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The purpose of this paper is to extend the Green—NaghdinRpalance of energy method
to continua with microstructure. The key idea is to repldwe group of Galilean transformations
with the group of diffeomorphisms of the ambient space. A kelyantage is that one obtains
in a natural way all the needed balance laws on both the mauwlonzcro levels along with
two Doyle—Erickson formulas.

We model a structured continuum as a triplet of Riemannianifolds: a material manifold,
the ambient space manifold of material particles and a direfield manifold. The Green—
Naghdi—Rivlin theorem and its extensions for structuredtioma are critically reviewed. We
show that when the ambient space is Euclidean and when thestriecture manifold is the
tangent space of the ambient space manifold, postulatinggéesbalance of energy law and its
invariance under time-dependent isometries of the amtipate, one obtains conservation of
mass, balances of linear and angular momentanbtia separate balance of linear momentum.

We develop a covariant elasticity theory for structuredticara by postulating that energy
balance is invariant under time-dependent spatial diffepimisms of the ambient space, which
in this case is the product of two Riemannian manifolds. Wentlintroduce two types of
constrained continua in which microstructure manifold irkéd to the reference and ambient
space manifolds. In the case when at every material poiet,nicrostructure manifold is the
tangent space of the ambient space manifold at the imageeofmtiterial point, we show that
the assumption of covariance leads to balances of lineaaagdlar momenta with contributions
from both forces and micro-forces along with two Doyle—Esien formulas. We show that
generalized covariance leads to two balances of linear mmeand a single coupled balance
of angular momentum.

Using this theory, we covariantly obtain the balance lawstfe specific examples, namely
elastic solids with distributed voids and mixtures. Finalhe Lagrangian field theory of structured
elasticity is revisited and a connection is made betweemréance and Noether's theorem.
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1. Introduction

The idea of generalized continua goes back to the work of €2assorothers
[8]. The main idea in generalized continua is to consideraextegrees of freedom
for material points in order to be able to better model materivith microstructure
in the framework of continuum mechanics. Many developmdrai¢ée been reported
since the seminal work of the Cosserat brothers. Dependmghe specific choice
of kinematics, generalized continua are called polar, opiclar, micromorphic,
Cosserat, multipolar, oriented, complex, etc. (see Gremmh Rivlin [17], Kafadar
and Eringen [22], Toupin [35, 36], Mindlin [29] and referesctherein). The more
recent developments can be seen in Capriz [6], Capriz andaNaf7], de Fabritiis
and Mariano [11], Epstein and de Leon [12], Muschik et al.][3Btawianowski
[34] and references therein. For a recent review see Mararb Stazi [25].

By choosing a specific form for the kinetic energy density méctors, Cowin [9]
obtained the balance laws of a Cosserat continuum with tiieetors by imposing
invariance of energy balance under rigid translations amations in the current con-
figuration. A similar work was done by Buggisch [4]. Caprizadt [5] obtained the
balance laws for a continuum with the so-called affine micumture by postulating
invariance of balance of energy under time-dependent tigidslations and rotations
of the deformed configuration. The main assumption thereh#& the orthogonal
second-order tensor representing the affine microdefasmatremains unchanged un-
der a rigid translation but is transformed like a two-poihgor under a rigid rotation
in the deformed configuration. Accepting this assumptiore obtains conservation of
mass, the standard balance of linear momentum and balanaagoflar momentum,
which in this case states that the sum of Cauchy stress an@é smw terms is
symmetric. Recently, de Fabritiis and Mariano [11] conddcan interesting study of
the geometric structure of complex continua and studieferdiit geometric aspects
of continua with microstructure. Capriz and Mariano [7]d&d the Lagrangian field
theory of Coserrat continua and obtained the Euler-Lagrasguations for standard
and microstructure deformation mappings. However, inrtheigrangian density they
did not consider an explicit dependence on the metric of ttiereparameter mani-
fold. In this paper, we will consider an explicit dependeiéghe Lagrangian density
on metrics of both standard and microstructure manifoldse Ghould remember that
the original developments in the theory of generalized iooat in the Sixties were
variational [35, 36]. However, revisiting the Lagrangiaeldi theory of structured
continua in the language of modern geometric mechanics neayvdrthwhile.

It is believed that kinematics of a structured continuum bandescribed by two
independent maps, one mapping material points to theirentrpositions and one
mapping the material points to their directors [27]. Loakiat the literature one can
see that for a Cosserat continuum (and even for multipolatimoa [16, 17]), the
only balance laws are the standard balances of linear andlaangnomenta; couple
stresses do not enter into balance of linear momentum butntkr into balance of
angular momentum and make the Cauchy stress unsymmetigisTimdeed different
from the situation in the so-called complex continua or oarg with microstructure
[6, 7, 11], where one sees separate balance laws for miesssis. Marsden and
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Hughes [27] postulated two balances of linear momenta. Mewyet is not clear

why, in general, one should see two balances of linear mamerdand only one

balance of angular momentum. In other words, why do standard microstructure
forces interact only in the balance of angular momentumhdukl be noted that in
all the existing generalizations of Green—Naghdi—RivkBNR) Theorem (see Green
and Rivlin [16]) to generalized continua the standard ®alijroup G is considered.

It is always assumed that rigid translations leave the mt@mematical variables
and their corresponding forces unchanged (with no rigofossfication) and these
guantities come into play only when rigid rotations are ddesed.

It is known that the traditional formulation of balance lave$§ continuum
mechanics are not intrinsically meaningful and heavilyatepon the linear structure
of Euclidean space. Marsden and Hughes [27] resolved thistcsiming of the
traditional formulation by postulating a balance of energghich is intrinsically
defined even on manifolds, and its invariance under spaliahges of frame. This
results in conservation of mass, balance of linear and angmlomenta and the
Doyle—Ericksen formula. Similar ideas had been propose@reen and Rivlin [16]
for deriving balance laws by postulating energy balanceariance under Galilean
transformations. For more details and discussions on rahtenanges of frame see
Yavari et al. [39]. See also Yavari [40], Yavari and Ozakirl]j[4and Yavari and
Marsden [42] for similar discussions. A natural questionask is whether it is
possible to develop covariant theories of elasticity fauaured continua. As we
will see shortly, the answer is affirmative.

Similar to Noether’s theorem that makes a connection betweaserved quantities
and symmetries of a Lagrangian density, GNR theorem makemaection between
balance laws and invariance properties of balance of en€gg major difference
between the two theorems is that in GNR theorem one looks lanta of energy
for a finite subbody, i.e., a global quantity, and its invade, while in Noether’s
theorem symmetries are local properties of the Lagrangiamsity.

In some applications, e.g., recent applications of comtimumechanics to biology,
one may need to enlarge the configuration manifold of theicoum to take into ac-
count the fact that changes in material points, e.g., regem@ents of microstructure,
etc., should somehow be considered in the continuum thedrigast in an average
sense. This was a motivation for various developments faregdized continuum
theories in the last few decades. In a structured continumragdition to the standard
deformation mapping, one introduces some extra fields #yatesent the underlying
microstructure. In the nondissipative case, assuming Rigtemce of a Lagrangian
density that depends on all the fields, using Hamilton'sqipile of least action one ob-
tains new Euler-Lagrange equations corresponding to sticrctural fields [35, 36, 7].
However, to our best knowledge, it is not clear in the literathow one can obtain
these extra balance laws by postulating a single energyn@aland its invariance un-
der some groups of transformations. This is the main madimadf the present work.

To summarize, looking at the literature of generalized icoat, one sees that the
structure of balance laws is not completely clear. It is oles@ that there is always
a standard balance of linear momentum with only macro-diestand a balance
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of angular momentum, which has contributions from both ma@nd micro-forces.
In some treatments there is no balance of micro-linear mamen(see Toupin
[35, 36], Capriz et al. [5], Ericksen [13]) while sometimdgete is one, as in Green
and Naghdi [19], Capriz [6]. In particular, we can mentiore tivork of Leslie [23]

on liquid crystals in which he starts by postulating a baéant energy and a linear
momentum balance for micro-forces. In his work, he realitest the balance of
micro-linear momentum cannot be obtained from invarianteerergy balance. To
date, there have been several works on relating balance daw$suctured continua
to invariance of energy balance under some group of tramsfbons. These efforts
will be reviewed in detail in the sequel.

This paper is organized as follows. In Section 2 geometry afitioua with
microstructure is discussed. Section 3 discusses the guewfforts in generalizing
Green—Naghdi—Rivlin Theorem for generalized continuasulsing that the ambient
space is Euclidean and assuming that the microstructurdfotthat every material
point is the tangent space d@&° at the spatial image of the material point, we
generalize GNR theorem. Section 4 develops a covariantyth@foelasticity for those
structured continua for which microstructure manifold mmpletely independent of
the ambient space manifold in the sense that ambient spademacrostructure
manifolds can have separate changes of frame. We then gewetmvariant theory
of elasticity for those structured continua in which midrasture manifold is
somewhat linked to the ambient space manifold. In particule study the case
where microstructure manifold is the tangent bundle of thwiant space manifold.
We also introduce a generalized notion of covariance in whine postulates energy
balance invariance under two diffeomorphisms that actrs¢gig on micro and macro
guantities simultaneously. We study consequences of thiemlized covariance. In
Section 5, we look at two concrete examples of structuredirmaom, namely elastic
solids with distributed voids and mixtures. In both cases, abtain the balance laws
covariantly. Section 6 presents a Lagrangian field theorynfitation of structured
continua. Noether's theorem and its connection with cewve® is also investigated.
Concluding remarks are given in Section 7.

2. Geometry of continua with microstructure

A structured continuum is a generalization of a standardicoam in which the
internal structure of the material points is taken into aedoby assigning to them
some independent internal variables or order parameterstbieé sake of simplicity,
let us assume that each material pothhas a corresponding microstructure (director)
field p, which lies in a Riemannian manifoldM, gr). Note thatp, in general,
could be a tensor field. In general, one may have a collectfodirector fields and
the microstructure manifold may not be Riemannian. Howetleese assumptions
are general enough to cover many problems of interest. B ¢hse our structured
continuum has a configuration manifold that consists of a phimappings(¢;, ¢;)
[27, 11], wherex = ¢,(X) represents the standard motion apd= ¢, (X) is the
motion of the microstructure. Botky, and ¢, are understood as fields. As in the
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Fig. 2.1. Deformation mappings of a continuum with microstuue.

geometric treatment of standard continua, the current gordtion lies in an embed-
ding spaceS, which is a Riemannian manifold with a metrigc Note that ambient
space for the structured continuum &= S x M and for everyX € B, ¢(X) lies
in a separate copy oM. Here, we have assumed that the structured continuum is
microstructurally homogeneous in the sense that direatbrisvo material pointsX;
and X, lie in two copies of the same microstructure manifold (see Fig. 2.1).
More precisely, kinematics of a structured continuum iscdbsd using fiber
bundles (see, for instance, Epstein and de Leon [12]). beftion of a structured
continuum is a bundle map from the zero section of the tribiahdle 5 x M, (for
some manifold Mg) to the trivial bundleS x M (see Fig. 2.2). Corresponding to
the two mapsy; and ¢;, there are two velocities, which have the following materia

forms, ~
¢, (X) 9@ (X)

V(X, 1) = e Ty S, VX, 1) =

€ TyM. (2.2)
Let us choose local coordinat¢x 4}, {x}, and {p®} on B, S and M, respectively.
In these coordinates
VX, 1) = Vi, VX, 1)=V"*%E, (2.2)
where {g,} and {&,} are bases folTyS and Ty M, respectively, and
g ~ LI

Ve , Ve = . 2.3
ot ot 23)
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Fig. 2.2. Deformation of a continuum with microstructure dam understood as a bundle map between two

trivial bundles. Here all is needed is the zero-section ef sference bundle, i.e. the material manifold.

In spatial coordinates

(2.4)
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V(X,t) =V oy

In a local coordinate chart

(2.5)

Here, for the sake of simplicity, we have assumed that owrctired continuum has
one director field, which is assumed to be a vector field. As mastioned earlier,

Vix,t) =" &,.
this is not the most general possibility and in general ong meed to work with

V(X, 1) = v%e,,

several director fields or even with a tensor-valued direfield. Generalization to

these cases is straightforward.

Marsden and Hughes [27] chose the classical viewpoint ingaR3 to be the
ambient space for material particles and postulated thegiat form of balances
of linear and angular momenta. The more natural approachldwbe to start

from balance of energy and look at consequences of its mwveei under some
transformations. This is the approach we choose in this rpdpete that the two

and ¢;, in general, are independent and interact only in the balaofc
, i.e. power has contributions from both deformatitaps. The other important

observation is that balance of energy is written on an atyitisubsety, /) C S.

maps ¢;
energy.

3. The Green—-Naghdi—Rivlin Theorem for a continuum with miaostructure

In most theories of generalized continua, macro and migroels enter the same
balance of angular momentum because the ambient spaceoidaaifd the manifold
of microstructure are somewhat related. Now the importargstgon is the following:
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how can one obtain two sets of balance of linear momentum,fonenicro-forces
and one for marco-forces in such cases starting from firsicjples? Of course,
one can always postulate as many balance laws as one needthéorg. However,
a fundamental understanding of balance laws is crucial i theory. Accepting a
Lagrangian viewpoint, one has two sets of Euler-Lagrangeatémns as there are two
independent macro and micro kinematic variables (see To[g§h, 36], de Fabritiis
and Mariano [11]). Then, assuming that these equations atisfied, Noether's
theorem leads us to expect that any conserved quantity ofytbm corresponds to
some symmetry of the Lagrangian density. The Lagrangiarsiesan be invariant
under groups of transformations that act on the ambient aiotbstructure manifolds
simultaneously. For example, if one assumes that an ampiwéement of SO(3)
acts simultaneously o and M and Lagrangian density remains invariant, then
the conserved quantity is nothing but angular momentum witme extra terms
representing the effect of microstructure. However, agothossibility would be a
symmetry in which an arbitrary element 6fO(3) acts only onM. Now one may
ask why the Lagrangian density should be invariant undemuléameous actions of
SO@3) on S and M.

A way out of this difficulty may be to look for a generalizati@i the Green—
Naghdi—Rivlin theorem for continua with microstructureheéfe have been several
attempts in the literature to generalize this theorem. Iih&l existing generalizations,
it is assumed that in a Galilean transformation, micro€dsrand micro-displacements
remain unchanged under a rigid translation while under @ nigtation both micro
and macro quantities transform. Postulating invariancéalance of energy under an
arbitrary element of the Galilean group and accepting tlsisumption, one obtains
conservation of mass, the standard balance of linear mamergnd balance of
angular momentum with some extra terms that represent fleet edf microstruture.
However, this does not give a micro-linear momentum balai@® it is seen that
the link between energy balance invariance and balance oforfinear momentum
iS missing.

It should be noted that in most of the treatments of continith wicrostructure,
the microstructure manifold{ may not be completely independent of the ambient
space manifoldS and this may be a key point in understanding the structure
of balance laws. From a geometric point of view this meandg thaatial and
microstructure changes of frame may not be independenteirergl.

There have been several attempts in the literature to oldtalance laws of
generalized continua by energy invariance arguments. iCatral. [5] start from
balance of energy and postulate its invariance under rigidstations and rotations
of the current configuration. They assume that microstrectyuantities (kinematic
and kinetic) remain unchanged under rigid translationslevhinder rigid rotations
micro-forces transform exactly like their macro counterpaThis somehow implies
that the microstructure manifold is not independent of thkendard ambient space.
Under a rigid translation, each microstructure manifolthgff) translates rigidly and
hence micro-forces and directors remain unchanged. Undeégidch rotation directors
and their corresponding micro-forces transform exact liheir macro counterparts
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because rotating a representative volume element itstdirgoes through the same
rotation. This invariance postulate results in the stashdaynservation of mass and
balance of linear and angular momenta. Balance of linear embum has its standard
form while balance of angular momentum has contributiorsnfrboth forces and

micro-forces. However, this invariance argument does matlIto a separate balance
of micro-linear momentum.

Gurtin and Podio-Guidugli [21] introduce a fine structure é&ach material point.
They then postulate two balances of energy, one in the mamle @nd one in the
fine scale. The fine structure is characterized by the liit> 0 of some scale
parametek. Postulating invariance of these two balance laws undéd tignslations
and rotations they obtain two sets of balance of linear argllan momenta. They
emphasize that balance of micro-angular momentum onlypdoites a micro-couple
and offers nothing essential.

Green and Naghdi [19] and Green and Naghdi [20] start fronartwa of energy
and assume that it is invariant under the transformation> v 4 ¢, where v is
the spatial velocity field and is an arbitrary constant vector field. This gives the
conservation of mass and balance of linear momentum. Then ¢itain a local
form for balance of energy and assume it remains invariaxeumgid translations
and rotations. In the case of a Cosserat continuum they a&sswariance of energy
balance undev — v+ c¢; andw — w + C;, wherew is the spatial microstructure
velocity field andc; and ¢, are arbitrary constant vectors. However, it is not clear
what it means to replacev by w+ ¢, in terms of transformations of the ambient
space and microstructure manifolds. In other words, whaugrof transformations
lead to this replacement and why they should not affect theroreelocity field.
This seems to be more or less an assumption convenient fainolg the desired
balance laws. This assumption leads to conservation of raadsbalance of macro
and micro-linear momenta. Then, again they postulate i@wee of local balance of
energy under rigid translations and rotations that transfanicro and macro forces
simultaneously. This gives a local form for balance of aaguhomentum.

The Green—Naghdi—-Rivlin Theorem for structured continua in Euclidean space.
Let us now study the consequences of postulating invariasfcenergy balance
under time-dependent isomorphisms of the ambient Euclidgzace with constant
velocity for a structured continuum. Consider balance oérgy for ¢, (U) C ¢, (B)
that reads

d 1 ~
— p<e+—v-v>dv=/ p(b~v+b-v+r)dv
dt Jowy 2 o @)
+/ (t-v+1-V+h)da, (3.1)
g U)

where for the sake of simplicity, we have ignored the mictagtire inertia. Here
e is the internal energy densityy is the body force per unit of mass in the
deformed configurationh is the micro-body force per unit of mass in the deformed
configuration,r is heat supply per unit mass of the deformed configuratiois
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traction, t is micro-traction, andh is the heat flux. Let us assume that the ambient
space is Euclidean, i.e§ = R3. Consider a rigid translation of the ambient space
of the form

X' =&(X) =X+ (t — ro)C, (3.2)

where ¢ is a constant vector field o8 = R3. Let us also assume that the director
field is a vector field onR3. We know that for anyx € R3, T,R® can be identified
with R? itself. So, we assume that for= ¢,(X) € R3, M,,x = TxR® ~R>. Note
that for a rigid translation of the ambient space

T = id, (3.3)

where id is the identity map. Therefore, a rigid translation does naffect the
microstructure quantities. Assuming invariance of batané¢ energy under arbitrary
rigid translations implies the existence of Cauchy stresd #he usual conservation
of mass and balance of energy, i.e.

o+ pdivv=0, (3.4)
dive + pb = pa. (3.5)
Next, let us consider a rigid rotation & = R3 of the form
X' =&(x) = 2070, (3.6)
where Q is a skew-symmetric matrix. Note that
TE = P00, TTE =0. (3.7)
We know that
p'=&.p=TE&p. (3.8)
Thus 5 5
vV — = " Q(r—tg) Q(—1g) 7
V== ‘Xp Qe 4 20710 )Xp. (3.9)
This means that at = g o
V' =V + Qp. (3.10)

Subtracting balance of energy far (U/) from that of ¢; () at t = 15, we obtain

/ pa-Qxdv=/ pb-Qxdv+/ t-Qxda+/ pb - Qpdv
orU) o U) gy (U) or U)

+f T Qpda. (3.11)
dpr (U)
We know that

/ t-Qxda = / (dive - Qx40 : Q)dv, (3.12)
Aot U) o (U)

/ t-Qpda :/ [dive ®p+3 - Vp]:Qdv. (3.13)
e U) ot U)
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Substituting (3.12) and (3.13) into (3.11) and using thealomrm of balance of
linear momentum, we obtain

/(u) [0 +dive ®@p+5-Vp]: Qdv=0. (3.14)
(23

Becausel{ is arbitrary, we conclude that

[0 +divE @ p)]" = o + divE @ p). (3.15)
In components this reads as follows:
O_ah + S:ar:’c pb + gacpb’c. — Kah — Kha. (316)

It is seen that the rigid structure & and its isometries does not allow one to obtain
a separate balance of microstructure linear momentum. Wleshbw in the sequel
that when the ambient space R® or, more generally a Riemannian manifold,
a generalized covariance can give us such a separate batdno@crostructure
linear momentum. We will also see that for a structured comim with a scalar
microstructure field, e.g., an elastic solid with distrimitvoids, one can covariantly
obtain a separate scalar balance of micro-linear momentum.

4. A covariant theory of elasticity for structured continua with free microstruc-
ture manifold

In this section we develop a covariant theory of elasticity those structured
continua for which one can change the spatial and micrdstreicframes indepen-
dently. An example of such continua is a continuum with vo@sa continuum
with distributed “damage”, which will be studied in detail Section 5. Let us first
review some important concepts from geometric continuuncthaeics.

The reference configuratiofs is a submanifold of the reference configuration
manifold (8, G), which is a Riemannian manifold. Motion is thought of as an
embeddingy; : B — S, where (S, g) is the ambient space manifold. An element
dX € TxB is mapped todx € TyS by the deformation gradient

dx = F - dX. 4.1)

The length ofdx is geometrically important as it represents the effect dbiheation.
Note that
{(dx, dX))g = (dX, dX))yrg - (4.2)

In this sense the pulled-back metric = ¢ g is a measure of deformation. The
material free energy density has the following form,

V=V XFG,gog). (4.3)
Let us define the spatial free energy density as
Y, X, 9 =V (g LFog ,Gogp 1, 0). (4.4)
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Similarly, internal energy density has the following form
e=c¢e(t,X Q). (4.5)

This means that fixing a deformation mappipg internal energy density explicitly
depends on time, current position of the material point dre rhetric tensor at the
current position of the material point. Note also tlkais supported ony,(B), i.e.
e=0in S\ ¢(B).

Now let us look at internal energy density for an elastic bedth substructure
in which free energy density has the following form

W= (X,F,,F.G gow,gmod). (4.6)
For a given deformation mappingp;, ¢;) define

¥ (t,X, 9, P, Gr)
=V (g Fog L Giog Fog Gog g pog guodiog ), (4.7)
where G = g0 @ o L. Similarly, internal energy density has the following form
e=e(t, X g,p, Gm). (4.8)
Balance of energy fok, (/) C S is written as

~ 1 -~
7 p (X, 1) |:€(f,X, g, p, 9M)+§<<V, V))g+x(p, V)]
ot (U)

= p%, 1) (((b,v)g+ (0, V). +r +/ ((t,V)g+ (V) +h)da,
[ pt0 (g + (BT, +r)+ [ (1t g+ (T, 1)

(4.9)
where we think ofp(x,t) as a 3-form ancb andt are microstructure body force

and traction vector fields, respectively. For the sake ofpfiity, let us assume that
the microstructure kinetic energy has the following form

~ 1. -

where we assume the microstructure inerfids a scalar.

All the physical processes happen $hand thus balance of energy is written on
subsets ofy,(B) C S. Standard traction is a vector field ¢hand the microstructure
traction is a vector field onM. The standard and microstructure tractions have the
following coordinate representations

t(x, 1) = t%,, t(x, 1) =18, (4.11)

where {eg,} and {€,} are bases foflyS and T, M, respectively. Similarly, the stress
tensors have the following local representations

o(x,t) =0 e,®e, o(x,1) =08 ®e,. (4.12)
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The first Piola Kirchhoff stresses for the standard defoilmnaand the microstructure
deformation are obtained by the following Piola transfatinres

PaA — J(Ffl)Ab O,ab’ FD(A — J(Ffl)Ab 8,"0(1)’ (413)

detg

e detF. These transformations ensure that

where J =

tda=TdA and Tda=TdA. (4.14)

Now this means that in terms of contributions of tractionsbance of energy we
have
((t, V))gda = ((T,V))gdA  and  (ft, Vg, da=(T.V)),, da. (415

For U C B, material energy balance can be written as

d 1 1 .~ =
E/L/’"(X’” [E(r,x,g, gM>+§<<V,V>>g+51<<VaV>>gM]

_ /upo(x, ) (((B,v>>g +((B. V), + R) n /Bu (((T,V))g +((T. V), + H) dA,
(4.16)
where againpg is a 3-form.

4.1. Covariance of energy balance

Let us assume that for eache S, the microstructure manifold is completely
independent ofS. In other words, a change of frame &i(or M) does not affect
M(or §) and quantities defined on it. An example of a structured oontin
with this type of microstructure manifold is a structurednttouum with a scalar
director field, although there are other possibilities. Veve in this subsection that
postulating energy balance and its invariance under tiepeddent changes of frame
in § and M results in conservation of mass and micro-inertia, two fizda of
linear and angular momenta, and two Doyle—Ericksen formutene for the Cauchy
stress and one for the micro-Cauchy stress.

THEOREM 4.1. If balance of energy holds and if it is invariant under arlity
spatial and microstructure diffeomorhisngs: S — S and , : M — M, then there
exist second-order tensoks and o such that

t={o,n), and T= (@, n)g, (4.17)
and
Lyo =0, (4.18)
Lvj =0, (4.19)
dive + pb = pa, (4.20)
diva + pb = pj3, (4.21)

o = ()'T’ (422)
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(Fo0)" = Foo, (4.23)
de
20 — g, 4.24
Pag=° (4.24)
Fo# = 20—2¢ (4.25)
0 = ~ 9 .
Igm

where div is divergence with respect to the metng Fg = FF-1 and n; acts on
all the microstructure fibers simultaneously.

Proof: Let us consider spatial and microstructure diffeomonpisisseparately.

Microstructure covariance of energy balance. Consider a microstructure diffeo-
morphismn, : M — M (see Fig. 4.1) and assume that

ml,_, =id (4.26)

:

w‘o Pt o go;l
(S,8)

- 1
Pt O Py B

(B,G)

e P /
Ur

M, gnm)

(M, nx(8r0))

Fig. 4.1. A microstructure change of frame.

Invariance of energy balance undgr: M — M means that balance of energy in
the new frame has the following form

! 1 1 1 VN A
p(x’t) [e (t’X’gvp7gM)+§<(va>>g+E] <(V7V>>

Im

- /wt(u) PO <<<b’ Vg + {0 V)lg, + r> * /aw(w <<<t’ g+ ([T V), + }Z) d“')
4.27

dt Jy, )
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Note that , L~ o~
e'(t, %, 9,p, gm) = e(t, X, 9, P, n;Am)- (4.28)
Thus
d de ~
—_— = ¢ —_ . ,S . 429
dt lt=tg et ogMm M ( )
where 3
= — ) 4.
z 3 I:[Oﬂt (4.30)
Note also that - N
v |t:t0 =V+z (4.31)

Assuming thatb’ — j'& = n,.(b — j3), at r = 1, we obtain
1. o ~
Lvo e+ ((v,V))g+ >/ (V+2z,V+2)3,,
o (U)
+/ ('+ 0 S+ ] (B Dy, + L) (42,7 +2)) )
’0 e = - M .] ] a _ _] 9 a
o W) agM z IM 2 v IM

- /soz(w P <<<b’ g +((b.V + 25, + r) +/a<p,<u) <<<t’ V)g + ({t. ¥+ 2, + h(zlf;)

Replacingp by pdv and subtracting balance of energy (4.9) from the above itgent
and considering the fact that and ¢/ are arbitrary, one obtains

Lv(pj) =0, (433)

de ~
— : £, d:/ b, z))- d—l—/ t,z). da. (4.34
[ o ismuiv= [ plBidly, dvs [ [l de @30

Applying Cauchy’s theorem (see Marsden and Hughes [27]4184(, one concludes
that there exists a second-order tensoisuch that

T=((@,n))g. (4.35)
Now let us simplify the surface integral.
LEMMA 4.2. The contribution of microstructure traction has the foliog sim-
plified form
1
t,z). da =/ |:((div5, )., +Foo : =£,00m + Foo - wMi| dv.
/&pz(u) ft Mo ) M 2™
(4.36)

Proof:

/ (€2, = / o n°gpez’ (gM)ap da = / [0°"2 (¢r)ap] , dv- (4.37)
dpr (U) A (U) o (U)
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But because(gM)aﬂ‘b = (g/\/l)otmy(FO)yh =0, we have

[0z (grndap], = [0°°2 ], (€atdap = 012" (gA)ap + 2 0™ (8A)ap.  (4.38)

Note that .
P 1(gM)ap = Zaly (F0)* b (4.3%)

Now, becausez and U/ are arbitrary from (4.34) one obtains
de

Foo = 2p——, (4.40)
° ogMm

(Foo)" = Foo, (4.41)

dive + pb = pja. (4.42)

Spatial covariance of energy balance. Invariance of energy balance under an
arbitrary diffeomorphismé; : S — S means that (see Fig. 4.2)

d

. /(X/ [) /(t X/ )+ }<<V/ V/)> + } ./ <(’\7/ ’\7/>)
dt (pt’(Z,{)p ’ e, ’gv gM 2 ’ g 2] ) g’M

= g ? X0 (1 + (670, +)

+ t', V) +({t', V). +h')da, (4.43
Lo (1 4 . T 4 0) e (203
where ¢, = & o ¢,. We also assume that

s,|t:to = id. (4.44)

The relation between primed and unprimed quantities ardatdid by Cartan's
spacetime theory, i.e.,

p'(X, 1) =EpX, 1), t =&t V=6t r,0n=rxt, KX, 1) =hXr1.

(4.45)
The internal energy density has the following transfororati
e(t, X, 9, 0m) = e(t, X, 79, P, Gr)- (4.46)
Thus
L W (4.47)
dt t=toe ¢ 0g = '
where 5
w = 5 tzrog,. (4.48)

Spatial velocity has the following transformation
V = EV4W,. (4.49)
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&t

T~ N

(S,2)

|
(8,G) /o v
ét / (S,St*g)
- P Frowy Lot

(M, gam)

Fig. 4.2. A spatial change of frame in a continuum with mianasture.

Thus, atr =19, V =v+w. Also
V=Vo o togt=Vog (4.50)
Therefore, atr = 1

~/

V= (4.51)

Assuming thatb’ — & = &.(b —a) [27] and noting thato’ — & = b — &, balance of
energy in the new frame at= 7, reads

1 1. -
/mu) Lveo (e+§<<V+W,V+W))g+§J {(v, V))aM)

.9 - -
! fmu) g (e M a_; LG+ (VW a)g + j (V. )g,, + SLvi (Y, v)>§M>

= [ 7 (1ovrwng+ (B3, +7)

" /awt(w (((t, v wg+ ([t Vg, + h) da. (4.52)

Subtracting (4.9) from (4.52) and considering the fact thvabind I/ are arbitrary,
we obtain conservation of mads,p = 0 and using it in (4.33) we obtain balance

of microstructure inertia,
Lyj=0. (4.53)
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Now using conservation of mass and microstructure inedate replacinge by pdv
in (4.52), one obtains

B
/ p<—e:£Wg+((W, a>>g) dv:/ p(((b,w>>g)dv+/ (((t, W))g) da.
gty \99 o ) dor U)
(4.54)

Applying Cauchy’s theorem to the above identity and con#ge(4.35) shows that
there exists a second-order tensorsuch that

t=((o,N))g. (4.55)

Now let us look at the surface integral in (4.54). This susfaategral is simplified
to read

. 1
/ ((t,w))gda = / ((dive,w))gdv +/ (a =Lwg+o w) dv, (4.56)
dgr U) o U) ot U) 2

where w has the coordinate representatiop, = %(wav, — wpe). Substituting (4.56)
into (4.54) yields

de 1
/ 20— —0 :—Swgdv+/ o :wdv
g \ 09 2 o)

—f ((dive +p (b —a),w))gdv=0. (4.57)
orU)

Becausel/ and w are arbitrary we conclude that
de

2'08_9 =o0, (4.58)
oc=o0', (4.59)
dive 4+ pb = pa. (4.60)

O

Next, we study the effect of material diffeomorphisms onabak of energy.

4.2. Transformation of energy balance under material diffeomorphisms

It was shown in Yavari et al. [39] that, in general, energyabak cannot be
invariant under diffeomorphisms of the reference configoraand what one should
be looking for instead is the way in which energy balancediemms under material
diffeomorphisms. In this subsection we first obtain such andformation formula
for a continuum with microstructure under an arbitrary tidependent material
diffeomorphism (see Eq. (4.99)) and then obtain the comuitiunder which balance
of energy can be materially covariant.
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The material energy balance transformation formula. Let us begin with
a discussion of how energy balance transforms under mhatdiffzomorphisms.
Let us define

where E is the material internal energy density per unit of undefdmmass.
Material (Lagrangian) energy balance (4.16) can be siredlifio read

/M%[,OO<E(LX,G)+:—2L((V Vot 5 (7.9, )]
=/upo(<<B,V>> +(B. V), + R) / o+ (T, V))y,, + H)da,

(4.62)

wherel/ is an arbitrary nice subset of the reference configuratforB and B are

body force and microstructure body force, respectively, peit undeformed mass,
V(X,t) and V(X t) are the material velocity and microstructure material eyo

respectively, po(X, t) is the material densityR(X,t) is the heat supply per unit
undeformed mass, an#l (X, ¢, N) is the heat flux across a surface with nornhal

in the undeformed configuration (normal 8/ at X € alf).

Change of reference frame. A material change of frame is a diffeomorphism
g :08,G) — (8B,G). (4.63)

A change of frame can be thought of as a change of coordinatekei reference
configuration (passive definition) or a rearrangement ofrosicucture (active defi-
nition). Under such a framing, a nice subgétis mapped to another nice subset
U = E,Ud) and a material poinX is mapped toX' = E,;(X) (see Fig. 4.3). The
deformation mappings for the new reference configuratiom ¢r= ¢; o g1 and
@, =@ o 2,1, This can be clearly seen in Fig. 4.3. The material veloaity/i is

0
V(X' t)—— 0/(X) = ‘0’ 0 E7YX) + Tr o (4.64)
where partial derivatives are calculated for fix¥d We assume that
g|,_, =id, =W(X, 1). (4.65)

t=tg

Note thatW is the infinitesimal generator of the rearrangemé&nht It is an easy
exercise to show that

V' =VoE1-FF;' Wo g™ (4.66)

Thus, atr = 1
V' =V — FW. (4.67)
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(S,2)

Groppt
(B,G) -
Pt

~/
Pt

/ M, gm)

U
Pt o =

Fig. 4.3. Referential change of frame in a continuum with wstructure.

Similarly o
V' =V —FW. (4.68)
Note that
G = (¢ 08 H* 00uG=(E N 0¢’0p.G=(EHGC=Eg.G
= (TE,) *G(TE)?, (4.69)
and
F=g8.,F=Fo(TE) ™~ (4.70)
The material internal energy density is assumed to tramsf@msorially, i.e.
E'(t,X',G) = E( X, G). (4.71)

This means that internal energy density Xt evaluated by the transformed metric
G’ is equal to the internal energy density At evaluated by the metricG. We
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know thatG’ = &,,G, and thus

E'(t,X,G) = E(t, X, B*G). (4.72)

Therefore 4 5E  9E
— E'(t, X, G) = — 4+ —: &wG. 4.73
dr li= ( ) =% Tag W (4.73)

Balance of energy for reframings of the reference configurabn. Consider a
deformation mapping;, : B — S and a referential diffeomorphisig, : 8 — 8. The
mappingsy, = ¢, 0 ;1 : B — S and @, = @ 0 E; 1 : B’ — M, where B' = E,(B),
represent the deformation of the new (evolved) referenadiguration. Balance of
energy for E,({/) should include the following two groups of terms:
i) Looking at (¢/, @) as the deformation o3’ in S x M, one has the usual
material energy balance foE,; (). Transformation of fields from*8, G) to
(B, G’) follows Cartan’s space-time theory.
i) Nonstandard terms may appear to represent the energyciassd with the
material evolution.
We expect to see some new terms that are work-conjugaté/ te- %E,. Let us
denote the volume and surface forces conjugaté\tdoy By and To, respectively.
Instead of looking at spatial framings, let us fix the defadme®nfiguration and
look at framings of the reference configuration. We postuldtat energy balance
for each nice subsdl{’ has the following form,

d / / 1 /Ny 1 VIR YZ /
g u/,oo(E A <(v,v>))dv

= [ (B V) + B T)+ R) v+ [ (T (F T+ ) ax

9 4

+ / ((Bp, W) dV' + / (To. Wy))dA’, (4.74)
!’ () !’

where Y’ = E,(U4) and By and T are unknown vector fields at this point. Using

Cartan’s spacetime theory, it is assumed that the primedtijies have the following

relation with the unprimed quantities,

dV' = EpdV, R'(X', 1) = R(X, 1), 06X’ 1) = po(X),
HX N, =HX,N,1), J =1, (4.75)
TX, N, =TX,N,1), TX,N,0)=TX,N,0).
We assume that body force is transformed in such a way that
B—-A=E+«B-A), B -A=g:B-A). (4.76)

Thus

(B'—A)_ =B—-A, (B -A) B-A. (4.77)

1=tq 1=l
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Note that if « is a 3-form oni/{, then

d d
— = — Efa'), 4.78
dt t:to//a /Mdt t=rg * ' ( )
where !’ = B,(U). Thus
d d oE OFE
— EdV = | — EXE')dV = — 4+ —: £wG . 4.79
dt t:to// /udt t:to( ! ) /1:{(8 +8G W ) ( )

Material energy balance fa’ c B’ at r = 1y reads

/@<E+}(<V—FW,V—FW)>+}1<(\7_EW’\7_EW>))CN
u ot 2 2

+fp0<8_E+_ 2wG +([V - Fw, A, >>+J<<V Fw. A )

loJ

+§at((v FW,V — FW)

V- FW>> R)dv

|t =tg’

+/,00<(§'|t o V- Ew dV+/ (((T,V—FW)) + H)dA
u

+/ ((T,V—EW))dA+/ <<Bo,w>>dv+/ ((To, W))dA. (4.80)
ou u ou

We know thatTo and By are defined on3 and T; and B;, are the corresponding
quantities defined org;(B). Here we assume that

To=EunTo and By = E.Bo. (4.81)
Subtracting balance of energy fof from this and noting tha(A/ — B’)t:t0 =A-B
and (5\/ — ﬁ’) = A — B one obtains

t=1g

/ 3o (— (VL FW)) + = (FW, FW)) — J{(V, Fw)) + }J(<IEW, Fw))
ot 2 2

N—
&
<

2

IE N
+/ ,00|:£ SwG—((FW, A))—((FW, JAJ}+— (—((

Fw)+ 2 (Fw, ﬁw)))]dv
= —/ {(poB, FW))dV—/ ((T,FW))dA—f ({0oB, FW))aV
u ou u

—/ ((T,Ew)>dA+f ((Bo,W))dV-l—/ ((To, W))dA.  (4.82)
ou u ou

We know that
(W) = ((Fw, (P RO, (T Fw)) = ((Fw. ((B.1)))), (4.83)
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where P is the first Piola—Kirchhoff stress tensor. Thus, substiut(4.83) into
(4.82), Cauchy's theorem implies that

To= <<P0, N» (4.84)

for some second-order tens®. The surface integrals in material energy balance
have the following transformations (see Yavari et al. [38f & proof)

[ {(Frrwljaa [ ow{fere. wjav
= [ [y w)) +ee: 0 Fekav. e

/au <<ET-er>>dA =/MDiv (<'I5T§, W>>dv

=/ [(pvE Py, W)+ FTB: @+ FTP:K]av,  (486)
u

where
1 . o1
QIJ:E(GIKW |J—G1KW |[)=§(W[|J_WJ|[)’ (487)
1 . c . 1 1
Kiy= > (GixkWX |+ Gk Wh)) = > (Wns + W), K= EQWG- (4.88)
Similarly

/ ((TO,W))dA:/Div((Po,W>)dV
ou u

= / [((Div Pg, W)) +Po : 2+ Pg : K]dV. (4.89)
u

At time ¢ = 1y the transformed balance of energy should be the same as lgnecba
of energy for /. Thus, subtracting the material balance of energy &brfrom
the above balance law and considering conservation of nadsracro-inertia, one
obtains

fupog—é :gwedv+[u<<poFT(B—A),W>>dv+/u<<poET (§—K),W>>dv

- / ((0oBo, W)) dV +/ <<FTT FETT - To, W>>dA —0. (4.90)
u ou
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Therefore
IE e 1 -
/ 200— +F P+F'P—Py): Z-0wGadV +/ (FTP+ FTP— P0> 1 QdV
u G 2 U

+/ <<,00FT (B —A)+poF" (B — A) —Bo+Div (FTP + ETﬁ) —Div Py, W>>dV —0.
u
(4.91)

Using balance of linear and micro-linear momenta, (4.91}implified to read
oE ~r 1 ~r
/ 20 +FTP+EP—Py): Z8wGdV + f (FTP +FP- P0> L QdV
u G 2 y
+ / <<Div (FTP +EP- Po) —FTDivP — FTDivP — B, W>>dV —0. (4.92)
u

Becausel/ and W are arbitrary, one obtains

OE e

PO = 2p08—G + FTP + FTP, (493)
~r~ T ~r~

(FTP +FP-Ry) =FP+FP-Pp, (4.94)

Bo = Div (FTP +EP- P0> — FTDivP — FTDivP. (4.95)

Note that (4.94) is trivially satisfied after having (4.93)hus, we have
dE -
Po = 2005~ + FTP+FTP, (4.96)
By = Div (FTP +ETP- P0> _F'DivP - FTDivP. (4.97)

REMARK. Note thatBy and Py are material tensors and hence the transformation
(4.81) makes sense.

In summary, we have proven the following theorem.

THEOREM 4.3. Under a referential diffeomorphisng; : %6 — 9, and assuming
that material energy density transforms tensorially, i.e.

E'(t,X',G) = E(t, X, EfG), (4.98)

material energy balance has the following transformation
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i ’ ’ 1‘ ’ ’ 1‘ T YIERV! ’
a /Et(u)po(E A Y <(v,v>>)dv

= [, mllE V) + )+ R)av

+ / (V) (FLT) + Y an
08 (U)

+ f ((Bo, W, ))dV' + / (T W,))dA", (4.99)
Eh) A8 (U)

=

where
’ — OE T ETh K
To=Eu | ({20055 +FP+FP.N)) |, (4.100)
B, = E,. [Div (FTP TEP- PO> — FTDivP — FTDiv 5] : (4.101)

and the other quantities are already defined.

Consequences of assuming invariance of energy balancelet us now study the
consequences of assuming material covariance of energ@ndsal Material energy
balance is invariant under material diffeomorphisms if amy if the following
relations hold between the nonstandard terms

dE o
Pob=0 or 2,00£ =—-FP-F'P, (4.102)

Bo=0 or Div (FTP + ET’|5) —F DivP+FTDVP.  (4.103)

4.3. Covariant elasticity for a special class of structured continua

In this subsection, we consider two special types of strecticontinua in which
microstructure manifold is linked to reference and ambigpdce manifolds. In the
first example, we assume that for adye BB, microstructure manifold iS7x B, G).
For such a continuum, directors are “attached” to materigints. We call this
continuum areferentially constrained structuredRCS) continuum. In the second
example, we assume that in the deformed configuration, sticrcture manifold for
X = ¢, (X) is (IxS, g). We call such a continuum apatially constrained structured
(SCS) continuum. For RCS continua we look at both referkatid spatial covariance
of energy balance. This is a concrete example of what weeearélled a structured
continuum with free microstructue. For SCS continua we labkspatial covariance
of energy balance.

As was mentioned earlier, in most treatments of continu witcrostructure, one
has two balances of linear momenta; one for standard forueg®@ae for microstructure
forces, and one balance of angular momentum, which hasilsotidns from both
standard and micro-forces. In this subsection, we show ithat special case when
microstructure manifold is the tangent space of the amtspate manifold, one can
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obtain all the balance laws covariantly using a single bzdanf energy. Interestingly,
there will be two balances of linear momenta and one balafi@agular momentum.
We will also see that there are different possibilities fafining “covariance” and
depending on what one calls “covariance”, balance laws tthiferent forms.

Materially constrained structured continua. Given X € B, and M = Tx 3, director
velocity is defined as ~
\7 _ 09 (X)
ot

For writing energy balance i we need to push-forward the director velocity. The
spatial director velocity is defined as

. (4.104)

V=09,V =FV. (4.105)
Micro-traction T has the coordinate representation
T = TE,. (4.106)

Internal energy density has the form= e(r,x,po ¢, 1,9, Go ¢ 1). Spatial and

microstructure diffeomorphisms act on macro and micraderindependently as was
explained in Section 4.1. The resulting governing equatiane exactly similar to

those obtained previously and thus we leave the details.

Spatially constrained structured continua. In the previous section we assumed
that the standard ambient space and the microstructurefaftniare independent in
the sense that they can have independent changes of frameertts that this is not
the case for most materials with microstructure and this éshaps why one sees
only one balance of angular momentum, e.g. in liquid crgsfa3, 23]. Here, we
present an example of a structured continuum in which theasicicture manifold
is linked to the standard ambient space manifold. We asstnae for eachx € S,
the director atx, i.e. p(x) is an element of7yS. In other words

My =TS Y x e ¢, (B), (4.107)

i.e. for eachx microstructure manifold isTyS and ¢ is a time-dependent vector
in TxS. In the fiber bundle representation schematically shown i B.2, this
means that microstructure bundle &S, i.e. the tangent bundle of the ambient
space manifold.

Here we assume that the director field is a single vector fi@keheralization of
the results to cases where the director is a tensor field wbeldstraightforward.
The microstructure deformation gradient has the follownegresentation

F=T@oF, F:TS— ThnTxS. (4.108)

In components ~ ~
F=F% e ®¢€. (4.109)

Microstructure velocity is defined as

~ 0] ~
V(X, 1) = o xgo,(x). (4.110)
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In components

~ Op®  Op° b
@ — @b pe 4.111
T or T axt v (4.111)
Or op

Now let us consider a spatial change of frame, Eg.. S — S. Note that
¢, =& o ¢, and becaus& € TS we have

(X)) =TE& - g (x). (4.113)
Microstructure velocity in the new frame is defined as
V= Z—Ft) +Vup'. (4.114)
Noting thatp’ = &.p and Vv = &,V + w,, we obtain
o 0
= a1 Iy (&rxP) + &1 (VyP) + Vi (51:P) - (4.115)
Note that 5 5
=| P = =] P - Vup). (4.117)
Thus 5
V= | P +Ee (V). (4.118)
tix
Note also that o
‘ (§r4P) = &1 ( ) + Ve, pW. (4.119)
Therefore
V =&+ Vg oW (4.120)

This means that at time = ¢
V =V+Vpw. (4.121)
We assume that microstructure body forces transform suahath- b= &.(@—

For this structured continuum we assume that, in additionmgstric, internal
energy density explicity depends on a connection too? i.e.

e=ce(,Xp,0, V). (4.122)

IThis can be proved as follows,

o

)
o'+ | [P E e o] =< &

2P +yip” ) whe, = Vyp'. (4.116)

‘p_az

X

2Note that this is similar to Palatini’'s formulation of geakrelativity [37], where both metric and connection
are assumed to be fields.
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The connectiorV is assumed to be metric compatible, Vgg = 0 but not necessarily
torsion-free, i.e.V is not necessarily the Levi-Civita connection. Therefoneder
a change of frame we have the following transformation oérimél energy density

€, X,p,g, V) =e(t X p, Q9 EV). (4.123)
Thus, atr = 1
- 0 0
o= a; Lug+ —e L LV (4.124)

We know that for a given connectioN [27]
LoV =VVW+ R w. (4.125)

Or in coordinates
(EwV) be = Wi + R apew?, (4.126)

where R is the curvature tensor ofS, Q).

Balance of energy fok, (/) C S is written as

d 1 1.
dt ol o (X, 1) |:e(t, X,p,0,.V)+ > ((v,V)) + > (v, v))]

=/ p(X, 1) (<<b,v>>+(<B,V))+r)+/ () + (. V) + k) da.  (4.127)
oo dpr U)

Let us postulate that energy balance is invariant undertrarpi spatial changes of
frameé&, : S — S, ie.

d
dt Jy )

= SO W BT [ A+ T ) de

1 1, <
p/(X/, l‘) |:€/(l‘, X/, p/’ g’ V) + é <<V/, V/>> + E]/ <(V/, V/>>j|

(4.128)

We know that
e, X,p,g9,V)=e(t,xp,&EQEV), r'=r, W=h, (4.129)
p'(X, 1) =Enp(X, 1), V=6.v+wW, b —a =&, (b—a), (4.130)

U =&, T =610 b -3 =¢g.(b-3. (4.131)
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Subtracting balance of energy for (i) from that of ;) at t = 15, we obtain

1 1 ~
/ |:|—v:0 (— ((w, w)) + ({v, W))) + Lv(pj) (— ((Vw-p, Vw . p)) + ({v, Vw - p)))
o U) 2 2

de de L~
—i—p(a—g.L‘Wg—i-ﬁ.(VVW—i—'R'W)-i-((a,W))-I-]((a,VW-p)))i|

= / P ((b,w))+/ ((t, w)) da+/ ({ob, Vw - p>)+/ ({t, vw - p))da.
o U) der U) o U) der (U)
(4.132)

Assuming thatt, is such that\7’|t:to—V= 0, i.e. Vw = 0, Cauchy’s theorem applied
to (4.132) implies that there is a second-order tensmuch thatt = ({o, n)). Now

applying Cauchy’s theorem to (4.132) for an arbitrary implies the existence of
another second-order tensar such thatt = {(a, n)).

REMARK. Microstructure manifold is the tangent space of the antbipace
manifold at every point. However, microstructure is notatetl to the deformation
mapping. This is why, unlike the so-called second-gradeeria$ (see Fried and
Gurtin [14]), two separate stress tensors exist.

As U and w are arbitrary, and replacing by pdv in (4.132), we conclude that

Lyp =0, (4.133)
Lyj = 0. (4.134)

Now let us simplify the last two integrals in (4.132). The wole integral is
simplified to read

/ (0B — j3). Vw - pl)dv = /
e U)

- 1
pb—jayep: (—Swg + w) dv. (4.135)
o ) 2

The surface integral is simplified as

[ (Evwep)da= [ @ pw),do
dgr (U)

ot U)

o~ - 1 - X
= / [(d|VO’) ®p+o- Vp] : (_Swg + (z)) dv + / Uadpcwalcld dv,
ot U) 2 ot U)

o~ ~ 1 ~ o~
= / [dive)®p+ao-Vp]: (—Swg+w)dv+/ o®pP:VVvwdv.
o) 2 o)
(4.136)
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Thus
de o~ ~ ~ 1
/ (—2p—+a+(d|va)®p+a-Vp+p(b—]a)®p) : =Lwgdv
o U) a9 2

0 L~ ~ ~
+/ (—Zp—e+a+(d|Va)®p+a-Vp+p(b—ja)®p>:wdv
ot U)

99
. de
+/ <<—pa+pb+dlva—p— :’R,W>>dv,
o) IV
ad ~ o~
+/ (—p—e—l—a@p) . VVwdy = 0. (4.137)
o1 @) IV
Therefore, becaus#,w, and z are arbitrary we finally obtain
Lyp =0, (4.138)
Lyj =0, (4.139)
. 0
dive + pb = pa+ pa—é:’R, (4.140)
d L ~ ~
2'08_; —o+[dvé)®@p+5-Vp+pb-jBH®p, (4.141)
[0+ (divé)®p+6-Vp+pb®p] =0+ (dve)®p+5-Vp+pb— B ep,
(4.142)
de
— =0 . 4.14
Pry =9 ©P (4.143)

In component form, (4.141) reads

2

— O_ab_i_a:ac‘cpb_i_a:acpblc_i_p(z"a _a'a)pb — O_ab_l_p(ga _aa)pb+ (a:acpb)‘c‘

(4.144)
Note that combining (4.140) and (4.143), one can write lmdanf linear momentum
as

0
agab

dive + pb =pa+ (@ ®p): R. (4.145)

This means that both stress and micro-stress tensors lmaetrio balance of linear
momentum. It is seen that there is a single balance of lineamemtum, a single
balance of angular momentum both with contributions fromcdés and micro-forces,
and two Doyle—Ericksen formulas.

We should mention that Toupin [35, 36] showed that for etastaterials for which
energy depends on gradient of the deformation gradient,the second derivative
of deformation mapping, balance of linear momentum and langmomentum are
both coupled for micro and macro forces. However, as was ioresd earlier, here
we are not considering second-grade materials.
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Generalized covariance of energy balance for spatially catrained structured
continua. In all the previous examples we observed that covarianceruadsingle
spatial diffeomorphism cannot lead to a separate balanaeicb-linear momentum.
Let us consider two diffeomorphisms, n, : S — & such that both are identity at
t =ty and

Z#W, Vz#Vw, VVz=VVw, (4.146)
where
w= 9 & z= 9 (4.147)
o 8t t=1p P o 8t t:tont '

We assume that under the simultaneous actions of these ftifieordorphisms,n;
acts on micro-quantities ang acts on the remaining quantities (including metric
and connection). Thus, in the new frame

P =n.p. V=V+Vyz, &-b=n.E-hb). (4.148)

We assume that energy balance is invariant under the sinewlts actions of, and
n, and call this ageneralized covarianceTherefore, generalized covariance implies
that at timer = 1q

1 1 ~
/ |:|—v,0 (— ({(w, w)) + ({v, W>>) + Lv(pj) (— ((Vz-p,Vz.-p)) + ((v,Vz- p)))
o U) 2 2

de de ~
+p (8_9 cLwg+ v (VVW+ R -w) + ({(a,w)) + ({ja, Vz- p)))}

:f p((b,W))+/ ((t,w))da+/ ({ob, Vz-p)>+/ ({t. vz p))da.
orU) Ay (U) o U) gy (U) (4 149)

Arbitrariness ofw and z gives us conservation of mads,p = 0, conservation of
microstructure inertiaL,j = 0, and the existence of stress tensersand o. Thus

ae ae N
/Wu)/? (a_g s Lwg+ v (VVW+ R -w) + ((a,w)) + {({(ja, Vz- p)))

= [ ot [ ewndat [ ((oB vz-p)
o (U) dpr (U)

orU)

+f [dive)®@p+0o-Vp]: VZdU—I—/ 6 ®p:VVzdv. (4.150)
o (U) o U)
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Arbitrariness ofz, w, and 4, and noting thatVvVz = VVw, one obtains

0
dive 4+ pb = pa+ ,oa—é 'R, (4.151)
ad
202 _ g, (4.152)
99
o’ =o0,
div(c ® p) + pb @ p = pa ® p, (4.153)
de
— =0 . 4.154
,oaV oQp (4.154)

It is seen that generalized covariance gives a separatendesalaf micro-linear
momentum, i.e. Eq. (4.153).

5. Examples of continua with microstructure

In this section, we present two examples of continua withraositucture and
obtain their governing equations covariantly. We first ladka theory of elastic solids
with voids (see Nunziato and Cowin [31]), which is a struetlircontinuum with
a one-dimensional microstructure manifold. We show thatrastructure covariance
in this case gives all the balance laws and a scalar Doylek&n formula. We
then geometrically study the classical theory of mixturese( Bowen [3], Bedford
and Drumheller [2], Green and Naghdi [18], Sampaio [32], [Mfihs [38]) and
obtain the governing equations covariantly.

5.1. A geometric theory of elastic solids with distributed voids

An elastic solid with distributed voids can be thought of astraictured continuum
with a scalar microstructure kinematical variable, as irpi@a[6]; here, we follow
Nunziato and Cowin [31]. In addition to the standard defdiara mapping, it is
assumed that mass density has the following multiplicatleeomposition

po(X) = po(X, (X, 1), (5.1)
where p, is the density of the matrix material ang is the matrix volume fraction
and O0< vy < 1. Deformation is a pair of mappingép;, ;) : Bx B — S x R.
Material void velocity and void deformation gradient (a dnem on B) are defined

as
~ dve(X, t ovo(X, t
T = vo( )’ vo( )‘
ot X

Spatial void velocity is defined ag = ‘70(;)‘1. Internal energy density at € S
has the following form

F(X, 1) = (5.2)

e=c¢e(, X g,v,Tv), (5.3)
where v = vgo ¢ and hence
av _a Ov

TV = g2 =F "agxa

(5.4)
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For a subset, (/) Cc S, balance of energy reads
%f%(u) (X, 1) (e(t, X,0,v, Tv) + % (v, v)) + %K bl 2) dv

:/ px, 1) ({(b,V)) +b '17+r)dv+/ (((t.V)) +7 D+ h)da, (5.5)
o (U) gt (U)

where ¥k = k(X,t) is the so-called equilibrated inertia [31], arid and 7 are the
void body force and traction, respectively, and both ardassa

Let us first consider a time-dependent spatial change ofdrgmS — S such
that atr = 7o, §, =id. Under this change of frame'(x’) = v(x) and hence

e =e@,x,9V,TV)=ce(, X Qv Tv). (5.6)
Therefore, atr = 1
-~ de
/= > —— E s 57
e e+ 39 w9 (5.7)

wherew = %§,|t:t0. Subtracting balance of energy fgr (/) from that of ; (/) at
t = tp, gives the existence of Cauchy stress and the standardckalaws [39].

Let us now consider a microstructure change of frame (0, 1] — (0, 1] such
that n,| __=id and

t=1g

an:(v)
5 = ). (5.8)
Void velocity in the new frame has the following form,
~, 0 ~
v = En,ov:nt*v—l—zt. (5.9)

Thus, atr =1, v '(v) =v(v) + z(v). Under the void change of frame, we have

e, x gV, Tv)=e(t,x,0,v,Tn, -Tv). (5.10)
Note that
d d (9 B] an, 90 9z 9 92 B an, 9V
—(Tn,-Tv) = — ey oV, om0V 0% OV ni(v) 9v. 9N oV (5.11)
dt dt \ v J 9X = 09v aX Qv aX ov2 X v aX
Thus, atr =1
d v oy 9v
—(Tn; - Tv) = —_—t — . 512
dt( Nt V) Z (V)ax + 30 X ( )
Therefore, atr = 1y
- 0
¢ =t v 7 ). (5.13)

aU’A
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Balance of energy in the new void frame at 1, reads

9 1. . ~ o~
/ ,o[é+—ev,Az’(v)+((v, a))+—k(v+z)2+/ca(v+z)] dv
o @) 9,4 2

:/, p«myn+&5+m+ﬂdv+/ (((t,v) +7(@ + 2) + h) da. (5.14)
o U) dr (U)

Subtracting (5.5) from (5.14), one obtains

0 1. - ~ ~
/ 0 [—ev,Az/(v) + k(D7 + D)+ Kaz:| dv = / pbzdv + / tzda.
o) 2 o U) )

9.4 o U
(5.15)
Becausez and U/ are arbitrary, we conclude that = 0, which is the balance of
equilibrated inertia [15]. Using Cauchy’s theorem in theoab identity, we conclude
that there exists a vector fied (void Cauchy stress), such that= 5%4,. Therefore,
the surface integral in (5.15) can be simplified to read

f fzda = / [(dive)z + F~*,5%v 42'] dv. (5.16)
dgr U) o (U)
Now, (5.15) can be rewritten as

0 - o~ ~
f (p—ev,A —F 4, a“v,A) Z(v)dv — / (dlva + pb — ,oa) z(v)dv = 0.
o U) or(U)

BU,A
(5.17)
Becausez and 7z’ can be chosen independently abdis arbitrary, we conclude that
dive + pb = pa, (5.18)
~ a
F~4, ov = p—ev,A. (5.19)
8V,A

Eq. (5.18) is balance of equilibrated linear momentum [3f&f &qg. (5.19) is a
scalar Doyle—Ericksen formula.

5.2. A geometric theory of mixtures

In mixture theory, one is given a finite number of bodies (titusnts) that can
penetrate into one another with the understanding thaketiemo self penetration
within a given constituent. Here, for the sake of simplicitye ignore diffusion as
our goal is to demonstrate the power of covariance argunienderiving the balance
laws. We assume that in our mixtutd there are two constituents; generalization
of our results to the case oN constituents is straightforward. We denote the
constituents byl and 2. We should mention that recently Mariano [24] studied
some invariance/covariance ideas for mixtures. Our aghrda slightly different as
will be explained in the sequel.
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Each constituent is assumed to have its own reference nit;hlﬂta), iG), i=1,2.
Deformation of M is defined by two deformation mappindg,, i= 1,2 such that
P (‘B, ie) N (S, ig), i—1,2, (5.20)

e., it is assumed that the ambient space mani®lés equipped with two different
metrics 'g and 2g.%> Material and spatial velocities are defined as

9 g, (Xi, 1)
ot ’
Deformation gradients are tangent maps of the two defoomatnappings, i.e.,
'F=T"'g, i=1,2
Given x € '¢,(B;), it is assumed that this point is occupied by particles from
both B; and By, i.e., given a timer, X is the pre-image of particleX; and X,

V(X 1) = v="Volpl i=1,2. (5.21)

defined as
Xl = 1901_01()() and X2 = z(ptgl(X). (522)
Thus, at a later time
Yoi(X1) =t 0 te T # 20 (X2) = g1 0 20, 1 (0), (5.23)

i.e., in general, the two particleX; and X, will occupy two different points ofS
at time¢+. This means that one can have spatial changes of frame thaeparately
on different constituents.

In the traditional formulation of mixture theories, for éaaonstituent, one
assumes the existence of an internal energy density and awtlgr of internal
energy density. Here, we assume that each constituent hasternal energy that
depends on all the spatial metrics. For our two-phase maxkiirthis means that

er = e1 (t,%, 10, °0) and  e;=e(t,%,10,%0). (5.24)

Dependence of each internal energy density on both theaspaétrics accounts for
the interaction of constituents. Each constituent is asslto have its own mass
density pi, i=1,2, and mass density at point is defined as

p(X, 1) = vi(X, 1)p1(X, 1) + va(X, 1) p2(X, 1), (5.25)

where v; are volume fractions of the constituents, although at tlistpwe do not
need to definep.
Balance of energy for a substt = 1o, (U1) =%, () C S is written as

g LI R R W]
=/MIZpi(X, 0 («‘b, iv>>i+ri>+/au,zi:<<<it’ iv>>i+hi> da, (5.26)

S3This is similar to what Mariano [24] does when postulatingariance of energy balance.
4This is closely related to what Mariano [24] does in his epdglance covariance argument.
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where ((.,.)); is the inner product induced from the metrig and all the other
quantities have the obvious meanings. Balance of energybeasimplified to read

[T RIAA R ]
+ /u | Zpi(x, né(x1.%g.20) +((v."a)) |
_ /u Z 20X 1) (<<ib, iv>>i+ri>+ fa M,Z«(it’ iv>>i+hi> da. (5.27)

Traditionally, a separate balance of energy is postulatedefich constituent [24].
Here, we only postulate a balance of energy for the whole uraxt

We now consider a spatial diffeomorphisipn: S — S that acts only on(S, 1g)
and is the identity map at = 75. We postulate covariance of energy balance, i.e.,
in the new spatial frame energy balance reads

d 1,,,41,
i [ oo [ ta g 5 v
d !y ’ ! 14 2 1 2\, 2y,
+d—/ p2(X,t)[eZ(X,t, g. g)+ ((?v, v))]
t u
= [ oo (o)) + [

(V) +w) da’,

P /

+ /u Py 1) (BB 2V, + ra) + / (P av), 1) da'. (529
# ]

Spatial velocities have the following transformations,

W=¢gW+w, and % =72v. (5.29)
We assume thatb is transformed such that [27]
o' —ta =¢.("b-"a). (5.30)
Note also that
¢y (X,1,'9.20) = e1 (x.1.&" 0.%0). (5.31)
&5 (X,1,19,%0) = e2 (X, 2. &" '9.%0). (5.32)
Thus, atr = 1o,
A de
d=btg = Lul, (5.33)
- 0
=iy + —2 g, (5.34)
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Subtracting the energy balance (5.27) from (5.28) evatuatier = 1y yields

) 4 1 / (3& ﬁ)
fu,L 1, p1(X, 1) [((w, V), + 2(<w,W>>1]+ 3 P10 | 95 g : £wg

_ /M 0 (o~ awl) + / (W) da. (5.35)

t

Arbitrariness ofl, andw would guarantee the existence of a Cauchy sttessuch
that 't = ((*o, N)); and also will give the following after replacing; by pidv,

L 1, pr=0, (5.36)

divy Yo + p1tb = pila, (5.37)

lo’ = 10'T, (538)
d(e1 + e2)

1. _

Similarly, assuming that, : S — S acts only on(S,?g) and postulating energy
balance covariance will give the following balance laws,

L 2, po=0, (5.40)

div, %0 + ,022b = pzza, (5.41)

20 =207, (5.42)
d(e1 +e2)

2

Note the coupling in the Doyle—Ericksen formulas. Note athat these balance
laws can be pulled back to eithét; or B,.

6. Lagrangian field theory of continua with microstructure, noether's theorem
and covariance

The original formulations of Cosserat continua were maivdyiational [35, 36].
There have also been recent geometric formulations in tlegature [7, 11]. In
this section we consider a Lagrangian density that depemngficély on metrics
and look at the corresponding Euler—Lagrange equationsn Tdn explicit relation
between covariance and Noether's theorem is establishiedla6to the ambiguity
encountered in covariant energy balance in terms of the dihkhe microstructure
manifold with the ambient space manifold, here we will seat tthis ambiguity
shows up in the action of a given flow on different independemtables of the
Lagrangian density.

The Lagrangian may be regarded as a niap7C — R, whereC is the space
of some sectiorfs associated to the Lagrangian densifyand a volume element

5See Marsden and Hughes [27] for details in the case of stamaartihua. The case of structured continua
would be a straightforward generalization.
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dV(X) on B and is defined as
L(p, @, %, )

= /B £(X, 9 (X, (), F(X), GX), glp (X)), FX), §00, FX0, T (X)) )dV ().
(6.1)

Here ¢ and ¢ are understood as fields representing standard and micchse
deformations, respectively. Note that, in general, one magd to consider more
than one microstructure field with possibly different temesloproperties. Note also
that in this material representation, the two mapsnd ¢ have the same role and
it is not clear from the Lagrangian density which one is thendard deformation
map. However, having the coordinate representation fosethtsvo maps and their
tangent maps, one can see which one is the microstructure Natp also thatg
and g are background metrics with no dynamics.
The action functionis defined as

tl .
S(g) = / L(g. . 7. §)d. 6.2)

o
Hamilton’s principle states that the physical configuratiog, @) is the critical point
of the action, i.e.

88 = dS(g, @) - (3¢, p) = 0. (6.3)
This can be simplified to read
L oL oL
o+ —-6¢+ —=:0F+—:§
/,0 / 95 " oF ag 7
oL oL L ~ AL o
+—=-80+—=-8¢+—=:0F+—=:80)dV(X)dt =0. (6.4
AR Y Y= 75 g) (X) (6.4)
As 8¢ and é¢ are independent, we obtain the following Euler-Lagrangeatqgns
0L d oL (oL oL . oL
— ——F Ayl +2— gwavp. =0, (6.5)
dp? dt 9@ AF?, 1A aF? 4 08cd
L d oL L L ~ oL
- — —~—F" +2— guyP =0. (6.6
25 diage <8F°‘A>A Y AV, T 881V (6.6)

We know that because of material-frame-indifferenc&, depends onF and g
through C. Thus, Euler-Lagrange equations for the standard defaymahapping
is simplified to read

oL
PAa+ 97 pogarA”, (6.7)
oL d oL oL
~ o PsAFH 2 gyl =0, 6.8
35° T 2 |A + Pg AJ/W + e 882 Yapu (6.8)
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where
oL ~ oL
5 PaA - = . (69)
8FaA BF"‘A

When Euler-Lagrange equations are satisfied, given a symmofthe Lagrangian
density Noether’s theorem tells us what its corresponding conserved quantity is.
Supposeyr, is a flow onS generated by a vector field, i.e.

d

75 szol/fs o =Wog. (6.10)

Now if we assume that this flow leaves the microstructure tjiie®m unchanged,
i.e., if we assume that the ambient space manifold and theostiacture manifold
are independent, then invariance of the Lagrangian demségns that

wa ¢ 8wcawd e~ N
8 FbA7 GAB, 9x9 9x bgcd’¢a7§0 ’FaAvgozﬁ

Pt =—

(X/W()

= L" (XAv Qﬂa, ¢a, FaA’ GABa 8abs a(l’ $a9 FaA, gaﬂ) . (611)
Yavari et al. [39] proved that this implies the following twezpnditions

oL oL oL
2 — obc F¢ be 7™~ -a, 6.12
Ogay  © 9Fc, ° e ag” (6.12)
oL
— (6.13)
dp?

e., the Doyle—Ericksen formula and spatial homogeneftyhe Lagrangian density.

Now, supposer, is a flow on M generated by a vector field, i.e.
d
Tl eP =200 (6.14)

Invariance of the Lagrangian density with respectstomeans that
o 0nNY ~ ans 0 ~
ﬂa nS F5A7 ns né g,l,b
ap? op* dpP
ZE(XA,w L% FOA, Gag, 8abs 0%, 0 F¥ 4, Bap) - (6.15)

Differentiating the above identity with respect toand evaluating it fors = 0, after
some lengthy manipulations we obtain

E(XA,go @ Fu, Gag, abs 1 (@ s

oL ~ oL 0L o
2——— = F%, gPr——— 4 gPH— 3", 6.16
o A g Py g aaw (6.16)
d L L L _, u
—— t ~ - — =0. 6.17
dt 9" <8F“A)|A 8{5A Yau¥ ( )

Assuming thatC has the following splitting in terms of internal energy dénsand
kinetic energy
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1 1. .~ ~
L= poe+ 5p0 (V. Vg + 570 ((V. V). (6.18)
(6.16) is simplified to read
de ~ oL ~ o~
200—— = F%, gPH—=— = F*, PPA. 6.19
poagaﬁ A 8 Y A ( )

Now let us simplify this relation and show that it is exactlguésalent to (4.40).
Note that

Pt =g (FY)*, 5. (6.20)
Thus o - .
F4PPY = J (FF )", 57 (6.21)
Hence
2p—2 — (Fo)¥, &P (6.22)
agaﬂ

This means that (6.16) is equivalent to (4.40)!

Following Yavari et al. [39], it can be shown that using Ealeagrange equations
and some lengthy manipulations, (6.17) can be simplifiedetdr
85 —0

Ip¥
This means that if Lagrangian density is microstructuradlyvariant, then it has
to be microstructurally homogenous and a micro-Doyled&en formula should be
satisfied.

de Fabritis and Mariano [11] study invariance of Lagrang@ensity of a struc-
tured continuum under different groups of transformatidnsparticular, they require
invariance of the Lagrangian density when the same cop§ @€3) acts on ambient
space and microstructure manifolds in order to obtain l&asf angular momentum.
This seems to be a matter of choice at first sight but can alsaroerstood as

an interpretation of balance of angular momenta for a speadéss of structured
continua. In the following, we study a similar symmetry okethagrangian density.

(6.23)

Constrained microstructure manifold. Now let us assume thaM (X) = T, x)S.
In this case the Euler-Lagrange equations are

oL
PaAIA + W = pogapA”, (6.24)
oL d oL oL oL ~
= T = ( F ) Y FcAyabc =0. (6'25)
a(p“ dt 8(p“ aFaA |A anA

Now a flow on & would affect the microstructure quantities too. In this case
invariance of the Lagrangian density means that
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W a qYeayd Ayl oYl o OV ~,
F , G , N N od> S , S N F
Vaxb L A TAR T b 8 G Y T P
=L (X", ¢°, ¢°, F4, Gap, b, 7.9, F”A) . (6.26)
Differentiating the above identity with respect toand evaluating it ak = 0 yields

(XAW)

aL oL 8£ 0L ., L .0 AL ~
2 = bf( @ A F“A), (6.27)
dgab dF<, 3¢ 3¢ 95" AFc,
aL dL I o AL ~
| =0+ =P +—=—F"4)v5 =0. 6.28
Dot (W.w 0 Ay A) Yab (6.28)

7. Concluding remarks

This paper first critically reviewed the geometry of strwetli continua. Similar to
classical continuum mechanics, one assumes the existéracavell-defined reference
configuration and each material point is mapped to its ctipesition in the ambient
space by the standard deformation mapping. In addition &y #ach material point
is given a director, which lies in a microstructure manifoll separate map, the
microstructure deformation mapping, maps each materiadt o its director, which
could be a scalar field, a vector field, or in general a tensdd.fie

The Green—Naghdi—Rivlin Theorem relates balance lawsvariance of balance of
energy under some groups of transformations. Previousiptgeto extend this theorem
to structured continua were critically reviewed. It was laiged that any generaliza-
tion of this theorem explicitly depends on the nature of therastructure manifold.
It turns out that in most continua with microstructure, th&nmmstructure manifold is
linked to the ambient space manifold. We gave a concrete pieanf a structured
continuum, in which the ambient space is Euclidean, for white microstructure
manifold is againR3 but thought of as the tangent space Rf at a given point.
Postulating balance of energy and its invariance under ésoes of R3, we obtained
conservation of mass, balance of linear momentum and balahangular momentum
with contributions from both macro and micro-forces. Limg oneself to rigid mo-
tions does not allow one to obtain a separate balance of filr@ar momentum. This
leads one to think about investigating covariant balanees lfor structured continua.

We first assumed that the structured continuum is such thatathbient space
and the macrostructure manifold can have independentméfgs. We showed that
postulating energy balance and its invariance under $ptih microstructure diffeo-
morphisms gives conservation of mass, existence of Cautthgssand micro-Cauchy
stress, balance of linear and micro-linear momenta, balafcangular and micro-
angular momenta and two Doyle—Ericksen formulas. We themsidered structured
continua for which the microstructure manifold is somewbanstrained in the sense
that a spatial change of frame affects the microstructur@ntifies too. As concrete
examples, we defined materially and spatially constraintdcteired continua. In
a spatially constrained continuum the microstructure brrid the tangent bundle
of the ambient space manifold. In a materially constrainadctured continuum,
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microstructure manifold at a given poit € B is TxB. We showed that postulating
energy balance and its invariance under spatial diffeoisnps for a MCS continuum
gives conservation of mass, two balances of linear momeritumbalances of angular
momentum and two Doyle—Ericksen formulas. For a SCS coufinuspatial covari-
ance gives balances of linear and angular momenta, which lbate contributions
from macro and micro forces. We then defined a generalizedriance in which two
separate maps act on macro and micro quantities simultalyedinder some assump-
tions, we showed that generalized covariance can give aledumlance of angular
momentum and two separate balances of linear momentum foronaad micro forces.

As concrete examples of structured continua, we looked astiel solids with
distributed voids and mixtures and obtained their balaraves | covariantly.

In the last part of the paper, we reviewed the Lagrangian fidldory of
structured continua, when both ambient space and micaigtes manifolds are
equipped with their own metrics. Assuming that standardbiheation mapping and
microstructure deformation mapping are independent, tiveuld have independent
variations and hence Hamilton’s principle of least actigveg us two sets of Euler—
Lagrange equations. We then studied the connection betiheether's theorem and
covariance. It was observed that there is some ambiguity akimg this connection.
The ambiguity arises from the fact that there are differepssibilities in defining
covariance for a Lagrangian density. One choice is to asstnaethe Lagrangian
density is covariant under independent actions of spatidl rmicrostructure flows. We
showed that this results in Doyle—Ericksen formulas id=btio those obtained from
covariant energy balance for structured continua with fmgerostructure manifolds.
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