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Energy balance invariance for interacting particle systems

Arash Yavari! and Jerrold E. Marsden?

Abstract. This paper studies the principle of invariance of balance of energy and its conse-
quences for a system of interacting particles under groups of transformations. Balance of energy
and its invariance is first examined in Euclidean space. Unlike the case of continuous media, it
is shown that conservation and balance laws do not follow from the assumption of invariance of
balance of energy under time-dependent isometries of the ambient space. However, the postulate
of invariance of balance of energy under arbitrary diffeomorphisms of the ambient (Euclidean)
space, does yield the correct conservation and balance laws.

These ideas are then extended to the case when the ambient space is a Riemannian manifold.
Pairwise interactions in the case of geodesically complete Riemannian ambient manifolds are
defined by assuming that the interaction potential explicitly depends on the pairwise distances
of particles. Postulating balance of energy and its invariance under arbitrary time-dependent
spatial diffeomorphisms yields balance of linear momentum. It is seen that pairwise forces are
directed along tangents to geodesics at their end points. One also obtains a discrete version of
the Doyle-Ericksen formula, which relates the magnitude of internal forces to the rate of change
of the interatomic energy with respect to a discrete metric that is related to the background
metric.

Keywords. Continuum mechanics, particle mechanics, energy balance, covariance.

1. Introduction

This paper is concerned with balance of energy for a system of interacting particles
and finds a connection between discrete balance laws and invariance, something
that has been studied thoroughly in the setting of continuum mechanics (see [4,
9, 16] and references therein).

Particle mechanics is normally formulated in R3 via balance laws such as bal-
ance of momentum; however, the linear structure of R? can sometimes obscure
important geometric information; for example, balance of linear momentum is
not a covariant notion in that it looks rather different in curvilinear coordinates;
see [9, 16]. Of course one way to overcome this is to make use of generalized
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coordinates and Lagrangian mechanics. However, another interesting alternative
approach, that is also used in geometric continuum mechanics, is to make use of
invariance properties of balance of energy. A major goal of this paper is to re-
visit this issue to bring the theory more into line with what one does in geometric
continuum mechanics.

In geometric continuum mechanics, one usually works with two configurations—
a reference configuration and a current configuration. The configuration space is
the manifold of maps between these two configurations [9]. The current configu-
ration has a clear physical interpretation; it is what one can see in the laboratory.
Equilibria of the current configuration in the setting of continuum mechanics cor-
respond to local minima of the corresponding particle system in the case of quasi-
static deformations. In the corresponding particle system the resultant force on
each particle is balanced by its internal forces. In geometric continuum mechanics,
the current configuration evolves in a Riemanninan manifold (S,g) [9, 16]. The
reference configuration on the other hand has a less clear physical interpretation.
In the traditional treatments of elasticity it is usually assumed that there is a
well-defined stress-free reference configuration. This is not always true as was no-
ticed by Eckart a few decades ago [1, 11]. For an elastic body, in general, one
can have a set of natural configurations. So, a stress-free reference configuration
could be any of these natural configurations. In the corresponding atomic system
a natural configuration would be a local minimum of the energy (or free energy)
in the absence of external forces. It should be noted that reference configuration
is in some sense arbitrary and one can choose different reference configurations for
the same problem (see [17] for some discussions on this).

We should emphasize that we are not criticizing the existing treatments of
particle mechanics in Euclidean space. As a matter of fact, this would be the
natural way of formulating, for example, molecular systems that are embedded
in Euclidean space. However, one should note that even for the simple example
for the classical rigid body in rotation about its center of mass, the configuration
space is a manifold, i.e. SO(3) and the kinetic energy metric is non-Euclidean.
The other thing to note is that studying mechanical systems geometrically can give
nontrivial insight into mechanics of particles in Euclidean space. A good example
of this is the reduction procedure for studying the dynamics of the shape space
of a molecule; that is, the space obtained when one eliminates translations and
rotations. When this is done, one obtains dynamics on a non-Euclidean space and
geometric methods are critical when undertaking such a study. There are many
examples of this in the literature in the works of, for example, Littlejohn and
Iwai. For a concrete example applied to the analysis of conformation changes in
Argon-6, see [15] and references therein.

This paper is structured as follows. In §2 we briefly review the classical theorem
of Green, Naghdi and Rivlin and the covariance ideas in elasticity. In §3 we start
with balance of energy for a system of interacting particles embedded in Euclidean
space and study the consequences of postulating its invariance under different
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groups of transformations of the ambient space. §4 studies these issues when the
ambient space is a Riemannian manifold. Consequences of covariance of energy
balance are investigated in detail. Conclusions are given in §5.

2. Energy balance, the Green—Naghdi—Rivlin theorem and co-
variance in elasticity

In every mechanical system there are balance laws and some associated conserved
quantities. For example, in elasticity, one has balance of linear and angular mo-
menta and conservation of mass. One can build a continuum theory by postulating
the relevant balance laws. However, one can always question the significance of
each balance law and whether they have any intrinsic meanings. Most engineering
theories, including the theory of elasticity, are traditionally built with the implicit
assumption that the ambient spaces are Euclidean. It turns out that the structure
of Euclidean space can obscure the covariance of balance laws since these balance
laws look rather different in curvilinear coordinates. A more natural way of build-
ing field theories is to assume that the ambient spaces are manifolds. This way,
for example, one naturally obtains a covariant theory and, in addition, one can
more easily separate the metric dependent and independent relations.

It has long been known that there is a deep connection between balance laws
and symmetries (see, for instance, [10]). Noether’s theorem, for example, identifies
a conserved quantity for each local symmetry of the underlying Lagrangian den-
sity. In the case of global symmetries in continuum mechanics Green and Rivlin [4]
showed that postulating balance of energy and its invariance under spatial isome-
tries of the Euclidean ambient space, one can obtain conservation of mass and
balances of linear and angular momenta.

Motivated by this observation and the fact that balance of energy can always
be intrinsically defined Marsden and Hughes [9] developed a covariant theory of
elasticity by postulating balance of energy and its spatial covariance. This assump-
tion results in conservation of mass, balance of linear and angular momenta and
the Doyle-Ericksen formula. Simo and Marsden [14] derived a material version
of Doyle-Ericksen formula in terms of the rotated stress tensor. Recently Yavari
et al. [16] studied the covariance concepts in elasticity in some detail, possibility
of material covariance of energy balance and the connection between covariance
and Noether’s theorem. In the case of linearized elasticity, recently it was shown
that covariance of a linearized energy balance can give all the field equations of
linearized elasticity [19]. See also [18] for a connection between energy balance of
a discretized solid and its balance laws.

To the best of our knowledge, there is no systematic study of a possible con-
nection between invariance and balance laws for particle systems. In this paper,
we first consider the case in which the ambient space is Euclidean and show that
there are some subtle differences between continuum elasticity and a system of
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interacting particles. In particular, we will show that the Green—Naghdi—Rivlin
(GNR) Theorem fails for particle systems. We then define pairwise interactions
when the ambient space is a Riemannian manifold and study the consequences of
spatial covariance of energy balance. We will also obtain a discrete version of the
Doyle—Ericksen formula.

3. Balance of energy for particle systems in Euclidean space

We first consider a system of interacting particles in a Euclidean ambient space and
show that, unlike classical elasticity, balance laws do not follow from invariance of
energy balance under time-dependent isometries of the Euclidean ambient space.
In other words, the GNR Theorem fails. We then show that a modified GNR
argument using an enlarged group of transformations works and does give the
balance laws for the particle system.

The failure of the GNR theorem

Here, we look at balance of energy for an arbitrary collection of atoms £ and make
a connection between invariance of balance of energy for a system of particles and
the classical Green—Naghdi—Rivlin Theorem for continuous media. For the sake
of simplicity, we restrict ourselves to pairwise interactions. Suppose we are given
a collection £ of particles which has the configuration {x%(¢)};c. C R™ at time ¢.
Balance of energy for £ can be written as

d1 ) ) d 1 i i

gz 2 Pl =¥+ 3> gmal =) FO& 3D
,L’J;[, icLl i€l
JFi

W

where is the standard inner product of R™, m; is the mass of particle ¢ and F*
is the external force on particle i. Balance of energy can be simplified to read

1 _ . o o
3 Z —fij~(v’—vj)—|—Zmivl-al :ZF’-vl, (3.2)
ijeL el el
J#i
where v = %*, a’ = %?,
A¢i; (|x* — %7 b xJ
993 (X =) x x* (3.3)
0 |xt —xJ| |xt— x|

fij =

and we have used the standard framework of classical mechanics in which the
particle masses are assumed to be time independent. Note that for pairwise inter-

actions
fj' = 7f’L’j' (34)

Let us now postulate that balance of energy for £ is invariant under a time-
dependent rigid translation of the ambient space S = R3. Consider & : S — S,
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where
X' =&(x') = x" + (t —to)w, (3.5)
for some arbitrary w € R3. This implies that

7

vVi=vitw for all i€ L. (3.6)

Also at time t = t( it is assumed that the body forces F? transform as follows (see
[9)):

mia’t — F" = ma’ — F' for all 7€ L. (3.7)

Invariance of balance of energy means that

d1 ) . d 1 ; ; i

Gz 2 PR X b Gy S V=R TR X (38)
z,]il: €L €L
JF

where the primed quantities are related to the unprimed ones through Cartan’s
classical spacetime theory. Simplifying (3.8) and evaluating it at time ¢t = to, we
obtain

1 . . . . . .

5 o f (Vv Y mi(viw)cat =) F (v w). (3.9)
i,gi_ﬁ €L €L
J7

Subtracting (3.2) from (3.9) yields

Zmiw cal = ZFi -W. (3.10)

ieL €L

Because w is arbitrary one can conclude that

S F =) ma’. (3.11)

€L el

Eq. (3.11) is nothing but Newton’s second law for the collection of particles. It
is seen that the above postulate does not give the known governing equations for
each particle. Instead, it gives balance of total linear momentum for the whole
collection of particles.

Let us now look at (3.1) and try to rewrite it for an arbitrary subset M C L.
This is of course not always possible because in the collection L, each particle
interacts with all the other particles and balance of energy for a subcollection
cannot be written unambiguously, in general. Note also that energy may not even
be conserved locally [2]. In other words, for nonlocal systems a localized balance
law, in general, involves a so-called “residual” term.

In the case of pairwise interactions, one may be tempted to write the balance
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of energy for a subcollection M C L as follows.

df1 D o
dt{2 > du(x =)+ > D §¢>ij(|x —X]|)}
M iEM jEL\M

j#i

dtz Smix % =Y FX, (3.12)

ieM ieM

where we have assumed that the energy of the bond between the particles i and
j is equally shared by them in the case of pairwise interactions.® Note also that
unlike classical continuum mechanics energy density is not a one-point function,
i.e., for a given particle energy has contributions from all the other particles in the
collection, in general. Balance of energy (3.12) can be simplified to read

fz fi; - vaj+z Z fi; - vaJ+va a*ZFl <.

i,jJEM iEM jeL\M ieEM iEM
J#i
(3.13)

Now let us postulate that this balance law is invariant under an arbitrary time-
dependent rigid translation of the ambient space, i.e.

= Z (v/i—v" +Z Z (V=" Zm’ . ’i:ZF;k’i.

i,jEM 1EM jeL\M ieM ieM
J#i
(3.14)

Subtracting (3.13) from (3.14) evaluated at t = ¢ yields

- Z fi;- (W' —w? +Z Z (w' WJ—I—ZmW -a’ ZFi-Wi,

i,jEM iEM jeEL\M iEM iEM
J#i

(3.15)
where w' = 2£,(x). Now if & is a rigid translation, then w' = ¢, for all i € £

and hence ‘ ‘
Z msc-a’ = Z F'-c. (3.16)
ieM ieEM
Because c is arbitrary, this then implies that
Z Fi = Z m;a’. (3.17)
ieM ieM
M is arbitrary so we can choose M = {i} and hence

F! = m;a’. (3.18)

* Note that ¢;;(|x? —x7|) is the energy of the pair (,5). There is a factor % in the first term of

the left-hand side of (3.12) because in the sum both (%, j) and (j,4) are counted. On the other
hand, the factor % appears in the second term because it is assumed that the energy ¢;; (Ix*—x71)
is shared equally between the atoms ¢ and j.
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This means that the interatomic forces are self-equilibrated, i.e.

> i =0, (3.19)

jEL

J#i
which is not always true! This shows that the version of “energy balance” given
by (3.12) is not invariant under time-dependent rigid translations, in general. This
goes back to the nonlocal nature of interactions in a particle system and also the
presence of self interactions in a given subset. In other words, balance of energy
for the whole system should be considered. See [5] and [6] for similar discussions.
In summary, the GNR Theorem fails for a particle system.

Remark. In a nonlocal system, one can unambiguously write a global balance of
energy, e.g. (3.1) for our particle system, but passage from a global energy balance
to a local energy balance or to a balance of energy for an arbitrary material subset
may not be unique [2, 3]. In what follows from here on we only write a global
balance of energy and study its invariance (covariance) properties.

The success of a modified GNR theorem

Let us now consider a larger group of transformations for energy balance invari-
ance. Instead of considering balance of energy for M C £ and its invariance under
rigid translations, let us look at balance of energy for £ and consider an arbitrary
C! diffeomorphism &; : S — S. Thus, instead of (3.10) we have

% Z —f; - (W' —wI) + Zmiwi ‘al = ZFZ -w, (3.20)

ijeL iel =
J#i
where
wi= 2, x) (3:21)
—_— 81‘; t . .
Note that
5 Z 7fij'(W 7WJ):szfij'W. (322)
i,jeL i€L jeL
J#i J#i
Hence
SN fewt =) (F —mia’) - w'. (3.23)
ieL jeL =
j#i

This can be rewritten as

> {_ Fio fi+ miai} -w'=0. (3.24)

i€l jeL
J#i
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Now assuming that & is such that the w7 = 0, j # 4, one obtains

F'+) f; =msal, (3.25)
JEL
J#i
which is what one expects. Let us now consider a time-dependent rigid rotation
in the ambient space, i.e.
£ (x7) = eltt0) 2y (3.26)

for some skew-symmetric matrix €. This means that w! = Qx® for all i € L.
Obviously, postulating invariance under rigid rotations of the ambient space does
not give any new balance laws as a rigid rotation is just a special case of diffeomor-
phisms considered above in (3.20). In other words, balance of angular momentum
is trivially satisfied for a collection of interacting particles. In summary, we have
proved the following proposition.

Proposition 3.1. For a collection of particles with pairwise interactions, postulat-
ing balance of energy and its invariance under isometries of the ambient Euclidean
space is not enough to find all the balance laws (equations of motion). If, however,
one postulates balance of energy and its invariance under arbitrary diffeomorphisms
of Fuclidean space, then these equations are all obtained.

Remark. In this paper, we do not consider independent rotations, and in general
microstructure, for particles. However, the arguments presented here can be ex-
tended to more complicated particle systems, e.g. particle systems with anisotropic
interactions, etc.

4. Energy balance for particle systems on Riemannian manifolds

To put the previous results in a more general framework and also for the sake of
clarity, completeness, and intellectual satisfaction, let us assume that the particles
move on a Riemannian manifold. Although this may seem too abstract at first
glance, it is natural to ask how the balance laws look when the ambient space
is Riemannian. This is also motivated by the previous covariant formulations of
continuum elasticity. We should also mention that there have been recent efforts
in formulating mechanics on non-Euclidean spaces, e.g. [12, 13].

Suppose the interacting particles lie in a Riemannnian manifold (S, g), which
we assume is geodesically complete. For the sake of simplicity, let us assume
that only two-body interactions are present. Consider two particles ¢,57 € L,
which in the current configuration lie in S, i.e., x!,x? € S. We assume that the
potential energy of these two particles explicitly depends on their relative distance
in the Riemanian manifold. Of course, there may be other possibilities but this
assumption would be a good starting point.

As a physical system represented by this model, let us consider a finite number
of particles lying on a two-manifold M C R3 connected to each other by some
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springs that are constrained to lie in M. Energy of this system is obviously an
explicit function of lengths of the springs. Given any two particles, energy of the
corresponding spring is minimized when the spring coincides with the geodesic
connecting the two points on M. What we find covariantly in the following is
balance of forces projected on tangent spaces of M at particle positions.

As another motivation for studying this model, we should mention the recent
work by Kotani and Sunada [7]. Kotani and Sunada [7] consider a weighted finite
graph X = (V,E), where V and E are the vertex and edge sets, respectively,
and consider a piecewise smooth map ® from X to a Riemannian manifold (Y, g).
They denote the restriction of this map to e € E by ®.(¢), t € [0,1]. Then, they
define energy of this map as

_ % S me(e) /01 <<d§;€, d;;e >> dt, (4.1)

eckE

where mp is a weight function defined on E. They show that a map ® is a critical
map for this energy if and only if @, is a geodesic for every e € E. For such a
map, energy is an explicit function of geodesic lengths.

Remark. Note that, for a generic Riemannian manifold and two arbitrary points
on the manifold, there may be more than one and even infinitely many distance
minimizing geodesics connecting the two points. An example would be the north
and south pole of a sphere. Here, we assume that in a given configuration of the
particle system there are no pairs of particles lying on such a pair of points.

Let us denote the geodesic connecting x* and x’ by Zg, where it is clear from
this notation that the geodesic explicitly depends on the metric g. This curve has
a parametrization £ : [a,b] — S and its length is defined as

Lg(t) = /ab<<;8gw( ), digg( )>>i ds, (4.2)

where ((.,.))4 is the inner product induced from the Riemannian metric g. There-
fore, for x*,x7 € S N
$ij = bij (L(EF)) - (4.3)

The total interaction energy is defined as

({X €L, 8 Z ¢z] élj (44)
]GE
J#i

Note that we can think of g;; := Lg(¢¥) as a discrete metric for the collection

{x*}ierc C 8. Of course, this discrete metric is an explicit function of the back-
ground Riemannian metric g. Now balance of energy can be written as

d o o
dt 3 Z bij (Lg(C)) +— Z 1mz (&%), =D (FLx)), . (4.5)

i,jEL i€l
J#i



732 A. Yavari and J. E. Marsden ZAMP

Note that F? € T,;S is the external force on atom 1.

,,,,,, - (S,8)
LlilY s oo

° . I/l (87 St*g)
Figure 1. A spatial change of frame for a system of interacting particles.

Let us assume that under a spatial change of frame & : & — & balance of
energy is invariant, i.e.

d 1 | d 1 i L
3 D Ol (L (™) + 2 > S (K = Y (FLK), - (46)
i,_j;_ﬁ €L €L
JF1

Note that g’ = &;.g (see Fig. 1). We assume that the pairwise potential transforms
tonsorially, i.e.

¢y (x",x7,8) = ¢y (x', %7, &/g) - (4.7)
Equivalently

o1y (Le(td)) = 6 (Lealtdy)) - (48)
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Balance of energy for the new framing at ¢t = t( reads

> ;ml (x'+w'a) + L Z i (bij (Lszg(ﬁztgo DoELE W),

€L i,jEL €L
J#i
(4.9)
where we assumed that F, — m/}a’ = &..(F; — m;a’) [9]. Now the nontrivial task

is to simplify the second term on the left hand side of Eq. (4.9). Note that given
two points in a Riemannian manifold the geodesic and its length both explicitly
depend on the metric g. Note also that

%L:to@j (ngg(ﬁgg)) = ZZZ dt‘t . ( gtg(égg» (4.10)

Before proceeding any further, let us first simplify the balance of energy for the
original frame, i.e., the left-hand side of Eq. (4.5)

7 8¢1J 7,
i3 2 00 (1)) = Z . gy ai %) (111)
i,jEL
]j751 3751

Consider the geodesic joining the points x(t),x’(t) € S. As these points are
time dependent, the geodesic joining them would be time dependent as well, i.e.,
=1{(t,s) = £ (t,s), where s is the curve parameter and ¢ is time. Note that

4y (eij)d/b«e 0)3d (4.12)
at g\Ve) T ogp | Wt m A% '

where {5 = %é(t, s) is the velocity of the parameterized geodesic. We assume that
the curve /£ is parameterized by arc length, i.e., it has unit speed everywhere. Thus

b . b N b
G entas= [ Lqenta- [ oy e )

where Dy is the covariant derivative along the geodesic and for a vector field along
the curve £ it is defined as

D,V =V, V, (4.14)
where V is an extension of V to S, V is the Riemannian connection corresponding

to the metric g (see [8] for more details), and ¢; = %E(t,s). It is easy to show
that [8]

Dtgs = Ds‘gt (415)
as in a local coordinate chart {x®} they both have the following representation

0%z Oz Oz
Dtés = Dsét = (558t —|— at as’ygb> 807 (416)
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where ¢, are Christoffel coefficients of the Riemannian connection. Using this
property and the fact that |¢;| = 1 we obtain

jt (ld) = /ab«pszt,es»ds:/: (i«&,és»—«&,Dsés») ds.  (4.17)

But because /¢ is a geodesic we have D,¢; = 0 and hence

e = [ &y as= e (418)
dt o ds a
Note that ' _
li(a,t) =%",  Ly(bt) =% (4.19)
and let us denote the velocity vectors of the geodesic at points x’ and x7 by
lo(a,t) =19 € TS, Ly(b,t) =" € Ty S. (4.20)
Therefore

d ij J 1\ [t §i
T Le(td) = (7)) = (', 1)), (4.21)

Now balance of energy can be written as

Z 39251] (%7, 1Y) — (!, 1Y) +Zmz (&', %) = Z X, (4.22)

,JGC i€l el
J#i

Note that the particle acceleration a® is the covariant time derivative of x*.

Let us now look at balance of energy for a change of frame & : S — & such
that ft‘t 4, = 1d. Consider a family of geodesics {(t, s) joining the points x"!(t) =
&(x(t),x7(t) = &(x(t)) € S. Motivated by (4.8), for a fixed t, £(t,s) is the
geodesic with respect to the metric g, = £;'g joining these two points. Assume
that the geodesic ¢(s) = Z(to,s) is parameterized by arc length, i.e., it has unit
speed everywhere. Note that DSZS(t7 s) = 0 is satisfied for each geodesic, where
D, is the covariant derivative along the geodesic 17 (t,s) with respect to the metric
g:. The time rate of change of the length of this family is simplified to read

a, _
T Le(lG) == / és,ﬁ T Dy S,€5>>tds, (4.23)

where D; is the covariant time derivative along the curve £(¢, s) with respect to

the metric g;. Note that still we have the relation DJS = DSE as in the local rep-
resentation (4.16) the only difference would be the t-dependance of the Christoffel
symbols. Thus

dt Le.( |g SNt,Z>>tds

_ /a m (ds <<Ztk7>>t 7 <<E,DSZS>>t> ds.  (4.24)




Vol. 60 (2009) Energy balance invariance for interacting particle systems 735

Using the geodesic equation and evaluating the above relation at t = ¢y, we obtain

il e @ = () (1)
Note that _ . o ‘ ‘
G(to,a) =% + W', Oy(to,b) =%/ + w, (4.26)
where w = %{t. Also
Uy(to,a) =19 € TS, Ly(to,b) = V' € T), S. (4.27)
Thus J
Gl L (67) = (37 +w?, 7)) — (%' +w', 17)). (4.28)

Balance of energy for the new framing at time ¢ = ¢y reads

3 30 T () = (& W) + Y ()

ijec I ieL

J#i
=> (F %" +w). (4.29)
€L
Subtracting (4.22) from the above balance equation and noting that the vector
field w is arbitrary, we obtain the following balance law

> % t7 + F' = mya’ for alli € L. (4.30)
jer 99ii
J#i
It is seen that assuming that particles are embedded in a Riemannian manifold and
postulating energy balance and its invariance under arbitrary spatial diffeomor-
phisms results in balance of linear momentum. In terms of the number of balance
laws, having a Riemannian ambient space does not give us any new relations. How-
ever, defining a more general pairwise interaction we see that interaction force at
i € L due to the particle j € L is directed along the tangent to the geodesic joining
x',x/ € S at the point x’ and its magnitude is equal to the rate of change of the
potential energy of ,j € £ with respect to the discrete metric g;;. Thus, we can
think of
_ 0%y _ Oe (4.31)
99i;  09i
as a discrete Doyle—FEricksen formula.
Note that because t7 and ¥/? lie in two different tangent spaces, the relation
f;; = —f;; is meaningless, in general. However, f;; = fj;. In summary, we have
proved the following proposition.

fij

Proposition 4.1. Assuming that balance of energy for a system of pairwisely
interacting particles in an ambient Riemannian manifold is spatially covariant is
equivalent to balance of linear momentum.
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The proof of converse of this proposition is similar to that of the continuum version
[16].

Remarks.

(a) From Eq. (4.30) it is seen that the background metric enters the balance of
linear momentum only through the discrete metric g;;.

(b) Note that Eq. (4.30) is the dynamic version of Eq. (12) in [7].

Example. We show in this example that what we just derived for a general
Riemannian manifold is reduced to the classical results when the ambient space
is Euclidean. In this case the geodesic joining x*,x7 € S = R"™ has the following
parametrization
bx! —ax?  x/ —x
l(s) = + S s € la, bl 4.32
(5)= 0+ 22 ) (432)
Because the curve is parameterized by the arc length we must have b—a = |x7 —x*|.
Thus

neoxI — X0
ij _
tV = x| (4.33)
Also in this case g;; = 1y = |x/ — xt|. Hence the following classical balance of
linear momentum is recovered
dp x' —xJ . ;
Z B 99 > =+ F' =m;a’ for all i € L. (4.34)
e |x — x|
J#i
Note that in this case the relation f;; = —f;; holds as tangent space to R" at any

point can be identified with R™.

Remark. Balance of linear momentum for a particle system on a Riemannian
manifold can of course also be obtained using Hamilton’s principle of least action
which is another covariant approach via Lagrangian mechanics.

5. Concluding remarks

This paper studied the connection between balance laws and energy balance in-
variance for a system of interacting particles. It was shown that, unlike classical
elasticity, postulating invariance of energy balance under isometries of the (Eu-
clidean) ambient space is not enough to obtain the balance laws. Instead, if one
postulates invariance of energy balance under arbitrary diffeomorphisms, then one
recovers all the balance laws. This shows a fundamental difference between a
continuum and a system of interacting particles and can be associated with the
nonlocal nature of interactions in a system of particles.

Balance of energy for a system of particles embedded in a Riemannian manifold
was also investigated via a generalized form of pairwise interactions by assuming
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that the pairwise potential energy of particles explicitly depends on their pairwise
distances—the lengths of the geodesics joining them. This definition naturally
reduces to the classical notion of pairwise interactions in Euclidean space. Postu-
lating balance of energy and its spatial covariance, shows that one can obtain a
geometric version of balance of linear momentum. For a particle i € £, balance of
linear momentum is written in the tangent space of S at x* € S. It was observed
that in this general setting, a relation like f;; = —f;; would be meaningless but
instead one has the meaningful relation f;; = f;;. Defining a discrete metric as
the pairwise distances, we showed that

Oe

= 5.1

which can be thought of as a discrete version of the Doyle—Ericksen formula.
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