by X > trace(E X) has gradient £, which is annihilated by the Poisson
tensor Cy. Thus all C}, are Casimir functions. Since the gradients of all these functions

are the p+ %d (d+1) matrices in the statement which are obviously linearly independent,

it follows that the functions C } form a functionally independent set of Casimir functions
for the frozen bracket {-, -} pn.
Part (ii) has an identical proof.
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Now consider Part (iii). First, we compute the gradient relative to (-, -)). We compute
for any

88 SA
8X = |:(8A)T SB] € Sym(n, N)

the derivative
DCK(X) - 5X = trace (1\7*‘ (S — AB"AT) Nl N (S _ AB"AT) N
((55) —A)B'AT — AB7' 5A) + AB‘1(8B)B_1AT)) . @I

Now denote

kiyr | @ B
Ve (X)_[ﬂT y}

so that

o ea0ia0) = a0 onf e ([ ]3]

— trace (oz(SS) +BGA)T + BT (5A) + y(aB)) . (3.12)
By (3.11) and (3.12) we have
a=N"! (S - AB_IAT) NN (S - AB—lAT) N
B=—N! (S . AB—lAT) NN (s - AB—‘AT) N7laB!,
y =B ATN"! (S - AB’IAT) NN (S — AB’IAT) N-1AB,
where in each term we have 2k factors of N~!. Therefore

—aAB™! i|

k(x) =
ve (X)_[ B~ lATa B 'ATaAB™!

with a given above. Now we check that all these matrices VC k(X) are in the kernel of
the operator of the Lie- Poisson operator BxY = XY N — NY X. Indeed,
XVCK(X)N — NVC* (X)X

s AT —aAB™! N 0
| AT —B~ lATa B 'ATaAB~'||0 O

B_
[N o] o« —aAB™! S A
0 0f|-B'ATa B 'ATaAB~'||AT B

[ Al aN 0] [Ne —NaAB7'|[S A

B||-B~'ATaN 0 0 0 AT B

S
_ [ SaN —AB~'ATaN o] 3 [Nas — NaAB~'AT  NaA - NaAB—lB}

AT

|ATaN — BB7'ATaN 0 0 0
_[(s—=AB'AT)aN — Na(S — AB~1AT) o]
- 0 ol
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This vanishes if and only if
(S—AB 'ATYaN — Na(S — AB~'AT) = 0. (3.13)

However, we know that = N1 (S — AB'AT)N~!...N~1 (S — AB71AT) N1,
where in each factor we have 2k factors of N~!. We replace « with this expression in
(3.13) and get

(S—AB'AT)aN — Na(S — AB~'AT)
— (S— AB~'AT)N! (S - AB_IAT) NN (S - AB—lAT) NN

_NN! (S _ AB—lAT) NN (s _ AB_IAT) NS — AB AT
= (S— AB~'AT)N"! (S — AB’IAT) NN (S _ AB’IAT)
— (S - AB_lAT) NN (S - AB_IAT) NS —AB AT =0,

since both factors are equal; each once contains 2k — 1 factors of NI,

However,sp(2p, N N~1)isidentified with the subalgebra consisting of the (1, 1) blocks
of elements of Sym(n N) (see Proposition 2.4). The isomorphism S € Sym(2p, N) —
NS € sp(2p, N~ 1) given in Proposition 2.3 identifies the basis of p Casimirs in the dual
of sp(2p, N~1) (given by the even traces of the powers of a matrix) with the functions
S +— trace [(SN 1)2]‘] /2k. Therefore the functions C* for k = 1, ..., p given in the
statement of the proposition are functionally independent Casimirs for the Lie-Poisson
bracket of Sym(n, N).

To see that the remaining functions Ck(X) = trace(X E;) are Casimirs observe that

in this case
k 10 0
VC*(X) = [O Sab:|

and
S Al[o 0[N O N o|[0 o][sS A
k — _ —

S P A ] e A [ A
Since the matrices S, span symmetric k x k matrices, these Casimirs are functionally
independent. The two sets of Casimirs are also independent taken together, since each
set depends only on a subset of independent variables and these two sets of variables
are disjoint. We have thus obtained p + d(d + 1)/2 Casimirs, which is the codimension

of the generic leaf, thus proving that they generate the space of all Casimir functions of
the Lie-Poisson bracket. 0O

The equations in the degenerate case. 1f N is degenerate, representing it and the matrix
X € Sym(n, N) as in Proposition 2.4, the equations X = [X 2, N1 are equivalent to the
system

S=1[5%2+ATA,N]
A=—-N(SA+AB)
B=0.
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Fig. 3.1. Time plot of flow in the 3 by 3 case fora, b, ¢, e, f,and g

Example. 1t is illuminating to examine the system in the lowest dimension degenerate
case,i.e. p=1andd = 1. Let

[a e f s A
X=|e b g ::|:AT C]
|/ g ¢
and
[0 1 0 -
N=|-1 0 o= [1(\)’ 8}
0 00
Then the dynamics becomes
a=—2(ae+eb+ fg),
b =2(ae+eb+ fg),
¢ =0,
e=a+ 212 — g
g =af +ge+cf,

f=—(ef +bg +go).

In this case the two Casimir functions of the Lie-Poisson bracket are given by

1 2 2 det X
Clz— _ba+&+e2_2&+f_ Z_e_’
2 c c c 2c

and by C? = ¢, so that ¢ = 0 in equations of motion expresses the conservation of this
Casimir directly.

As we shall see in forthcoming sections the two integrals of motion which prove
integrability are trace(X) and trace(X?). We already know these are conserved since the
flow is isospectral. Observe also that conservation of trace(X) is given by summing the
first two equations of motion while trace(X)2/2 is the Hamiltonian.

We illustrate this example with time plots in Fig. 3.1 and two phase plots plots in
Fig. 3.2.
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Fig. 3.2. Phase plane portraits in the 3 by 3 case projected to the a-e and the b-e planes

4. The Sectional Operator Equations and Relation
to Mischenko-Fomenko Flows

It is shown that Eq. (1.1) can be mapped to a Mischenko-Fomenko type system (see
[19-21] or [27]) in the case N is invertible with distinct eigenvalues.

The Mischenko-Fomenko construction. Consider a semisimple complex or real split
Lie algebra g with Killing form (-, -). Let h be a Cartan subalgebra, let a,b €  and
a be regular (i.e. its value on every root is non-zero). Define the sectional operators
Cap,p 18— gby Capp(€) = ad; ady(&)) + D(&), where & = & +&, & € b,
£1 € bt (the perpendicular is taken relative to the Killing form and thus h is the direct
sum of all the root spaces), and D : h — b is an arbitrary invertible symmetric operator
on h). Then C, 5,p : g — g is an invertible symmetric operator (relative to the Killing
form) satisfying the condition

[Cap.p(§), al = [§, b] (4.1)

forall £ € g.
The Lie-Poisson bracket on g* = g (the isomorphism being given by the Killing
form) has the expression

{f. 81(8) = = (5, [Vf(§)., Vg

for any f,g € C*(g), where V is taken relative to (-, -). Hamilton’s equations for
h € C*(g) have thus the form

§ =15, Vh(®)].
In particular, if
1
h() = §<Ca,b,D(E)s £)

then Vh(§)=C, p,p(§) since Cy p pis (-, -)-symmetric. Thus the equations of motion are

£ =& Cap.p(®)] (4.2)
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Example. For g = so(n), the Killing form is a multiple of the symmetric bi-invariant
two-form (1, §22) — tr($2;25), and one chooses C~1(Q) := QJ + JQ for a given
diagonal matrix J satisfying J; + J; > 0if i # j. We have

[C(M),J]=[M,J*]

for any M € so(n). Then M = [M, C(M)] is the n-dimensional rigid body equation.
Note in this case that J and J2 are not in the Cartan subalgebra of so(n), but the general
theory in [20,21] deals also with this situation for any semisimple complex or real split
Lie algebra; J an J? are in the Cartan subalgebra (after one makes them trace zero) of
sl(n, C).

Returning to the general case, note that (4.2) can be written as
d
i & +xra) =& +ra, C(E) +Ab] (4.3)

if and only if (4.1) holds.

Now it is obvious that & +— fr(§ + Xa), k = 1,...,¢ := rank(g) = dimb, are
conserved on the flow of (4.3), for any element of the basis of the polynomial Casi-
mir functions fi, ..., f¢ and any parameter A. Since the f; are polynomial, it follows
that the coefficients of A in the expansion of fj (& + Aa) in powers of A are conserved
along the flow of (4.2). There are redundancies: some coefficients of A’ vanish and other
coefficients are Casimir functions.

Mischenko and Fomenko ([20,21]) proved the following result.

Theorem 4.1. Let g be a semisimple complex or real split Lie algebra and C : g — g
a symmetric operator satisfying (4.1). Then the Lie-Poisson system £ = [£, C(£)] on
g defined by the Hamiltonian H(§) = (C(§),&)/2 is completely integrable on the
maximal dimensional adjoint orbits of the Lie algebra g and its commuting generi-
cally independent first integrals are the non-trivial coefficients of A in the polynomial
A- expansion of

fin(®) = fi(§ +ra)

which are not Casimir functions; here fi, ..., fi is the basis of the ring of polynomial
invariants of g. In addition, all functions f; ; commute with H.

A Poisson isomorphism for N invertible. We want to compare the Lie-Poisson bracket
(3.1) on Sym(n, N) with that on sp(n, N~1)*.

To obtain the Lie-Poisson bracket on sp(n, N~1)* we identify sp(n, N~1)* with
sp(n, N~!) via the invariant non-degenerate symmetric bilinear form

(Z1, Zp)) :=trace (Z12>) .
Therefore, the Lie-Poisson bracket on sp(n, N —lyx ~ sp(n, N -byis given by
{9, Vlep(Z) := —(Z, [V (2), VY (D), 4.4

where V is taken relative to (-, -)) and ¢, ¥ : sp(n, N —1) = R are smooth functions.
In the following proposition, Sym(n, N)* is identified with itself using the non-
invariant inner product (-, -)) (see (2.12)).
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Proposition 4.2. The map Z € (sp(n, N™1), {-, }sp) > ZN € (Sym(n, N), {-, -}n) is
an isomorphism of Lie-Poisson spaces.

Proof. By Proposition 2.3, the map ® : (Sym(n, N), [-, -]n) — (5p(n, N_l), [-, -])
given by ®(X) := NX is a Lie algebra isomorphism. Therefore its dual
®* : (sp(n, N71), {, -}sp) — (Sym(n, N), {-, -}n) is an isomorphism of Lie-Poisson
spaces (see, e.g., [16]). Since for any Z € sp(n, N HandY e Sym(n, N) we have

((CD*(Z), Y)) ={Z, ®(Y)) = (Z,NY)) = trace(ZNY) = (ZN,Y)),
it follows that ®*(Z) = ZN. 0O

Since N is invertible, as we have seen in Sect. 3, Sym(n, N)* can be identified
with itself using the ad- invariant inner product «y. To compute the pull-back @' :
sp(n, N7 — Sym(n, N) if we identify Sym(n, N)* with itself using «y, let
Z esp(n,N)and Y € Sym(n, N). We get

kn(@T(Z),Y) = (Z, DY) = (Z, NY) = trace(ZNY) = kn(N"'Z, Y),
and hence

o' (z)y=N""Zz. (4.5)

The Mischenko-Fomenko system on (sp(n, N™1), {-, }sp). We now show that for N
with distinct eigenvalues ®* maps the system (1.1) to a Mischenko-Fomenko system on
(sp(n, N71), {-, -}sp). Indeed, denoting X := ®*(Z) = ZN, we get

Z=XN"'=[X , NIN"'=Xx?>-NX>N"!
= ZNZN — NZNZNN~' =[Z,NZN].
The following lemma, which can easily be verified, shows that the linear invert-

ible operator C : sp(n, N~ — sp(n, N~!) defined by C(Z) = NZN is a sectional
operator.

Lemma 4.3. The map C

() is well-defined, i.e. NZN indeed belongs to sp(n, N~1),
(i) is symmetric relative to ((-, -)),
(ili) satisfies [C(Z), N"'] =[N, Z],
(iv) is of the form Cq p.p witha = N~', b = —N, and D having the same formula as
C on the Cartan algebra.

Applying the Mischenko-Fomenko Theorem 4.1 we get the following result:
Proposition 4.4. Let N be invertible with distinct eigenvalues. The system
Z =1[Z,NZN] (4.6)

is integrable on the maximal dimensional orbits of sp(n, N~') and its generically
independent integrals in involution are the non-trivial coefficients of A' in the poly-
nomial expansion of% tr(Z + AN ~YX that are not Casimir functions, k =2, ..., n. The

Hamiltonian for (4.6) is H(Z) := trace((ZN)?)/2.

Pushing forward Z by the map ®* we obtain the following statement.
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Theorem 4.5. Let N be invertible with distinct eigenvalues. The equation X =[X2, N]
is an integrable Hamiltonian system on the maximal dimensional symplectic leaf of
Sym(n, N) defined by the function [(X) = tr(X?2)/2 relative to the Lie-Poisson bracket
(3.1). The independent integrals in involution are the non-trivial coefficients of A' in
the polynomial expansion of %tr(XN_1 + AN"Y% that are not Casimir functions,
k=2,...,n.

The Mischenko-Fomenko system on the dual of Sym(n). For N invertible we can also
show that our system (1.1) is a system of Mischenko-Fomenko type directly on Sym(n, N)
viewed as its own dual under the ad- invariant inner product « y (X, ¥) = trace(NXNY)
defined in Eq. (2.13).

Recall from Proposition 2.3 the Lie algebra isomorphism

d: X e Sym(n,N),[,In) —> Z := NX € (sp(n, NTH. L.

It is easy to see that the ad-invariant inner product ky on Sym(n, N) is pushed for-
ward by @ to the non- degenerate ad-invariant form given by the trace of the prod-
uct on sp(n, N~1). Therefore, the pull back of - sp(n, N - Sym(n, N), where
Sym(n, N)* is identified with itself using k, is an isomorphism of Lie-Poisson spaces.
Hence ®7(Z) = N~!Z maps the Mischenko-Fomenko system (4.6) on sp(n, N~!) to
a Mischenko-Fomenko system on Sym(n, N). A direct computation shows that M :=
N~1Z satisfies (3.8).

In the ensuing sections we provide a direct proof of integrability on Sym(n, N) for
N with distinct eigenvalues but not necessarily invertible, that is, N has at most one zero
eigenvalue. In the invertible case, we provide a different sequence of integrals and, in
addition, (lierive a second Hamiltonian structure for the Mischenko-Fomenko system on
sp(n, N7%).

5. Lax Pairs with Parameter

To prove that system (1.1) is integrable for any N having distinct eigenvalues, we will
compute its flow invariants. Bear it in mind that, by virtue of the isospectral represen-
tation (1.2), we already know that the eigenvalues of X, or alternatively, the quantities
trace X* for k = 1,2,...,n — 1, are invariants.

One way to compute additional invariants is to rewrite the system as a Lax pair with
a parameter. One can do this in a fashion similar to that for the generalized rigid body
equations (see [15]).

Theorem 5.1. Let A be a real parameter. The system (1.2) is equivalent to the following
Lax pair system:

d
“(X+AN)=|X+AN,NX + XN +AN?|. (5.1)
dt

Proof. The proof is a computation. The only nontrivial power of A to check is the first.
In fact, the coefficient of A on the right hand side of Eq. (5.1) is

[N,NX + XN]+[X, N%]
= N?X+NXN —NXN — XN?+XN? — N?X =0,

which proves (5.1). O
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Manakov [15] noticed that the generalized rigid body equations M = [M, Q] (see
§4), can be written as a Lax equation with a parameter in the form

d
d—t(M+A12) =[M+1J% Q+AJ]. (5.2)

Note the following contrast with our setting: in the Manakov case the system matrix
M isinso(n) and the parameter J is a symmetric matrix while in our case X is symmetric
and the parameter N € so(n).

For the generalized rigid body the nontrivial coefficients of A/,0 < i < k in the
traces of the powers of M + AJ? then yield the right number of independent integrals in
involution to prove integrability of the flow on a generic adjoint orbit of SO (n) (iden-
tified with the corresponding coadjoint orbit). The case i = 0 needs to be eliminated,
because these are Casimir functions.

Similarly, in our case, the nontrivial coefficients of M, 0<i <k, in

1
h}(X) :=Etrace(x+w)k, k=1,2,....,n—1 (5.3)
yield the conserved quantities. The coefficient of A", 0 < r <k, in (5.3) is

trace Z ZXilelXi2~-~Xi5'Nj3', r=0,....k, k=1,....,n—1,
li|l=k—r|jl=r

wherei = (i1, 12, ...15), j = (j1, j2, ... Js) are multi-indices, iy, j;, = 0,1, ..., k, and
lil = > 20—1iq> il = 224—1 Jq- The coefficient of 1K is the constant N* so it should not
be counted. Thus we have r < k. In addition, since the trace of a matrix equals the trace
of its transpose, X € Sym(n, N), and N € so(n), it follows that

trace X' N/ X2 ... Xis NI = (—1)Vl trace N/ XJs ... X2 N1 X1
Therefore, if r is odd, then necessarily

trace Z Z XUNIX2 .. XN =
lil=k—r |jl=r

and only for even r we get an invariant. Thus, we are left with the invariants

hior(X) i=trace > > X'NIX2.. XN (5.4)
lil=k—2r |j|=2r

fork=1,....n—Lig=1,....k j,=0,....k—1,r =0,...,[55}], where [¢]
denotes the integer part of £ € R.

The integrals (5.4) are thus the coefficients of >, 0 < 2r < k, in the expansion
of %trace(X + AN )k. For example, if k = 1 or k = 2 then we have one integral, the

coefficient of A?. If k = 3 or k = 4, only the coefficients of 1> and A? yield non-trivial
integrals. If k = Sork = 6itis the coefficients of A4, 22, and A0 that give non-trivial inte-
grals. In general, for the power k we have [%] integrals. Recall thatk = 1,...,n — 1.

If n — 1 = 2¢, we have hence

n—1+1 n—1+1
141424244 > + > =1+1+2+2+---+L+¢

n—1(n-—1 n—1n+1
=Ll+1) = > > +1) = > >
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integrals. If n — 1 = 2¢ + 1 then we have

—2+1 —2+1 —1+1
1+1+4+2+2+---+ n hi + " i + n i
2 2 2

=1+1+24+2+---+L0+L+(L+1)

:e(e+1)+(z+1)=(z+1)2:(g)2

integrals. However,
n—1n+1
ny[n+1 2 2’
[5] [ 2 i| - ny2
(5) , 1if n iseven

[n] n+1

2 2

invariants which are the coefficients of A2, 0 < 2r < k, in the expansion of % trace(X +
AN fork=1,...,n—1.

We now address the issue of whether or not these integrals are the right candidates
to prove complete integrability of the system X = [X2, N].

if n isodd

Concluding, we have

e If N isinvertible, then n = 2p and hence

I A e A

1 1y .
=3 dimsp(2p, N~ ') —ranksp(2p, N7 )

which is half the dimension of the generic adjoint orbit in sp(2p, N~'). Therefore,
these conserved quantities are the right candidates to prove that this system is inte-
grable on the generic coadjoint orbit of Sym(n, N). This will be proved in the next
sections.

e If N is non-invertible (which is equivalent to d # 0), then n = 2p + d and hence

[2] [n; 1] _ [2p2+d] [2p+2d+1}
([
SRAREINEIES

d]l[d+1
2
= d _— — .

The right number of integrals is p(p + d) according to Proposition 3.2, so this cal-
culation seems to indicate that there are additional integrals. The situation is not so
simple since there are redundancies due to the degeneracy of N. Note, however, that
if d = 1, then we do get the right number of integrals. We shall return to the study
of the degenerate case in Sect. 7.
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Remark. Recall that in the special case when N is invertible, we found the sequence of
integrals given in Theorem 4.5. Note that these integrals have a different form from the
family of integrals in (5.4). This does not necessarily mean that the two sets of functions
are functionally independent.

6. Involution

In this section we prove involution of the integrals found in the previous section for
arbitrary N € so(n).

Bi-Hamiltonian structure. We begin with the following observation.

Proposition 6.1. The system X = X*N — NX? is Hamiltonian with respect to the
bracket { f, g}y defined in (3.1) using the Hamiltonian hy(X) = %trace(Xz) and is
also Hamiltonian with respect to the compatible bracket { f, g} defined in (3.2) using
the Hamiltonian h3(X) = L trace(X?).

Proof. We have already implicitly checked the first statement using Euler-Poincaré the-
ory, but here is a direct verification. We want to show that the condition f = {f, ha}y
for any f determines the equations X = X®N — NX?2. First note that 5(11_1 f(X) =
trace(Vf(X)X). Second, since Vh2(X) = X, the right-hand side { f, h2}, becomes,
by (3.1),

{f. h2}y (X) = —trace [X (VF(X)NX — XNV f(X))]

_ trace (Vf(X)Nx2 - Vf(X)XZN) .

Thus, X = X2N — N X2 as required.
To show that the same system is Hamiltonian relative to the frozen Poisson bracket,
we proceed in a similar way. Noting that Vi3 (X) = X 2 we get from (3.2),

(. h3}py (X) = — trace (VfNX2 - XQNVf)
= —trace (VfNX2 — VszN) ,
and hence X = X2N — N X2, as before. O
Involution. Next we begin the proof that the [2] [%! ] integrals given in (5.4), namely

hi.2r(X) := trace Z Z XN X2 XS NS
li|=k—2r | j|=2r

wherek =1,....n— Lig=1,....k jo=0,....k—1,r =0,....[5}] arein
involution. It will be convenient below to write the expansion of hi starting with the
highest power of A, that is,

k
1
hH(X) =  trace (X + AN =D g (X). (6.1)
r=0
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As explained before, not all of these coefficients should be counted: roughly half of them
vanish and the last one, namely, A x, is the constant N 3 Consistently with our notation
for the Hamiltonians, we set iy = hg 0.

Firstly we require the gradients of the functions hz

Lemma 6.2. The gradients Vhﬁ are given by
Vhi(X) = %(X +AN) 4 %(X — AN, (6.2)
Proof. We have for any Y € Sym(n, N),
(VRH(X),Y) = dh}(X) - ¥ = trace ((X + AN Y)
1
= 3 trace (((X FANY 4 (X — kN)k’l) Y) .

Since {(, )) is non-degenerate on Sym(n, N), the result follows. O
Proposition 6.3.
Bx(Vh} (X)) = Cx(Vh}, (X)) (6.3)
Proof. Using (3.3) we get
Bx(Vhy(X)) = XVh(X)N — NVh} (X)X
_! [X(X FANYIN + X(X — AN IN
2

_NX+ AN — N(X — AN)HX]

[(X FANEN = ANX + AN IN + (X — ANEN + AN(X — AN)IN

N =

—NX + AN+ ANX + AN)FIN = N(X — AN —AN(X — AN)"*‘N]

= % [CX+ANFN + (X = ANEN = N(X 42N = N (X = 2N
= Vh}, (X)N — NVh},(X) = Cx(Vhi, (X))
by (3.4), which proves the formula. O
Proposition 6.4. The functions hy x—, satisfy the recursion relation
Bx (Vhik—r(X)) = Cx (Vhjs1 k—r(X)). 6.4)
Proof. Substituting (6.1) into (6.3) we obtain

k k+1
D T By (Vg (X)) = DA Cx (Vhgsr jn—r (X)) -
r=0 r=0

Since Vhs1 k+1(X) = N¥*1, formula (3.4) implies that Cx (VA1 g+1(X)) = 0. Thus
on the right-hand side the sum begins at r = 1. Changing the summation index on the
right-hand side from r to » — 1 and identifying the coefficients of like powers of A yields
(64). O
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Remark. 1Tt is worth making a few remarks about Propositions 6.3 and 6.4. Note that
unlike the similar recursion for the rigid body Manakov integrals (see e.g. [27 and 22]),
our polynomial recursion relation (6.3) does not have a premultiplier A on the right-hand
side and the polynomials on the left- and right-hand sides appear to be of different order.
This cannot be and indeed is not so. Indeed, the highest order coefficient on the right
hand side vanishes by virtue of following result.

Corollary 6.5. The functions hy x—1(X) are Casimirs for the frozen Poisson structure,
ie.

Cx (Vhix-1(X)) =0 (6.5)
for all k.
Proof. By (6.1), hi x—1(X) = trace (Nk_lX), so its gradient equals Vi ;—1(X) =
N*=1.So0 (3.4) immediately gives (6.5). O

The recursion relations (6.4) for » = 0 also imply the following relation between the
Hamiltonians that can also be easily checked by hand:

Corollary 6.6.
By (Vhe(X)) = Cx (Vhpe1 (X)) . (6.6)

Example. An interesting nontrivial example of the recursion relation to check is
Bx(dh32(X)) = Cx(dhs2(X)), where h3 2(X) = trace(N2X) and h42(X) = trace
(N?X?) + % trace(N X N X). This example illustrates how the recursion relation works
despite the apparent inconsistency in order.

Involution follows immediately, using the recursion relations.

Proposition 6.7. The invariants hy x—, are in involution with respect to both Poisson
brackets (f. g}y and . &) -

Proof. The definition of the Poisson tensors By and Cx and the recursion relation (6.4)
give
{hik—r-h11-q}y = (Vhii—r(X), Bx(Vhy (X))
= {(Vhik—r(X), Cx(Vhp1,1—q (X))
= {hik—r - hisri—q} py = = {Psri—g- hek—r} py
—{Vhir11-g(X), Cx (Vhg g—r (X))
—{(Vhi1,1-¢(X), Bx(Vhg_1 - (X))
= —{hisri—g- hk—rh—r}y = {Rk—1h—r his1—q

forany k,l =1,...,n—1L,r =1,...,kandg = 0,...,] — 1. Of course, in these
relations we assume that k — r and [ — ¢ are even, for if at least one of them is odd, the
identity above has zeros on both sides. Repeated application of this relation eventually
leads to Hamiltonians /iy x—,, where either k — r is a power of A that does not exist for
k, in which case the Hamiltonian is zero, or one is led to kg o which is constant. This
shows that {hk,k_,, hii—q }N = 0 for any pair of indices.

In a similar way one shows that {hk,k_,, h”_q}FN =0. O
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Bi-Hamiltonian structure on sp(n, N~1). Using the bi-Hamiltonian property of system
(1.1) and the Poisson isomorphism in Proposition 4.2 we get the following statement:

Theorem 6.8. The Lie-Poisson isomorphism Z € (sp(n, N~YH, {, '}5p) — ZN €
(Sym(n, N), {-, -}n) induces a bi-Hamiltonian structure for the Mischenko-Fomenko
equations (4.6) on sp(n, N~Y). The second Hamiltonian structure is

(£.8hn-1(2) = —trace (N7 [V £(2). Vg(2)])

for any f,g € C®(sp(n, N~Y) and the Hamiltonian corresponding to this Poisson
structure is h(Z) = trace ((ZN)?) /3.

7. Independence

To complete the proof of integrability we need to show that the integrals A 2, are inde-
pendent. We will demonstrate this first in the generic case when N is invertible with
distinct eigenvalues.

By (5.4), the gradients of the integrals /i 2, have the form

Vheor(X) = D> > XINIX2. XN (7.1)
lil=k—2r—1|j|=2r

wherek=1,....n—Lig=1,....k j,=0,....k—1Lr=0,... [5]

The generic case. We consider the case N invertible with distinct eigenvalues. There-
fore d = 0 and n = 2p. In this case we show that the integrals &y 2, given in (5.4) are
independent, and hence the system (1.1) is integrable.

Theorem 7.1. For N invertible with distinct eigenvalues, the integrals hy 2, given by
Eq. (5.4) are independent.

Proof. We are concerned with the linear independence (in a generic sense) of (7.1),
wherek =1,...,n—-1,ig =1,...,k, jo =0,...,k—landr =0,...[%(k— D].
We recall that N is invertible with distinct eigenvalues and, without loss of generality,
assume that X is diagonal,

X = diag u.

This reduces the statement of the theorem to a problem about the independence of
polynomials in single matrix variable.
Now, we aim to prove a stronger statement: the terms

vij = XN X N s

are independent for all multi-indices i and j in the above range. Note however that each
v;, j is a g-degree polynomial in j¢1, w2, ..., uy, whereq = k—2r—1€ {0, ..., n—2}.
Let

Hy ={vij | lil =g, |jleven}.

Clearly, in a generic sense, if linear dependence exists, it must exist within the set H,,.
In other words, if we can prove that there is no linear dependence within each H,, we
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are done. (Note that since k < n — 1 in the expression (7.1) there is no dependence of
powers of X on lower powers through the characteristic polynomial.)
There is nothing to prove for ¢ = 0. For ¢ = 1 we have

= {XN/ | jeven)U{N’/X | j even}.

Suppose that there exists linear dependence in ;. Then there necessarily exist
00, P2, ..., pn—2 and kg, k2, . . ., ky—2, not all zero, such that

X (Z ijsz) + (szjzv?f) X=0=XR(N)+K(N)X =0.
Therefore,
HalR(N)]ap +[K(N)apitr =0, a,b=1,...,n.

Generically (i.e., for all u except for a set of measure zero) this can hold only if
R(N),K(N) = 0. But deg R,deg K < n — 1 and, since the eigenvalues of N are
distinct, the degree of the minimal polynomial of N is n. Therefore K, R = 0, a contra-
diction. Hence there is no linear dependence.

We continue to g = 2. Now

Hy = (XN X2N2XS ¢ iy +ip+i3 =2, ji+ joeven).
Assume that there exist p;, j» not all zero, such that
> piXINIXPNPXB =0,
ij
Therefore

Zp, j Zua W2 B (NI p(NPY e =0, a,c=1,...,n.

Note that we want the above to hold for all real 1, but this is possible only if

0= pij > (Nap(NP)pe =D pij(N" Py, e, a,e=1,....n,
i,j b i,j

thus
Z'Di jNJ'1+j2 —0.
ij

We again obtain a polynomial in N2 of degree < n/2, which cannot be zero: a contra-
diction.
We can continue for higher s in an identical manner. O

Hence, since we have involution and independence, we have proved the following.

Theorem 7.2. For N invertible with distinct eigenvalues the system (1.1) is completely
integrable.

Corollary 7.3. For N odd dimensional with distinct eigenvalues and nullity one, the
system (1.1) is completely integrable.
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Proof. In this case we have d = 1 and n = 2p + 1. All eigenvalues are distinct with one
of them being zero. The above proof of independence still holds, the only change being
that the characteristic (and minimal) polynomial of N is of form Nw (N 2), where w is
a polynomial of degree (n — 1)/2. O

Remark. Independently Li and Tomei [14] have shown the integrability of the same sys-
tem in precisely the two cases discussed in this paper employing different techniques;
they use the loop group approach suggested by the Lax equation with parameter (5.1)
and give the solution in terms of factorization and the Riemann-Hilbert problem.

8. Linearization of the Flow

We have demonstrated integrability of the system (1.1) for appropriate N by showing
involution and independence of a sufficient number of integrals. The purpose of this
section is to analyze the linearization of this system on the Jacobi variety of the curve

det(zI —AN —X) =0

using the theory discussed in [3 and 11], for example (see also [1,9,12,13]).

Linearization on the Jacobian for N invertible and generic. Let us denote X (A) :=
X +AN and Y(A) := NX + XN + AN2. For N invertible with distinct eigenvalues
(n := 2p), choose an orthonormal basis of R2? in which N is written as

0 \%
N= |:—V 0] ’
where V is a real diagonal matrix whose entries are vy, ..., vp.
Denote by xi ; the entries of the matrix X and put it in the form
Uu c¢C
St

where U € Sym(p), R € Sym(p), and C € M ,. Then the matrix Y (1) can be
written as

2 T _
Y(M:[W+vc cv VR+UV }

—VU — RV —AV2+clv—-vce
The plane algebraic curve (called a spectral curve), associated to each X (1), namely,
Ixa =1{(&,2) e Cx C | det(z] — X (1)) =0},

is preserved by the flow of (5.1); the functions which are defined by the coefficients of the
characteristic polynomial Q (X, z) of X () are constants of motion of (5.1). Similarly,
for each X (1) the isospectral variety of matrices A x ;) defined by

Ax(y == {X'(}) | X(1) and X"()) have the same characteristic polynomial}

is preserved by the flow of (5.1). Notice that the spectral curve and the isospectral variety
depend on the values of the constants of motion only (i.e., on the vector ¢ = (gx;), where
gi is the coefficient of AFz/ in Q(X, z)). Sometimes one writes I'c and A, instead of
I"x 1) and Ax ). Notice that the spectral curve I'¢ is non-singular for generic values of
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c. Let T be the compactification in the projective plane IP% of I'¢. For generic values

of ¢ the projective curve T is also non-singular. Let us compute the points at infinity of
the spectral curve. The equation of the affine spectral curve is:

2+ vv3. A + 01(h,2) =0, (8.1)

where the polynomial Q1(A, z) has degree strictly less than 2p. Put A = v/zp and
Z = ¢ /z0. Now, set zo = 0 in the equation

2
2" 0(/z0,¢/20) =0
of the projective spectral curve I'.. We get the points at infinity
{Plv'-~9P2]]} ::Fc\rc,
with Pry1 = (1, Br+1,0), k=0,1,...,2p — 1, where
2k + Dm
Brs1 == v'/P exp (l%) and  v:i=|vjva---vpl.
p

At each of these points the meromorphic functions A and z on T'¢ have a pole of order
1. Note also that the genus of the plane curve T'¢ is g := (p — 1)(2p — 1) (the genus of
a non-singular plane curve is given by the well-known formula g = (n — 1)(n — 2)/2,
where n is the degree of the homogeneous polynomial equation of the curve; see also
[(11]).

Take now a generic value of the vector ¢ such that I'¢ is non-singular and note that
for generic (A, z) € T'¢, the eigenspace of X (1) with eigenvalue z is one-dimensional.
If we denote by Ay (z, X (X)) the cofactor of the matrix z/>, — X (1) corresponding to

the (k, ) entry then, the unique eigenvector of X (1) with eigenvalue z, normalized by
& =1,is

E@ X)) = 1, ..., &),
where
&k = Az, X))/ A1 (z, X(A)).

By [3], p- 187, when X (A, ) flows according to (5.1), the corresponding eigenvector
E(t) == &(z, X (A, 1)) satisfies the autonomous equation

E+YE=pE,
where Y := Y (A, X (X, t)) and p is the scalar function

2p
pi=pk, z, XA, 1) = Z Yo X, )ulAu(z, XA, 1)/ Az, X (&, 1)).
=1

The role of the eigenvector £ is to define the divisor map
ic : Ac — Div¢(Te), X(A) = Dy,
where Dy ;) is the minimal effective divisor on I'¢ such that

¢EJr. = —Dxpy, k=1,...,2p.
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Here, d := deg(Dxy)) is independent of X (1) € A (for generic ¢ we can assume A,
connected) and so, Dy ;) defines an effective divisor of degree d in T..
Now choose and fix a divisor Dy € Div? (Te), a basis (w1, ..., wg) of holomor-

phic differentials on T, and consider the vector @ := (wy, ..., a)g)T. One defines the
linearizing map by
J— DX
Je i Ae = Jac(Te), X — w,
Do

where Jac(T'¢) denotes the Jacobian of the curve T.
The role of the function p is to linearize the isospectral flow of (5.1) on A, that is,
to be able to write

Dx ) 2p
/ @ =1 Resp(p(h.2.X(.0))@). Dx() = Do.
Dx () k=1

if it is possible. The Linearization Criterion in [3], p. 195 says that this happens if and
only if for each X € A, there exists a meromorphic function @y on I'¢ with

2p
(@x)r, = — D P
k=1

such that for all Py,
(Laurent tail of dp(X, z, X)/dt at P;) = (Laurent tail of ®x at Py);

see also [11].
Now we shall apply the linearization criterion to our case. Firstly, we have:

A1z, X)) = 2227 4030220272 4 011z, ),
where the polynomial Q11(z, A) has degree strictly less than 2p — 1. Then we compute
A1n(z, X(A) = Mi2(z, 1) + Q12(z, A),

where the polynomial Q1>(z, 1) has degree strictly less than 2 p —2 and the homogeneous
polynomial

Mix(z, A) = —xl,zzz‘p_2 +ot xp+1,p+2v1v2v§ .. v[2?)\‘2p—2
has degree 2p — 2. Similarly, we get for/ =3,...,2p, 1 # p+1,
Az, X(A) = My(z, M) + Qu(z, A),

where the polynomial Q1;(z, A) has degree strictly less than 2 p —2 and the homogeneous
polynomial My;(z, A) has degree 2p — 2. Forl = p + 1, we get

A1 p+1(z, X(A)) = My p1(z, A) + O1,p+1(2, A),

where the polynomial Q1 ,+1(z, A) has degree strictly less than 2p — 1 and the homo-
geneous polynomial M1 ,41(z, A) has degree 2p — 1.
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Let zx be a local parameter around the point at infinity P, k = 1,...,2p. The
Laurent tail of z at Py is Br/zx and the Laurent tail of A at Py is 1/z. By using the
formulas above we conclude that the Laurent tail of

Az, X))/ Az, X(A), 1=2,...,2p

at Py is zero, since this meromorphic function is holomorphic at P;. Moreover, this
function has a zero at Py for each k = 1,...,2p, and [ # p + 1 (note that on the

denominator the constant term /3,3 Pl Br v%...v2 is non-zero for generic c).
Now we compute the Laurent tail of dp (A, z, X)/dt at P;,. We emphasize that p only
depends on ¢ through X ()). Firstly, we see that the Laurent tail of

d
Z(Au(z, X(W)/An(z, X)), 1=2,....2p

at each P, is zero, because this meromorphic function is holomorphic at Py,
k=1,...,2p. Since

2
Yiin=—2vi, Yu=vix;ps1 — vixi pu for I=2,...,p,
and
Yi,pa = X1 +v1Xpy1,py for I=1,...,p,

we conclude that the Laurent tail of

Az, X (A, 1))

2p
4,z %) —Ziy(x X(h, 1))y ——
ar” T g R X Gl )

2p
d Az, X(A, 1))
+l§m, X g xSy

at each Py is zero for all k = 1, ..., 2p. Thus, the linearization criterion applies with
®x = 0. We have proved the following.

Theorem 8.1. For N invertible with distinct eigenvalues the map je linearizes the iso-
spectral flow of the system (5.1) on the Jacobian Jac(T';).

Linearization on the Prym variety for N invertible and generic. Since (X + AN)T =
X — AN, we have

Q(=%,2) = (%, 2).
Thus there is an involution 7 : T — T of the spectral curve defined by
(A, 2) = (=4, 2).
In homogeneous coordinates A = v/zg, z = {/zo this involution is given by

T(V, ;, ZO) = (_U’ g» ZO)-
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Notice that the involution t has no fixed points at infinity (z9 = 0 and v = 0 would
imply ¢ = 0 from the homogeneous equation of the curve). Thus, the fixed points are
obtained from the equation

0(0,2) =0,

which is the characteristic polynomial of the symmetric matrix X. Generically, we
obtain 2p distinct points Zi, ..., Z3, as its fixed (ramification) points, where Z; =
©,zk, ), k= 1,...,2p, with z; the (real) eigenvalues of the symmetric matrix X.
By the Riemann-Hurwitz formula, the quotient (smooth) curve Cy := "¢/t has genus

g1i=(p—17%

Associated to the double covering

Fc — C
is the Prym variety Prym(T'./C}), with the property that Jac(T') is isogenous to
Jac(Cy) x Prym(T'¢/Cy).
It follows that
dim (Prym(T/C1)) = g — g1 = p* — p.
Let us denote by Q2 the sheaf of holomorphic 1-forms on Tec. Recall that

Jac(Te) = H(Te, @ )*/Hi(Te, Z).

The involution 7 acts on the vector space H?(T, Q,) and on the free group

H; (T, Z) having eigenvalues £1. The Prym variety Prym(T'/C) can be equivalently
described as the quotient

H(Te, Qp)*/Hi1(Te, )™,

where the upper =+ index on a vector space denotes the -1 eigenspaces.
Note that

2p

Z YO, XA, 0))uAuz, XA, 1)/ A1z, X(A, 1))
=1

= -2l +p1(h, 2, X (A, 1)),

p:=pA, z,X(\, 1)

where the meromorphic function p1 (X, z, X (1, t)) has residue zero at each Py; see the
computation above. By [11], or by direct computation, we have

Resp (tp(%, z, X (1, 0))) = —Resp (p(A, z, X (2, 0))).
It follows that the flow is actually linearized on Prym(T'./C}). Thus we have proved:

Corollary 8.2. For N invertible with distinct eigenvalues the map je linearizes the iso-
spectral flow of the system (5.1) on the Prym variety Prym(I'¢/C1).



432 A. M. Bloch, V. Brinzanescu, A. Iserles, J. E. Marsden, T. S. Ratiu

The case of N maximal rank and nullity one. Let us consider now the case of n odd
and N having distinct eigenvalues and nullity one, i.e., n = 2p + 1 and rank N = 2p.
Choose an orthonormal basis of R?7*! in which N is written as

0O VvV O
N=|-V 0 0],
0 0 O
where V is a real diagonal matrix whose entries are vy, ..., v,. The equation of the
affine spectral curve is:
2P vi iz + 00, 2) =0, (8.2)

where the polynomial Q?(A, 7) has degree strictly less than 2p + 1. Put A = v/zo and
z = ¢ /zo0. Now set zp = 0 in the equation

2" Q/20,¢/20) = 0
of the projective spectral curve T'c. We get the points at infinity
{Po, Pi,..., Py}t i=Tc\ T,
with Py = (1,0,0) and Pi+1 = (1, Bk+1,0), £k =0,1,...,2p — 1, where

2k +Dr
Jekt DT

Brst i=v'/P €xp (
2p

) and v :=|viv2---vpl.

Note that at each of these points, with the exception of Py, the meromorphic functions
A and z on T'¢ have a pole of order 1. At Py, the function A has a pole of order 1 and z
has a zero of order 1.

We shall analyze below in detail the particular case p = 2 (thatis, n = 5). A direct
computation shows that

A= @ +0322H + 0% (2, h),  deg 09, <4,

A = (Wivaxazd? — ) + 0 (z,2),  deg 0, <3,

Az = (—viv3zd’ —ui?W) + 0%z, h),  deg O < 4,

Aig = (1224 +01x342°% — x142 — viv232A?) + 00 (2 1), deg 0Y <3,

A5 = (—v1v§x35k3 + v%mszkz — v1x35z2A + x15z3) + Q?S(z, A), deg Q(l)5 < 3.
Let z; be a local parameter around the point at infinity Py, k = 1, ..., 4. The Laurent

tail of z at Py is Bx/zx and the Laurent tail of A at Py is 1/zx. By using the formulas
above we conclude that the Laurent tail of

Az, X(M))/ Az, X)), [1=2,...,5

at Py is zero, since this meromorphic function is holomorphic at Py.
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For Py the computation changes. Let u be a local parameter around the point Py. The
Laurent tail of z at Py is zero (z has a simple zero at Pp) and the Laurent tail of A at Py
is 1/u. We shall emphasize the leading term for the Laurent tail of

2 2 2
A = v5(x33x55 — X35)/u” + ...,

2
A1p = v1v2(X35X45 — X34X55) /u” + ...,

2 3
A1z = vivaxss/u’ +...,

2

A4 = v1v2(X23X55 — X25X35) /U + ...,
2 3

A5 = —vivyxss/u’ +...,

and we get

V] X55 1
A13/A11 = — )+
X33X55 — X35 J U

—V1X35 1
Ars/A1 = — ot
X33X55 — X35 J U

the other two quotients A12/A11 and A14/Aq1 being holomorphic around Py.
As in the case of n even, we have

Aqp
p(h, 2, X) = —vih+ (vix23 — v2x14)A—
1

Aq3 Ay Ajs
+v1(x11 +x33)— + (V2X12 + V1 X34) —— + VX35 —,
A1y Ay Aqp

and hence

2
(x11 +x33)x55 — X
ResPOpzvlz(—1+ 3 ).

X33X55 — X35
From the system (1.2) we get
X11 + X33 = C1 and X55 = Cz,
where Cy, C, are constants of the motion. Then a direct computation shows that

dp 202 Cax35435(C1 — Xx33)

Resp, — =
" dr (Cax33 — x35)?

which is non-zero generically. By applying Lemma 5.11 in [3] and the linearization
criterion, we get the following result.

Proposition 8.3. For N € s0(5) having distinct eigenvalues and nullity one, generically
the map je does not linearize the isospectral flow of the system (5.1) on the Jacobian
Jac(Te).
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An easier computation gives the same result in the case n = 3. We carried out the
case n = 5 as more representative of the general case; for n = 3, there are various
non-typical simplifications of the computations leading to the non-linearizability result
due to the low size of the matrices involved.

We expect however that it will be possible to analyze linearization of the general case
where N has distinct eigenvalues (i.e. either n = 2p and N is invertible or,n = 2p + 1,
rank N = 2p and N has nullity one) on the generalized Jacobian (see e.g. [26]). To do
this we intend to follow [10 and 4] (see also [2,8 and 3]). We intend to carry out this
study of generalized algebraic integrability of our system in a future publication.

Acknowledgements. We thank G. Prasad for his observation regarding Lie algebras. Luc Haine and Pol
Vanhaecke have our gratitude for many very illuminating discussions regarding algebraic complete integra-
bility. We also thank Alexey Bolsinov, Percy Deift, Igor Dolgachev, Michael Gekhtman, Rob Lazarsfeld,
Alejandro Uribe, and Nguyen Tien Zung for useful conversations that clarified various points in the paper and
thereby improved our exposition. Finally we would like to thank the referee for an extraordinarily useful and
insightful referee report and for pointing out reference [27] and we would also like to thank the editor for his
very helpful input.

References

1. Adams, M.R., Harnad, J., Hurturbise, J.: Darboux coordinates and Liouville-Arnold integration in loop
algebras. Comm. Math. Phys. 155, 385413 (1993)

2. Adler, M., van Moerbeke, P.: Linearization of Hamiltonian systems, Jacobi varieties and representation
theory. Adv. Math. 38, 318-379 (1980)

3. Adler, M., van Moerbeke, P., Vanhaecke, P.: Algebraic Integrability, Painlevé Geometry and Lie alge-
bras, Volume 47 of Ergebnisse der Mathematik und ihrer Grenzgebiete, Berlin-Heidelberg-New York:
Springer-Verlag, 2004

4. Beauville, A.: Jacobiennes des courbes spectrales et systemes hamiltoniens completement integra-
bles. Acta Math. 164, 211-235 (1990)

5. Bloch, A.M., Iserles, A.: On an isospectral Lie—Poisson system and its Lie algebra. Found. of Comput.
Math. 6, 121-144 (2006)

6. Bolsinov, A.V.: Compatible Poisson brackets on Lie algebras and completeness of families of functions
in involution. Math. USSR. Izv. 38(1), 69-90 (1992)

7. Bolsinov, A.V., Borisov, A.V.: Compatible Poisson brackets on Lie algebras. Mat. Zametki, 72(1), 11-34
(2002)

8. Deift, P, Li, L.C., Tomei, C.: Matrix factorizations and integrable systems. Comm. Pure Appl.
Math. XLII, 443-521 (1989)

9. Dubrovin, B.A., Novikov, S.P., Krichever, .LM.: Integrable Systems, Encyclopaedia of Mathematical
Sciences. 4, Berlin: Springer-Verlag, 1989

10. Gavrilov, L.: Generalized Jacobians of spectral curves and completely integrable systems. Math.
7. 230, 487-508 (1999)

11. Griffiths, P.: Linearizing flows and a cohomological interpretation of Lax equations. Amer.
J. Math. 107, 1445-1483 (1985)

12. Krichever, I.M.: Methods of algebraic geometry in the theory of nonlinear equations. Russ. Math.
Surv. 32, 185-213 (1977)

13. Krichever, .M., Novikov, S.P.: Holomorphich bundles over algebraic curves and nonlinear equa-
tions. Russ. Math. Surv. 35, 53-79 (1980)

14. Li, L.-C., Tomei, C.: The complete integrability of a Lie—Poisson system proposed by Bloch and Iser-
les. Intern. Math. Res. Notes 64949, 1-19 (2006)

15. Manakov, S.V.: Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid
body. Funct. Anal. Appl. 10, 328-329 (1976)

16. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Volume 17 of Texts in Applied
Mathematics; Second Edition, second printing, Berlin-Heidelberg-New York: Springer-Verlag, 2003

17. Meshcheryakov, M.V.: A characterisitic property of the inertial tensor of a multidimensional solid
body. Russ. Math. Surv. 38(5), 201-202 (1983)

18. Mikhailov, A.V., Sokolov, V.V.. Integrable ODEs on associative algebras. Commun. Math.
Phys. 211(1), 231-251 (2000)



A Class of Integrable Flows on the Space of Symmetric Matrices 435

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
29.

Mishchenko, A.S., Fomenko, A.T.: On the integration of the Euler equations on semisimple Lie
algebras. Sov. Math. Dokl. 17, 1591-1593 (1976)

Mischenko, A.S., Fomenko, A.T.: Euler equations on finite-dimensional Lie groups. Izv. AN
SSSR 42(2), 396415 (1978)

Mischenko, A.S., Fomenko, A.T.: Integration of Euler equations on semisimple Lie algebras. (In Russian),
Trudy Sem. po Vekt. i Tenz. Analizu 19, Moscow MGU, 3-94 (1979)

Morosi, C., Pizzocchero, L.: On the Euler equation: bi-H amiltonian structure and integrals in involu-
tion. Lett. Math. Phys. 37, 117-135 (1996)

Mumford, D.: Tata Lectures on Theta. 11. Volume 43 of Progr. Math., Boston, MA: Birkhéuser, Boston,
1984

Odesskii, A.V., Sokolov, V.V.: Integrable matrix equations related to pairs of compatible associative
algebras. J. Phys. A 39(40), 12447-12456 (2006)

Ratiu, T.S.: Involution theorems. In: Kaiser, G., Marsden, J. eds., Geometric Methods in Mathemati-
cal Physics, Volume 775 of Springer Lecture Notes, Berlin-Heidelberg-New York: Springer, 1980 pp.
219-257

Serre, J.P.: Groupes Algebriques et Corps de Classes, Paris: Hermann, 1959

Trofimov, V.V., Fomenko, A.: Algebra and geometry of integrable Hamiltonian differential equations. In:
Russian, Moskva, Faktorial, 1995

Vanhaecke, P.: Integrable systems and symmetric products of curves. Math. Z. 227(1), 93-127 (1998)
Vanhaecke, P.: Integrable Systems in The Realm of Algebraic Geometry, Second edition. Volume 1638
of Lecture Notes in Mathematics, Berlin-Heidelberg-New York: Springer-Verlag, 2001

Communicated by L. Takhtajan



	A Class of Integrable Flows on the Spaceof Symmetric Matrices
	Abstract:
	Introduction
	The Lie Algebra and the Euler--Poincaré Form
	Poisson Structures
	The Sectional Operator Equations and Relation to Mischenko-Fomenko Flows
	Lax Pairs with Parameter
	Involution
	Independence
	Linearization of the Flow
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


