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The purpose of this paper is to extend the Green–Naghdi–Rivlin balance of energy method
to continua with microstructure. The key idea is to replace the group of Galilean transformations
with the group of diffeomorphisms of the ambient space. A keyadvantage is that one obtains
in a natural way all the needed balance laws on both the macro and micro levels along with
two Doyle–Erickson formulas.

We model a structured continuum as a triplet of Riemannian manifolds: a material manifold,
the ambient space manifold of material particles and a director field manifold. The Green–
Naghdi–Rivlin theorem and its extensions for structured continua are critically reviewed. We
show that when the ambient space is Euclidean and when the microstructure manifold is the
tangent space of the ambient space manifold, postulating a single balance of energy law and its
invariance under time-dependent isometries of the ambientspace, one obtains conservation of
mass, balances of linear and angular momenta butnot a separate balance of linear momentum.

We develop a covariant elasticity theory for structured continua by postulating that energy
balance is invariant under time-dependent spatial diffeomorphisms of the ambient space, which
in this case is the product of two Riemannian manifolds. We then introduce two types of
constrained continua in which microstructure manifold is linked to the reference and ambient
space manifolds. In the case when at every material point, the microstructure manifold is the
tangent space of the ambient space manifold at the image of the material point, we show that
the assumption of covariance leads to balances of linear andangular momenta with contributions
from both forces and micro-forces along with two Doyle–Ericksen formulas. We show that
generalized covariance leads to two balances of linear momentum and a single coupled balance
of angular momentum.

Using this theory, we covariantly obtain the balance laws for two specific examples, namely
elastic solids with distributed voids and mixtures. Finally, the Lagrangian field theory of structured
elasticity is revisited and a connection is made between covariance and Noether’s theorem.
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1. Introduction
The idea of generalized continua goes back to the work of Cosserat brothers

[8]. The main idea in generalized continua is to consider extra degrees of freedom
for material points in order to be able to better model materials with microstructure
in the framework of continuum mechanics. Many developmentshave been reported
since the seminal work of the Cosserat brothers. Depending on the specific choice
of kinematics, generalized continua are called polar, micropolar, micromorphic,
Cosserat, multipolar, oriented, complex, etc. (see Green and Rivlin [17], Kafadar
and Eringen [22], Toupin [35, 36], Mindlin [29] and references therein). The more
recent developments can be seen in Capriz [6], Capriz and Mariano [7], de Fabritiis
and Mariano [11], Epstein and de Leon [12], Muschik et al. [30], Sławianowski
[34] and references therein. For a recent review see Marianoand Stazi [25].

By choosing a specific form for the kinetic energy density of directors, Cowin [9]
obtained the balance laws of a Cosserat continuum with threedirectors by imposing
invariance of energy balance under rigid translations and rotations in the current con-
figuration. A similar work was done by Buggisch [4]. Capriz etal. [5] obtained the
balance laws for a continuum with the so-called affine microstructure by postulating
invariance of balance of energy under time-dependent rigidtranslations and rotations
of the deformed configuration. The main assumption there is that the orthogonal
second-order tensor representing the affine microdeformations remains unchanged un-
der a rigid translation but is transformed like a two-point tensor under a rigid rotation
in the deformed configuration. Accepting this assumption, one obtains conservation of
mass, the standard balance of linear momentum and balance ofangular momentum,
which in this case states that the sum of Cauchy stress and some new terms is
symmetric. Recently, de Fabritiis and Mariano [11] conducted an interesting study of
the geometric structure of complex continua and studied different geometric aspects
of continua with microstructure. Capriz and Mariano [7] studied the Lagrangian field
theory of Coserrat continua and obtained the Euler–Lagrange equations for standard
and microstructure deformation mappings. However, in their Lagrangian density they
did not consider an explicit dependence on the metric of the order-parameter mani-
fold. In this paper, we will consider an explicit dependenceof the Lagrangian density
on metrics of both standard and microstructure manifolds. One should remember that
the original developments in the theory of generalized continua in the Sixties were
variational [35, 36]. However, revisiting the Lagrangian field theory of structured
continua in the language of modern geometric mechanics may be worthwhile.

It is believed that kinematics of a structured continuum canbe described by two
independent maps, one mapping material points to their current positions and one
mapping the material points to their directors [27]. Looking at the literature one can
see that for a Cosserat continuum (and even for multipolar continua [16, 17]), the
only balance laws are the standard balances of linear and angular momenta; couple
stresses do not enter into balance of linear momentum but do enter into balance of
angular momentum and make the Cauchy stress unsymmetric. This is indeed different
from the situation in the so-called complex continua or continua with microstructure
[6, 7, 11], where one sees separate balance laws for microstresses. Marsden and
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Hughes [27] postulated two balances of linear momenta. However, it is not clear
why, in general, one should see two balances of linear momentum and only one
balance of angular momentum. In other words, why do standardand microstructure
forces interact only in the balance of angular momentum? It should be noted that in
all the existing generalizations of Green–Naghdi–Rivlin (GNR) Theorem (see Green
and Rivlin [16]) to generalized continua the standard Galilei groupG is considered.
It is always assumed that rigid translations leave the micro-kinematical variables
and their corresponding forces unchanged (with no rigorousjustification) and these
quantities come into play only when rigid rotations are considered.

It is known that the traditional formulation of balance lawsof continuum
mechanics are not intrinsically meaningful and heavily depend on the linear structure
of Euclidean space. Marsden and Hughes [27] resolved this shortcoming of the
traditional formulation by postulating a balance of energy, which is intrinsically
defined even on manifolds, and its invariance under spatial changes of frame. This
results in conservation of mass, balance of linear and angular momenta and the
Doyle–Ericksen formula. Similar ideas had been proposed inGreen and Rivlin [16]
for deriving balance laws by postulating energy balance invariance under Galilean
transformations. For more details and discussions on material changes of frame see
Yavari et al. [39]. See also Yavari [40], Yavari and Ozakin [41], and Yavari and
Marsden [42] for similar discussions. A natural question toask is whether it is
possible to develop covariant theories of elasticity for structured continua. As we
will see shortly, the answer is affirmative.

Similar to Noether’s theorem that makes a connection between conserved quantities
and symmetries of a Lagrangian density, GNR theorem makes a connection between
balance laws and invariance properties of balance of energy. One major difference
between the two theorems is that in GNR theorem one looks at balance of energy
for a finite subbody, i.e., a global quantity, and its invariance, while in Noether’s
theorem symmetries are local properties of the Lagrangian density.

In some applications, e.g., recent applications of continuum mechanics to biology,
one may need to enlarge the configuration manifold of the continuum to take into ac-
count the fact that changes in material points, e.g., rearrangements of microstructure,
etc., should somehow be considered in the continuum theory,at least in an average
sense. This was a motivation for various developments for generalized continuum
theories in the last few decades. In a structured continuum,in addition to the standard
deformation mapping, one introduces some extra fields that represent the underlying
microstructure. In the nondissipative case, assuming the existence of a Lagrangian
density that depends on all the fields, using Hamilton’s principle of least action one ob-
tains new Euler–Lagrange equations corresponding to microstructural fields [35, 36, 7].
However, to our best knowledge, it is not clear in the literature how one can obtain
these extra balance laws by postulating a single energy balance and its invariance un-
der some groups of transformations. This is the main motivation of the present work.

To summarize, looking at the literature of generalized continua, one sees that the
structure of balance laws is not completely clear. It is observed that there is always
a standard balance of linear momentum with only macro-quantities and a balance
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of angular momentum, which has contributions from both macro- and micro-forces.
In some treatments there is no balance of micro-linear momentum (see Toupin
[35, 36], Capriz et al. [5], Ericksen [13]) while sometimes there is one, as in Green
and Naghdi [19], Capriz [6]. In particular, we can mention the work of Leslie [23]
on liquid crystals in which he starts by postulating a balance of energy and a linear
momentum balance for micro-forces. In his work, he realizesthat the balance of
micro-linear momentum cannot be obtained from invariance of energy balance. To
date, there have been several works on relating balance lawsof structured continua
to invariance of energy balance under some group of transformations. These efforts
will be reviewed in detail in the sequel.

This paper is organized as follows. In Section 2 geometry of continua with
microstructure is discussed. Section 3 discusses the previous efforts in generalizing
Green–Naghdi–Rivlin Theorem for generalized continua. Assuming that the ambient
space is Euclidean and assuming that the microstructure manifold at every material
point is the tangent space ofR3 at the spatial image of the material point, we
generalize GNR theorem. Section 4 develops a covariant theory of elasticity for those
structured continua for which microstructure manifold is completely independent of
the ambient space manifold in the sense that ambient space and microstructure
manifolds can have separate changes of frame. We then develop a covariant theory
of elasticity for those structured continua in which microstructure manifold is
somewhat linked to the ambient space manifold. In particular, we study the case
where microstructure manifold is the tangent bundle of the ambient space manifold.
We also introduce a generalized notion of covariance in which one postulates energy
balance invariance under two diffeomorphisms that act separately on micro and macro
quantities simultaneously. We study consequences of this generalized covariance. In
Section 5, we look at two concrete examples of structured continua, namely elastic
solids with distributed voids and mixtures. In both cases, we obtain the balance laws
covariantly. Section 6 presents a Lagrangian field theory formulation of structured
continua. Noether’s theorem and its connection with covariance is also investigated.
Concluding remarks are given in Section 7.

2. Geometry of continua with microstructure

A structured continuum is a generalization of a standard continuum in which the
internal structure of the material points is taken into account by assigning to them
some independent internal variables or order parameters. For the sake of simplicity,
let us assume that each material pointX has a corresponding microstructure (director)
field p, which lies in a Riemannian manifold(M,gM). Note that p, in general,
could be a tensor field. In general, one may have a collection of director fields and
the microstructure manifold may not be Riemannian. However, these assumptions
are general enough to cover many problems of interest. In this case our structured
continuum has a configuration manifold that consists of a pair of mappings(ϕt , ϕ̃t)
[27, 11], wherex = ϕt(X) represents the standard motion andp = ϕ̃t(X) is the
motion of the microstructure. Bothϕt and ϕ̃t are understood as fields. As in the
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Fig. 2.1. Deformation mappings of a continuum with microstructure.

geometric treatment of standard continua, the current configuration lies in an embed-
ding spaceS, which is a Riemannian manifold with a metricg. Note that ambient
space for the structured continuum isS = S ×M and for everyX ∈ B, ϕ̃(X) lies
in a separate copy ofM. Here, we have assumed that the structured continuum is
microstructurally homogeneous in the sense that directorsof two material pointsX1
and X2 lie in two copies of the same microstructure manifoldM (see Fig. 2.1).

More precisely, kinematics of a structured continuum is described using fiber
bundles (see, for instance, Epstein and de Leon [12]). Deformation of a structured
continuum is a bundle map from the zero section of the trivialbundleB×M0 (for
some manifoldM0) to the trivial bundleS × M (see Fig. 2.2). Corresponding to
the two mapsϕt and ϕ̃t , there are two velocities, which have the following material
forms,

V(X, t) =
∂ϕt(X)
∂t

∈ TxS, Ṽ(X, t) =
∂ϕ̃t(X)
∂t

∈ TpM. (2.1)

Let us choose local coordinates{XA}, {xa}, and {pα} on B, S and M, respectively.
In these coordinates

V(X, t) = V aea, Ṽ(X, t) = Ṽ α ẽα, (2.2)

where {ea} and {̃eα} are bases forTxS and TpM, respectively, and

V a =
∂ϕa

∂t
, Ṽ α =

∂ϕ̃α

∂t
. (2.3)
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Fig. 2.2. Deformation of a continuum with microstructure canbe understood as a bundle map between two
trivial bundles. Here all is needed is the zero-section of the reference bundle, i.e. the material manifold.

In spatial coordinates

v(x, t) = V ◦ ϕ−1
t , ṽ(x, t) = Ṽ ◦ ϕ−1

t . (2.4)

In a local coordinate chart

v(x, t) = vaea, ṽ(x, t) = ṽα ẽα. (2.5)

Here, for the sake of simplicity, we have assumed that our structured continuum has
one director field, which is assumed to be a vector field. As wasmentioned earlier,
this is not the most general possibility and in general one may need to work with
several director fields or even with a tensor-valued director field. Generalization to
these cases is straightforward.

Marsden and Hughes [27] chose the classical viewpoint in taking R
3 to be the

ambient space for material particles and postulated the integral form of balances
of linear and angular momenta. The more natural approach would be to start
from balance of energy and look at consequences of its invariance under some
transformations. This is the approach we choose in this paper. Note that the two
maps ϕt and ϕ̃t , in general, are independent and interact only in the balance of
energy, i.e. power has contributions from both deformationmaps. The other important
observation is that balance of energy is written on an arbitrary subsetϕt(U) ⊂ S.

3. The Green–Naghdi–Rivlin Theorem for a continuum with microstructure

In most theories of generalized continua, macro and micro-forces enter the same
balance of angular momentum because the ambient space manifold and the manifold
of microstructure are somewhat related. Now the important question is the following:
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how can one obtain two sets of balance of linear momentum, onefor micro-forces
and one for marco-forces in such cases starting from first principles? Of course,
one can always postulate as many balance laws as one needs in atheory. However,
a fundamental understanding of balance laws is crucial in any theory. Accepting a
Lagrangian viewpoint, one has two sets of Euler–Lagrange equations as there are two
independent macro and micro kinematic variables (see Toupin [35, 36], de Fabritiis
and Mariano [11]). Then, assuming that these equations are satisfied, Noether’s
theorem leads us to expect that any conserved quantity of thesystem corresponds to
some symmetry of the Lagrangian density. The Lagrangian density can be invariant
under groups of transformations that act on the ambient and microstructure manifolds
simultaneously. For example, if one assumes that an arbitrary element of SO(3)
acts simultaneously onS and M and Lagrangian density remains invariant, then
the conserved quantity is nothing but angular momentum withsome extra terms
representing the effect of microstructure. However, another possibility would be a
symmetry in which an arbitrary element ofSO(3) acts only onM. Now one may
ask why the Lagrangian density should be invariant under simultaneous actions of
SO(3) on S and M.

A way out of this difficulty may be to look for a generalizationof the Green–
Naghdi–Rivlin theorem for continua with microstructure. There have been several
attempts in the literature to generalize this theorem. In all the existing generalizations,
it is assumed that in a Galilean transformation, micro-forces and micro-displacements
remain unchanged under a rigid translation while under a rigid rotation both micro
and macro quantities transform. Postulating invariance ofbalance of energy under an
arbitrary element of the Galilean group and accepting this assumption, one obtains
conservation of mass, the standard balance of linear momentum and balance of
angular momentum with some extra terms that represent the effect of microstruture.
However, this does not give a micro-linear momentum balance. So, it is seen that
the link between energy balance invariance and balance of micro-linear momentum
is missing.

It should be noted that in most of the treatments of continua with microstructure,
the microstructure manifoldM may not be completely independent of the ambient
space manifoldS and this may be a key point in understanding the structure
of balance laws. From a geometric point of view this means that spatial and
microstructure changes of frame may not be independent, in general.

There have been several attempts in the literature to obtainbalance laws of
generalized continua by energy invariance arguments. Capriz et al. [5] start from
balance of energy and postulate its invariance under rigid translations and rotations
of the current configuration. They assume that microstructure quantities (kinematic
and kinetic) remain unchanged under rigid translations while under rigid rotations
micro-forces transform exactly like their macro counterparts. This somehow implies
that the microstructure manifold is not independent of the standard ambient space.
Under a rigid translation, each microstructure manifold (fiber) translates rigidly and
hence micro-forces and directors remain unchanged. Under arigid rotation directors
and their corresponding micro-forces transform exactly like their macro counterparts
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because rotating a representative volume element its director goes through the same
rotation. This invariance postulate results in the standard conservation of mass and
balance of linear and angular momenta. Balance of linear momentum has its standard
form while balance of angular momentum has contributions from both forces and
micro-forces. However, this invariance argument does not lead to a separate balance
of micro-linear momentum.

Gurtin and Podio-Guidugli [21] introduce a fine structure for each material point.
They then postulate two balances of energy, one in the macro scale and one in the
fine scale. The fine structure is characterized by the limitǫ → 0 of some scale
parameterǫ. Postulating invariance of these two balance laws under rigid translations
and rotations they obtain two sets of balance of linear and angular momenta. They
emphasize that balance of micro-angular momentum only introduces a micro-couple
and offers nothing essential.

Green and Naghdi [19] and Green and Naghdi [20] start from balance of energy
and assume that it is invariant under the transformationv → v + c, where v is
the spatial velocity field andc is an arbitrary constant vector field. This gives the
conservation of mass and balance of linear momentum. Then they obtain a local
form for balance of energy and assume it remains invariant under rigid translations
and rotations. In the case of a Cosserat continuum they assume invariance of energy
balance underv → v + c1 and w → w + c2, where w is the spatial microstructure
velocity field andc1 and c2 are arbitrary constant vectors. However, it is not clear
what it means to replacew by w + c2 in terms of transformations of the ambient
space and microstructure manifolds. In other words, what group of transformations
lead to this replacement and why they should not affect the macro-velocity field.
This seems to be more or less an assumption convenient for obtaining the desired
balance laws. This assumption leads to conservation of massand balance of macro
and micro-linear momenta. Then, again they postulate invariance of local balance of
energy under rigid translations and rotations that transform micro and macro forces
simultaneously. This gives a local form for balance of angular momentum.

The Green–Naghdi–Rivlin Theorem for structured continua in Euclidean space.
Let us now study the consequences of postulating invarianceof energy balance
under time-dependent isomorphisms of the ambient Euclidean space with constant
velocity for a structured continuum. Consider balance of energy for ϕt(U) ⊂ ϕt(B)
that reads

d

dt

∫

ϕt (U)

ρ

(
e +

1

2
v · v

)
dv =

∫

ϕt (U)

ρ
(
b · v + b̃ · ṽ + r

)
dv

+

∫

∂ϕt (U)

(
t · v + t̃ · ṽ + h

)
da, (3.1)

where for the sake of simplicity, we have ignored the microstructure inertia. Here
e is the internal energy density,b is the body force per unit of mass in the
deformed configuration,̃b is the micro-body force per unit of mass in the deformed
configuration, r is heat supply per unit mass of the deformed configuration,t is
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traction, t̃ is micro-traction, andh is the heat flux. Let us assume that the ambient
space is Euclidean, i.e.,S = R

3. Consider a rigid translation of the ambient space
of the form

x′ = ξt(x) = x + (t − t0)c, (3.2)

where c is a constant vector field onS = R
3. Let us also assume that the director

field is a vector field onR3. We know that for anyx ∈ R
3, TxR

3 can be identified
with R

3 itself. So, we assume that forx = ϕt(X) ∈ R
3, Mϕt (X) = TxR

3 ≃ R
3. Note

that for a rigid translation of the ambient space

T ξt = id, (3.3)

where id is the identity map. Therefore, a rigid translation does notaffect the
microstructure quantities. Assuming invariance of balance of energy under arbitrary
rigid translations implies the existence of Cauchy stress and the usual conservation
of mass and balance of energy, i.e.

ρ̇ + ρ div v = 0, (3.4)

div σ + ρb = ρa. (3.5)

Next, let us consider a rigid rotation ofS = R
3 of the form

x′ = ξt(x) = e�(t−t0)x, (3.6)

where� is a skew-symmetric matrix. Note that

T ξt = e�(t−t0), T T ξt = 0. (3.7)

We know that
p′ = ξt∗p = T ξt · p. (3.8)

Thus
Ṽ′ =

∂

∂t

∣∣∣
X
p′ = �e�(t−t0)p + e�(t−t0)

∂

∂t

∣∣∣
X
p. (3.9)

This means that att = t0
Ṽ′ = Ṽ +�p. (3.10)

Subtracting balance of energy forϕt(U) from that of ϕ′
t(U) at t = t0, we obtain

∫

ϕt (U)

ρa ·�x dv =

∫

ϕt (U)

ρb ·�x dv +

∫

∂ϕt (U)

t ·�x da +

∫

ϕt (U)

ρb̃ ·�p dv

+

∫

∂ϕt (U)

t̃ ·�p da. (3.11)

We know that ∫

∂ϕt (U)

t ·�x da =

∫

ϕt (U)

(div σ ·�x + σ : �) dv, (3.12)

∫

∂ϕt (U)

t̃ ·�p da =

∫

ϕt (U)

[
div σ̃ ⊗ p + σ̃ · ∇p

]
: �dv. (3.13)
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Substituting (3.12) and (3.13) into (3.11) and using the local form of balance of
linear momentum, we obtain

∫

ϕt (U)

[
σ + div σ̃ ⊗ p + σ̃ · ∇p

]
: �dv = 0. (3.14)

BecauseU is arbitrary, we conclude that
[
σ + div(σ̃ ⊗ p)

]T
= σ + div(σ̃ ⊗ p). (3.15)

In components this reads as follows:

σ ab + σ̃ ac,c p
b + σ̃ acpb,c = κab = κba. (3.16)

It is seen that the rigid structure ofR
3 and its isometries does not allow one to obtain

a separate balance of microstructure linear momentum. We will show in the sequel
that when the ambient space isR3 or, more generally a Riemannian manifold,
a generalized covariance can give us such a separate balanceof microstructure
linear momentum. We will also see that for a structured continuum with a scalar
microstructure field, e.g., an elastic solid with distributed voids, one can covariantly
obtain a separate scalar balance of micro-linear momentum.

4. A covariant theory of elasticity for structured continua with free microstruc-
ture manifold

In this section we develop a covariant theory of elasticity for those structured
continua for which one can change the spatial and microstructure frames indepen-
dently. An example of such continua is a continuum with voidsor a continuum
with distributed “damage”, which will be studied in detail in Section 5. Let us first
review some important concepts from geometric continuum mechanics.

The reference configurationB is a submanifold of the reference configuration
manifold (B,G), which is a Riemannian manifold. Motion is thought of as an
embeddingϕt : B → S, where (S,g) is the ambient space manifold. An element
dX ∈ TXB is mapped todx ∈ TxS by the deformation gradient

dx = F · dX. (4.1)

The length ofdx is geometrically important as it represents the effect of deformation.
Note that

〈〈dx, dx〉〉g = 〈〈dX, dX〉〉ϕ∗
t g . (4.2)

In this sense the pulled-back metricC = ϕ∗
t g is a measure of deformation. The

material free energy density has the following form,

9 = 9 (X,F,G,g ◦ ϕt) . (4.3)

Let us define the spatial free energy density as

ψ(t, x,g) = 9
(
ϕ−1
t ,F ◦ ϕ−1

t ,G ◦ ϕ−1
t ,g

)
. (4.4)
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Similarly, internal energy density has the following form

e = e(t, x,g). (4.5)

This means that fixing a deformation mappingϕt , internal energy density explicitly
depends on time, current position of the material point and the metric tensor at the
current position of the material point. Note also thate is supported onϕt(B), i.e.
e = 0 in S \ ϕt(B).

Now let us look at internal energy density for an elastic bodywith substructure
in which free energy density has the following form

9 = 9
(
X,F, ϕ̃t , F̃,G,g ◦ ϕt ,gM ◦ ϕ̃t

)
. (4.6)

For a given deformation mapping(ϕt , ϕ̃t) define

ψ(t, x,g,p, g̃M)

= 9
(
ϕ−1
t ,F ◦ ϕ−1

t , ϕ̃t ◦ ϕ
−1
t , F̃ ◦ ϕ−1

t ,G ◦ ϕ−1
t ,g,p ◦ ϕ−1

t ,gM ◦ ϕ̃t ◦ ϕ
−1
t

)
, (4.7)

where g̃M = gM ◦ ϕ̃ ◦ϕ−1
t . Similarly, internal energy density has the following form

e = e(t, x,g,p, g̃M). (4.8)

Balance of energy forϕt(U) ⊂ S is written as

d

dt

∫

ϕt (U)

ρ(x, t)
[
e(t, x,g,p, g̃M)+

1

2
〈〈v, v〉〉g + κ(p, ṽ)

]

=

∫

ϕt (U)

ρ(x, t)
(
〈〈b, v〉〉g +

〈〈̃
b, ṽ

〉〉
g̃M

+ r
)

+

∫

∂ϕt (U)

(
〈〈t, v〉〉g +

〈〈̃
t, ṽ

〉〉
g̃M

+ h
)
da,

(4.9)

where we think ofρ(x, t) as a 3-form and̃b and t̃ are microstructure body force
and traction vector fields, respectively. For the sake of simplicity, let us assume that
the microstructure kinetic energy has the following form

κ(p, ṽ) =
1

2
j 〈〈̃v, ṽ〉〉̃gM , (4.10)

where we assume the microstructure inertiaj is a scalar.
All the physical processes happen inS and thus balance of energy is written on

subsets ofϕt(B) ⊂ S. Standard traction is a vector field onS and the microstructure
traction is a vector field onM. The standard and microstructure tractions have the
following coordinate representations

t(x, t) = taea, t̃(x, t) = t̃α ẽα, (4.11)

where {ea} and {̃ea} are bases forTxS and TpM, respectively. Similarly, the stress
tensors have the following local representations

σ (x, t) = σ ab ea ⊗ eb, σ̃ (x, t) = σ̃ αb ẽα ⊗ eb. (4.12)
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The first Piola Kirchhoff stresses for the standard deformation and the microstructure
deformation are obtained by the following Piola transformations

P aA = J (F−1)Ab σ
ab, P̃ αA = J (F−1)Ab σ̃

αb, (4.13)

where J =

√
detg
detG detF. These transformations ensure that

t da = T dA and t̃ da = T̃ dA. (4.14)

Now this means that in terms of contributions of tractions tobalance of energy we
have

〈〈t, v〉〉g da = 〈〈T,V〉〉g dA and
〈〈̃
t, ṽ

〉〉
gM

da =
〈〈
T̃, Ṽ

〉〉
gM

dA. (4.15)

For U ⊂ B, material energy balance can be written as

d

dt

∫

U

ρ0(X, t)
[
E(t,X,g,gM)+

1

2
〈〈V,V〉〉g +

1

2
J

〈〈
Ṽ, Ṽ

〉〉
gM

]

=

∫

U

ρ0(X, t)
(
〈〈B,V〉〉g +

〈〈
B̃, Ṽ

〉〉
g̃M

+ R
)

+

∫

∂U

(
〈〈T,V〉〉g +

〈〈
T̃, Ṽ

〉〉
gM

+H
)
dA,

(4.16)

where againρ0 is a 3-form.

4.1. Covariance of energy balance

Let us assume that for eachx ∈ S, the microstructure manifold is completely
independent ofS. In other words, a change of frame inS(or M) does not affect
M(or S) and quantities defined on it. An example of a structured continuum
with this type of microstructure manifold is a structured continuum with a scalar
director field, although there are other possibilities. We show in this subsection that
postulating energy balance and its invariance under time-dependent changes of frame
in S and M results in conservation of mass and micro-inertia, two balances of
linear and angular momenta, and two Doyle–Ericksen formulas, one for the Cauchy
stress and one for the micro-Cauchy stress.

THEOREM 4.1. If balance of energy holds and if it is invariant under arbitrary
spatial and microstructure diffeomorhismsξt : S → S and ηt : M → M, then there
exist second-order tensorsσ and σ̃ such that

t = 〈〈σ ,n〉〉g and t̃ = 〈〈σ̃ ,n〉〉g , (4.17)

and
L vρ = 0, (4.18)

L vj = 0, (4.19)

div σ + ρb = ρa, (4.20)

div σ̃ + ρb̃ = ρj ã, (4.21)

σ = σ
T, (4.22)
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(F0σ̃ )
T = F0σ̃ , (4.23)

2ρ
∂e

∂g
= σ , (4.24)

F0σ̃ = 2ρ
∂e

∂g̃M
, (4.25)

where div is divergence with respect to the metricg, F0 = F̃F−1 and ηt acts on
all the microstructure fibers simultaneously.

Proof: Let us consider spatial and microstructure diffeomorphisms separately.

Microstructure covariance of energy balance. Consider a microstructure diffeo-
morphism ηt : M → M (see Fig. 4.1) and assume that

ηt
∣∣
t=t0

= id. (4.26)

Fig. 4.1. A microstructure change of frame.

Invariance of energy balance underηt : M → M means that balance of energy in
the new frame has the following form

d

dt

∫

ϕt (U)

ρ(x, t)
[
e′(t, x,g,p′, g̃M)+

1

2
〈〈v, v〉〉g +

1

2
j ′

〈〈
ṽ′, ṽ′

〉〉
g̃M

]

=

∫

ϕt (U)

ρ(x, t)
(
〈〈b, v〉〉g +

〈〈̃
b′, ṽ′

〉〉
g̃M

+ r
)

+

∫

∂ϕt (U)

(
〈〈t, v〉〉g +

〈〈̃
t′, ṽ′

〉〉
g̃M

+ h
)
da.

(4.27)
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Note that
e′(t, x,g,p′, g̃M) = e(t, x,g,p, η∗

t g̃M). (4.28)

Thus
d

dt

∣∣∣
t=t0

= ė +
∂e

∂g̃M
: Lz̃gM, (4.29)

where
z =

∂

∂t

∣∣∣
t=t0

ηt . (4.30)

Note also that
ṽ′

∣∣
t=t0

= ṽ + z. (4.31)

Assuming that̃b′ − j ′̃a′ = ηt∗(̃b − j ã), at t = t0 we obtain
∫

ϕt (U)

L vρ

(
e + 〈〈v, v〉〉g +

1

2
j 〈〈̃v + z, ṽ + z〉〉̃gM

)

+

∫

ϕt (U)

ρ

(
ė +

∂e

∂g̃M
: Lz̃gM + j 〈〈̃a, z〉〉̃gM +

1

2
L vj 〈〈̃v + z, ṽ + z〉〉̃gM

)

=

∫

ϕt (U)

ρ
(
〈〈b, v〉〉g +

〈〈̃
b, ṽ + z

〉〉
g̃M

+ r
)
+

∫

∂ϕt (U)

(
〈〈t, v〉〉g +

〈〈̃
t, ṽ + z

〉〉
g̃M

+ h
)
da.

(4.32)

Replacingρ by ρdv and subtracting balance of energy (4.9) from the above identity
and considering the fact thatz and U are arbitrary, one obtains

L v(ρj) = 0, (4.33)∫

ϕt (U)

ρ
∂e

∂g̃M
: Lz̃gM dv =

∫

ϕt (U)

ρ
〈〈̃
b, z

〉〉
g̃M

dv +

∫

∂ϕt (U)

〈〈̃
t, z

〉〉
g̃M

da. (4.34)

Applying Cauchy’s theorem (see Marsden and Hughes [27]) to (4.34), one concludes
that there exists a second-order tensorσ̃ such that

t̃ = 〈〈σ̃ ,n〉〉g . (4.35)

Now let us simplify the surface integral.

LEMMA 4.2. The contribution of microstructure traction has the following sim-
plified form

∫

∂ϕt (U)

〈〈̃
t, z

〉〉
g̃M

da =

∫

ϕt (U)

[
〈〈div σ̃ , z〉〉̃gM + F0σ̃ :

1

2
Lz̃gM + F0σ̃ : ωM

]
dv.

(4.36)

Proof:
∫

∂ϕt (U)

〈〈̃
t, z

〉〉
g̃M

=

∫

∂ϕt (U)

σ αbncgbcz
β(gM)αβ da =

∫

ϕt (U)

[
σ αbzβ(gM)αβ

]
|b
dv. (4.37)



COVARIANT BALANCE LAWS IN CONTINUA WITH MICROSTRUCTURE 15

But because(gM)αβ|b = (gM)αβ|γ (F0)
γ
b = 0, we have

[
σ αbzβ(gM)αβ

]
|b

=
[
σ αbzβ

]
|b
(gM)αβ = σ αb |bz

β(gM)αβ + zβ |bσ
αb(gM)αβ . (4.38)

Note that
zβ |b(gM)αβ = zα|γ (F0)

λ
b. (4.39)

�

Now, becausez and U are arbitrary from (4.34) one obtains

F0σ̃ = 2ρ
∂e

∂g̃M
, (4.40)

(F0σ̃ )
T = F0σ̃ , (4.41)

div σ̃ + ρb̃ = ρj ã. (4.42)

Spatial covariance of energy balance. Invariance of energy balance under an
arbitrary diffeomorphismξt : S → S means that (see Fig. 4.2)

d

dt

∫

ϕ′
t (U)

ρ ′(x′, t)

[
e′(t, x′,g,gM)+

1

2

〈〈
v′, v′

〉〉
g +

1

2
j ′

〈〈
ṽ′, ṽ′

〉〉
g̃M

]

=

∫

ϕ′
t (U)

ρ ′(x′, t)
(〈〈

b′, v′
〉〉

g +
〈〈̃
b′, ṽ′

〉〉
g̃M

+ r ′
)

+

∫

∂ϕ′
t (U)

(〈〈
t′, v′

〉〉
g +

〈〈̃
t′, ṽ′

〉〉
g̃M

+ h′
)
da′, (4.43)

where ϕ′
t = ξt ◦ ϕt . We also assume that

ξt
∣∣
t=t0

= id. (4.44)

The relation between primed and unprimed quantities are dictated by Cartan’s
spacetime theory, i.e.,

ρ ′(x′, t) = ξ∗ρ(x, t), t′ = ξ∗t, t̃′ = ξ∗̃t, r ′(x′, t) = r(x, t), h′(x′, t) = h(x, t).
(4.45)

The internal energy density has the following transformation

e′(t, x′,g, g̃M) = e(t, x, ξ ∗g,p, g̃M). (4.46)

Thus
d

dt

∣∣∣
t=t0

e′ = ė +
∂e

∂g
: Lwg, (4.47)

where
w =

∂

∂t

∣∣∣
t=t0

ξt . (4.48)

Spatial velocity has the following transformation

v′ = ξ∗v + wt . (4.49)
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Fig. 4.2. A spatial change of frame in a continuum with microstructure.

Thus, at t = t0, v′ = v + w. Also

ṽ′ = Ṽ ◦ ϕ−1
t ◦ ξ−1

t = ṽ ◦ ξ−1
t . (4.50)

Therefore, att = t0
ṽ′ = ṽ. (4.51)

Assuming thatb′ − a′ = ξt∗(b − a) [27] and noting that̃b′ − ã′ = b̃ − ã, balance of
energy in the new frame att = t0 reads
∫

ϕt (U)

L vρ

(
e +

1

2
〈〈v + w, v + w〉〉g +

1

2
j 〈〈̃v, ṽ〉〉̃gM

)

+

∫

ϕt (U)

ρ

(
ė +

∂e

∂g
: Lwg + 〈〈v + w,a〉〉g + j 〈〈̃v, ã〉〉̃gM +

1

2
L vj 〈〈̃v, ṽ〉〉̃gM

)

=

∫

ϕt (U)

ρ
(
〈〈b, v + w〉〉g +

〈〈̃
b, ṽ

〉〉
g̃M

+ r
)

+

∫

∂ϕt (U)

(
〈〈t, v + w〉〉g +

〈〈̃
t, ṽ

〉〉
g̃M

+ h
)
da. (4.52)

Subtracting (4.9) from (4.52) and considering the fact thatw and U are arbitrary,
we obtain conservation of massL vρ = 0 and using it in (4.33) we obtain balance
of microstructure inertia,

L vj = 0. (4.53)
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Now using conservation of mass and microstructure inertia,and replacingρ by ρdv
in (4.52), one obtains
∫

ϕt (U)

ρ

(
∂e

∂g
: Lwg + 〈〈w,a〉〉g

)
dv =

∫

ϕt (U)

ρ
(
〈〈b,w〉〉g

)
dv +

∫

∂ϕt (U)

(
〈〈t,w〉〉g

)
da.

(4.54)
Applying Cauchy’s theorem to the above identity and considering (4.35) shows that
there exists a second-order tensorσ such that

t = 〈〈σ ,n〉〉g . (4.55)

Now let us look at the surface integral in (4.54). This surface integral is simplified
to read

∫

∂ϕt (U)

〈〈t,w〉〉g da =

∫

ϕt (U)

〈〈div σ ,w〉〉g dv +

∫

ϕt (U)

(
σ :

1

2
Lwg + σ : ω

)
dv, (4.56)

where ω has the coordinate representationωab = 1
2(wa|b −wb|a). Substituting (4.56)

into (4.54) yields

∫

ϕt (U)

(
2ρ
∂e

∂g
− σ

)
:

1

2
Lwgdv +

∫

ϕt (U)

σ : ω dv

−

∫

ϕt (U)

〈〈div σ + ρ (b − a) ,w〉〉g dv = 0. (4.57)

BecauseU and w are arbitrary we conclude that

2ρ
∂e

∂g
= σ , (4.58)

σ = σ
T, (4.59)

div σ + ρb = ρa. (4.60)

�

Next, we study the effect of material diffeomorphisms on balance of energy.

4.2. Transformation of energy balance under material diffeomorphisms

It was shown in Yavari et al. [39] that, in general, energy balance cannot be
invariant under diffeomorphisms of the reference configuration and what one should
be looking for instead is the way in which energy balance transforms under material
diffeomorphisms. In this subsection we first obtain such a transformation formula
for a continuum with microstructure under an arbitrary time-dependent material
diffeomorphism (see Eq. (4.99)) and then obtain the conditions under which balance
of energy can be materially covariant.
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The material energy balance transformation formula. Let us begin with
a discussion of how energy balance transforms under material diffeomorphisms.
Let us define

E(t,X,G) = E
(
X,F(X), ϕ̃t(X), F̃(X),g(ϕt(X)),gM(ϕ̃t(X)),G

)
, (4.61)

where E is the material internal energy density per unit of undeformed mass.
Material (Lagrangian) energy balance (4.16) can be simplified to read
∫

U

d

dt

[
ρ0

(
E(t,X,G)+

1

2
〈〈V,V〉〉g +

1

2
J

〈〈
Ṽ, Ṽ

〉〉
gM

)]

=

∫

U

ρ0

(
〈〈B,V〉〉g +

〈〈
B̃, Ṽ

〉〉
g̃M

+ R
)

+

∫

∂U

(
〈〈T,V〉〉g +

〈〈
T̃, Ṽ

〉〉
gM

+H
)
dA,

(4.62)

where U is an arbitrary nice subset of the reference configurationB, B and B̃ are
body force and microstructure body force, respectively, per unit undeformed mass,
V(X, t) and Ṽ(X, t) are the material velocity and microstructure material velocity,
respectively,ρ0(X, t) is the material density,R(X, t) is the heat supply per unit
undeformed mass, andH(X, t, N̂) is the heat flux across a surface with normalN̂
in the undeformed configuration (normal to∂U at X ∈ ∂U ).

Change of reference frame. A material change of frame is a diffeomorphism

4t : (B,G) → (B,G′). (4.63)

A change of frame can be thought of as a change of coordinates in the reference
configuration (passive definition) or a rearrangement of microstructure (active defi-
nition). Under such a framing, a nice subsetU is mapped to another nice subset
U ′ = 4t(U) and a material pointX is mapped toX′ = 4t(X) (see Fig. 4.3). The
deformation mappings for the new reference configuration are ϕ′

t = ϕt ◦ 4−1
t and

ϕ̃′
t = ϕ̃t ◦4

−1
t . This can be clearly seen in Fig. 4.3. The material velocity in U ′ is

V′(X′, t) =
∂

∂t
ϕ′
t(X

′) =
∂ϕt

∂t
◦4−1

t (X
′)+ T ϕt ◦

∂4−1
t

∂t
(X′), (4.64)

where partial derivatives are calculated for fixedX′. We assume that

4t
∣∣
t=t0

= id,
∂4t

∂t
(X) = W(X, t). (4.65)

Note that W is the infinitesimal generator of the rearrangement4t . It is an easy
exercise to show that

V′ = V ◦4−1
t − FF−1

4 · W ◦4−1
t . (4.66)

Thus, at t = t0
V′ = V − FW. (4.67)
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Fig. 4.3. Referential change of frame in a continuum with microstructure.

Similarly
Ṽ′ = Ṽ − F̃W. (4.68)

Note that

G′ = (ϕt ◦4
−1
t )

∗ ◦ ϕt∗G = (4−1
t )

∗ ◦ ϕ∗
t ◦ ϕt∗G = (4−1

t )
∗G = 4t∗G

= (T 4t)
−∗ G (T 4t)−1 , (4.69)

and
F′ = 4t∗F = F ◦ (T 4t)

−1. (4.70)

The material internal energy density is assumed to transform tensorially, i.e.

E′(t,X′,G′) = E(t,X,G). (4.71)

This means that internal energy density atX′ evaluated by the transformed metric
G′ is equal to the internal energy density atX evaluated by the metricG. We
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know that G′ = 4t∗G, and thus

E′(t,X′,G) = E(t,X, 4∗
t G). (4.72)

Therefore
d

dt

∣∣∣
t=t0

E′(t,X′,G) =
∂E

∂t
+
∂E

∂G
: LWG. (4.73)

Balance of energy for reframings of the reference configuration. Consider a
deformation mappingϕt : B → S and a referential diffeomorphism4t : B → B. The
mappingsϕ′

t = ϕt ◦4
−1
t : B′ → S and ϕ̃′

t = ϕ̃t ◦4
−1
t : B′ → M, whereB′ = 4t(B),

represent the deformation of the new (evolved) reference configuration. Balance of
energy for4t(U) should include the following two groups of terms:

i) Looking at (ϕ′
t , ϕ̃

′
t) as the deformation ofB′ in S × M, one has the usual

material energy balance for4t(U). Transformation of fields from(B,G) to
(B,G′) follows Cartan’s space-time theory.

ii) Nonstandard terms may appear to represent the energy associated with the
material evolution.

We expect to see some new terms that are work-conjugate toWt = ∂
∂t
4t . Let us

denote the volume and surface forces conjugate toW by B0 and T0, respectively.
Instead of looking at spatial framings, let us fix the deformed configuration and

look at framings of the reference configuration. We postulate that energy balance
for each nice subsetU ′ has the following form,

d

dt

∫

U ′
ρ ′

0

(
E′ +

1

2

〈〈
V′,V′

〉〉
+

1

2
J ′

〈〈
Ṽ′, Ṽ′

〉〉)
dV ′

=

∫

U ′
ρ ′

0

(〈〈
B′,V′

〉〉
+

〈〈
B̃′, Ṽ′

〉〉
+ R′

)
dV ′ +

∫

∂U ′

(〈〈
T′,V′

〉〉
+

〈〈
T̃′, Ṽ′

〉〉
+H ′

)
dA′

+

∫

U ′

〈〈
B′

0,Wt

〉〉
dV ′ +

∫

∂U ′

〈〈
T′

0,Wt

〉〉
dA′, (4.74)

where U ′ = 4t(U) and B′
0 and T′

0 are unknown vector fields at this point. Using
Cartan’s spacetime theory, it is assumed that the primed quantities have the following
relation with the unprimed quantities,

dV ′ = 4t∗dV, R′(X′, t) = R(X, t), ρ ′
0(X

′, t) = ρ0(X),

H ′(X′, N̂′, t) = H(X, N̂, t), J ′ = J, (4.75)

T′(X′, N̂′, t) = T(X, N̂, t), T̃′(X′, N̂′, t) = T̃(X, N̂, t).

We assume that body force is transformed in such a way that

B′ − A′ = 4t∗(B − A), B̃′ − Ã′ = 4t∗(B̃ − Ã). (4.76)

Thus
(B′ − A′)

∣∣
t=t0

= B − A, (B̃′ − Ã′)
∣∣
t=t0

= B̃ − Ã. (4.77)
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Note that if α is a 3-form onU , then

d

dt

∣∣∣
t=t0

∫

U ′
α′ =

∫

U

d

dt

∣∣∣
t=t0

(
4∗
t α

′
)
, (4.78)

where U ′ = 4t(U). Thus

d

dt

∣∣∣
t=t0

∫

U ′
E′dV ′ =

∫

U

d

dt

∣∣∣
t=t0

(
4∗
t E

′
)
dV =

∫

U

(
∂E

∂t
+
∂E

∂G
: LWG

)
dV. (4.79)

Material energy balance forU ′ ⊂ B′ at t = t0 reads
∫

U

∂ρ0

∂t

(
E +

1

2
〈〈V − FW,V − FW〉〉 +

1

2
J

〈〈
Ṽ − F̃W, Ṽ − F̃W

〉〉)
dV

+

∫

U

ρ0

(
∂E

∂t
+
∂E

∂G
: LWG +

〈〈
V − FW,A′

∣∣
t=t0

〉〉
+ J

〈〈
Ṽ − F̃W, Ã′

∣∣
t=t0

〉〉

+
1

2

∂J

∂t

〈〈
Ṽ − F̃W, Ṽ − F̃W

〉〉 )
dV =

∫

U

ρ0

(〈〈
B′

∣∣
t=t0

,V − FW
〉〉

+ R
)
dV

+

∫

U

ρ0

〈〈
B̃′

∣∣
t=t0

, Ṽ − F̃W
〉〉
dV +

∫

∂U

(〈〈T,V − FW〉〉 +H) dA

+

∫

∂U

〈〈
T̃, Ṽ − F̃W

〉〉
dA+

∫

U

〈〈B0,W〉〉 dV +

∫

∂U

〈〈T0,W〉〉 dA. (4.80)

We know thatT0 and B0 are defined onB and T′
0 and B′

0 are the corresponding
quantities defined on4t(B). Here we assume that

T′
0 = 4t∗T0 and B′

0 = 4t∗B0. (4.81)

Subtracting balance of energy forU from this and noting that
(
A′ − B′

)
t=t0

= A −B

and
(
Ã′ − B̃′

)
t=t0

= Ã − B̃ one obtains

∫

U

∂ρ0

∂t

(
− 〈〈V,FW〉〉 +

1

2
〈〈FW,FW〉〉 − J

〈〈
Ṽ, F̃W

〉〉
+

1

2
J

〈〈̃
FW, F̃W

〉〉)
dV

+

∫

U

ρ0

[
∂E

∂G
: LWG−〈〈FW,A〉〉−

〈〈̃
FW, J Ã

〉〉
+
∂J

∂t

(
−

〈〈
Ṽ, F̃W

〉〉
+

1

2

〈〈̃
FW, F̃W

〉〉)]
dV

= −

∫

U

〈〈ρ0B,FW〉〉 dV −

∫

∂U

〈〈T,FW〉〉 dA−

∫

U

〈〈
ρ0B̃, F̃W

〉〉
dV

−

∫

∂U

〈〈
T̃, F̃W

〉〉
dA+

∫

U

〈〈B0,W〉〉 dV +

∫

∂U

〈〈T0,W〉〉 dA. (4.82)

We know that

〈〈T,FW〉〉 =
〈〈

FW,
〈〈

P, N̂
〉〉〉〉

,
〈〈
T̃, F̃W

〉〉
=

〈〈
F̃W,

〈〈
P̃, N̂

〉〉〉〉
, (4.83)
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where P is the first Piola–Kirchhoff stress tensor. Thus, substituting (4.83) into
(4.82), Cauchy’s theorem implies that

T0 =
〈〈

P0, N̂
〉〉
, (4.84)

for some second-order tensorP0. The surface integrals in material energy balance
have the following transformations (see Yavari et al. [39] for a proof)

∫

∂U

〈〈
FTT,W

〉〉
dA =

∫

U

Div
〈〈

FTP,W
〉〉
dV

=

∫

U

[〈〈
Div(FTP),W

〉〉
+ FTP : �+ FTP : K

]
dV. (4.85)

And
∫

∂U

〈〈
F̃TT̃,W

〉〉
dA =

∫

U

Div
〈〈

F̃TP̃,W
〉〉
dV

=

∫

U

[〈〈
Div (̃FTP),W

〉〉
+ F̃TP̃ : �+ FTP : K

]
dV, (4.86)

where

�IJ =
1

2

(
GIKW

K
|J −GJKW

K
|I

)
=

1

2

(
WI |J −WJ |I

)
, (4.87)

K IJ =
1

2

(
GIKW

K
|J +GJKW

K
|I

)
=

1

2

(
WI |J +WJ |I

)
, K =

1

2
LWG. (4.88)

Similarly
∫

∂U

〈〈T0,W〉〉 dA =

∫

U

Div 〈〈P0,W〉〉 dV

=

∫

U

[〈〈Div P0,W〉〉 + P0 : �+ P0 : K ] dV. (4.89)

At time t = t0 the transformed balance of energy should be the same as the balance
of energy for U . Thus, subtracting the material balance of energy forU from
the above balance law and considering conservation of mass and micro-inertia, one
obtains

∫

U

ρ0
∂E

∂G
: LWG dV +

∫

U

〈〈
ρ0FT (B − A) ,W

〉〉
dV +

∫

U

〈〈
ρ0̃FT (

B̃ − Ã
)
,W

〉〉
dV

−

∫

U

〈〈ρ0B0,W〉〉 dV +

∫

∂U

〈〈
FTT + F̃TT̃ − T0,W

〉〉
dA = 0. (4.90)
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Therefore

∫

U

(
2ρ0

∂E

∂G
+ FTP + F̃TP̃ − P0

)
:

1

2
LWG dV +

∫

U

(
FTP + F̃TP̃ − P0

)
: �dV

+

∫

U

〈〈
ρ0FT (B − A)+ρ0̃FT (

B̃ − Ã
)
−B0+Div

(
FTP + F̃TP̃

)
−Div P0,W

〉〉
dV = 0.

(4.91)

Using balance of linear and micro-linear momenta, (4.91) issimplified to read

∫

U

(
2ρ0

∂E

∂G
+ FTP + F̃TP̃ − P0

)
:

1

2
LWG dV +

∫

U

(
FTP + F̃TP̃ − P0

)
: �dV

+

∫

U

〈〈
Div

(
FTP + F̃TP̃ − P0

)
− FT Div P − F̃T Div P̃ − B0,W

〉〉
dV = 0. (4.92)

BecauseU and W are arbitrary, one obtains

P0 = 2ρ0
∂E

∂G
+ FTP + F̃TP̃, (4.93)

(
FTP + F̃TP̃ − P0

)T
= FTP + F̃TP̃ − P0, (4.94)

B0 = Div
(
FTP + F̃TP̃ − P0

)
− FT Div P − F̃T Div P̃. (4.95)

Note that (4.94) is trivially satisfied after having (4.93).Thus, we have

P0 = 2ρ0
∂E

∂G
+ FTP + F̃TP̃, (4.96)

B0 = Div
(
FTP + F̃TP̃ − P0

)
− FT Div P − F̃T Div P̃. (4.97)

REMARK . Note thatB0 and P0 are material tensors and hence the transformation
(4.81) makes sense.

In summary, we have proven the following theorem.

THEOREM 4.3. Under a referential diffeomorphism4t : B → B, and assuming
that material energy density transforms tensorially, i.e.

E′(t,X′,G) = E(t,X, 4∗
t G), (4.98)

material energy balance has the following transformation
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d

dt

∫

4t (U)

ρ ′
0

(
E′ +

1

2

〈〈
V′,V′

〉〉
+

1

2
J ′

〈〈
Ṽ′, Ṽ′

〉〉)
dV ′

=

∫

4t (U)

ρ ′
0

(〈〈
B′,V′

〉〉
+

〈〈
B̃′, Ṽ′

〉〉
+ R′

)
dV ′

+

∫

∂4t (U)

(〈〈
T′,V′

〉〉
+

〈〈
T̃′, Ṽ′

〉〉
+H ′

)
dA′

+

∫

4t (U)

〈〈
B′

0,Wt

〉〉
dV ′ +

∫

∂4t (U)

〈〈
T′

0,Wt

〉〉
dA′, (4.99)

where

T′
0 =4t∗

[〈〈
2ρ0

∂E

∂G
+ FTP + F̃TP̃, N̂

〉〉]
, (4.100)

B′
0 =4t∗

[
Div

(
FTP + F̃TP̃ − P0

)
− FT Div P − F̃T Div P̃

]
, (4.101)

and the other quantities are already defined.

Consequences of assuming invariance of energy balance.Let us now study the
consequences of assuming material covariance of energy balance. Material energy
balance is invariant under material diffeomorphisms if andonly if the following
relations hold between the nonstandard terms

P0 = 0 or 2ρ0
∂E

∂G
= −FTP − F̃TP̃, (4.102)

B0 = 0 or Div
(
FTP + F̃TP̃

)
= FT Div P + F̃T Div P̃. (4.103)

4.3. Covariant elasticity for a special class of structured continua

In this subsection, we consider two special types of structured continua in which
microstructure manifold is linked to reference and ambientspace manifolds. In the
first example, we assume that for anyX ∈ B, microstructure manifold is(TXB,G).
For such a continuum, directors are “attached” to material points. We call this
continuum a referentially constrained structured(RCS) continuum. In the second
example, we assume that in the deformed configuration, microstructure manifold for
x = ϕt(X) is (TxS,g). We call such a continuum aspatially constrained structured
(SCS) continuum. For RCS continua we look at both referential and spatial covariance
of energy balance. This is a concrete example of what we earlier called a structured
continuum with free microstructue. For SCS continua we lookat spatial covariance
of energy balance.

As was mentioned earlier, in most treatments of continua with microstructure, one
has two balances of linear momenta; one for standard forces and one for microstructure
forces, and one balance of angular momentum, which has contributions from both
standard and micro-forces. In this subsection, we show thatin a special case when
microstructure manifold is the tangent space of the ambientspace manifold, one can
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obtain all the balance laws covariantly using a single balance of energy. Interestingly,
there will be two balances of linear momenta and one balance of angular momentum.
We will also see that there are different possibilities for defining “covariance” and
depending on what one calls “covariance”, balance laws havedifferent forms.

Materially constrained structured continua. Given X ∈ B, andM = TXB, director
velocity is defined as

Ṽ =
∂ϕ̃t(X)
∂t

. (4.104)

For writing energy balance inS we need to push-forward the director velocity. The
spatial director velocity is defined as

ṽ = ϕt∗Ṽ = FṼ. (4.105)

Micro-traction T̃ has the coordinate representation

T̃ = T̃ AEA. (4.106)

Internal energy density has the forme = e(t, x,p ◦ ϕ−1
t ,g,G ◦ ϕ−1

t ). Spatial and
microstructure diffeomorphisms act on macro and micro-forces independently as was
explained in Section 4.1. The resulting governing equations are exactly similar to
those obtained previously and thus we leave the details.

Spatially constrained structured continua. In the previous section we assumed
that the standard ambient space and the microstructure manifolds are independent in
the sense that they can have independent changes of frame. Itseems that this is not
the case for most materials with microstructure and this is perhaps why one sees
only one balance of angular momentum, e.g. in liquid crystals [13, 23]. Here, we
present an example of a structured continuum in which the microstructure manifold
is linked to the standard ambient space manifold. We assume that for eachx ∈ S,
the director atx, i.e. p(x) is an element ofTxS. In other words

Mx = TxS ∀ x ∈ ϕt(B), (4.107)

i.e. for eachx microstructure manifold isTxS and ϕ̃ is a time-dependent vector
in TxS. In the fiber bundle representation schematically shown in Fig. 2.2, this
means that microstructure bundle isT S, i.e. the tangent bundle of the ambient
space manifold.

Here we assume that the director field is a single vector field.Generalization of
the results to cases where the director is a tensor field wouldbe straightforward.
The microstructure deformation gradient has the followingrepresentation

F̃ = T ϕ̃t ◦ F, F̃ : TxS → Tp(x)TxS. (4.108)

In components
F̃ = F̃ ab ea ⊗ eb. (4.109)

Microstructure velocity is defined as

ṽ(x, t) =
∂

∂t

∣∣∣
X
ϕ̃t(x). (4.110)
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In components

ṽa =
∂pa

∂t
+
∂pa

∂xb
vb + γ abcv

bpc. (4.111)

Or
ṽ = ṗ =

∂p
∂t

+ ∇vp. (4.112)

Now let us consider a spatial change of frame, i.e.ξt : S → S. Note that
ϕ′
t = ξt ◦ ϕt and becausẽϕ ∈ TxS we have

ϕ̃′
t(x

′) = T ξt · ϕ̃t(x). (4.113)

Microstructure velocity in the new frame is defined as

ṽ′ =
∂p′

∂t
+ ∇v′p′. (4.114)

Noting that p′ = ξt∗p and v′ = ξt∗v + wt , we obtain

ṽ′ =
∂

∂t

∣∣∣
x′
(ξt∗p)+ ξt∗ (∇vp)+ ∇w (ξt∗p) . (4.115)

Note that1
∂

∂t

∣∣∣
x′
(ξt∗p) =

∂

∂t

∣∣∣
x
(ξt∗p)− ∇w (ξt∗p) . (4.117)

Thus
ṽ′ =

∂

∂t

∣∣∣
x
(ξt∗p)+ ξt∗ (∇vp) . (4.118)

Note also that
∂

∂t

∣∣∣
x
(ξt∗p) = ξt∗

(
∂p
∂t

)
+ ∇ξt∗pw. (4.119)

Therefore
ṽ′ = ξt ∗̃v + ∇ξt∗pw. (4.120)

This means that at timet = t0

ṽ′ = ṽ + ∇pw. (4.121)

We assume that microstructure body forces transform such that ã′ − b̃′ = ξt∗(̃a− b̃).
For this structured continuum we assume that, in addition tometric, internal

energy density explicitly depends on a connection too, i.e.2

e = e(t, x,p,g,∇). (4.122)

1This can be proved as follows,

∂

∂t

∣∣∣
x
p′ =

∂

∂t

∣∣∣
x′

p′ +
∂

∂t

∣∣∣
x

[
p′α(ξ(x))eα(ξ(x))

]
=

(
∂p′α

∂ξβ
+ γ αλβp

′λ

)
wβeα = ∇wp′. (4.116)

2Note that this is similar to Palatini’s formulation of general relativity [37], where both metric and connection
are assumed to be fields.
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The connection∇ is assumed to be metric compatible, i.e∇g = 0 but not necessarily
torsion-free, i.e.∇ is not necessarily the Levi-Civita connection. Therefore,under
a change of frame we have the following transformation of internal energy density

e′(t, x′,p′,g,∇) = e(t, x,p, ξ ∗
t g, ξ ∗

t ∇). (4.123)

Thus, at t = t0

ė′ = ė +
∂e

∂g
: Lwg +

∂e

∂∇
: Lw∇. (4.124)

We know that for a given connection∇ [27]

Lw∇ = ∇∇w + R · w. (4.125)

Or in coordinates
(Lw∇)a bc = wab|c + Ra

dbcw
d, (4.126)

where R is the curvature tensor of(S,g).

Balance of energy forϕt(U) ⊂ S is written as

d

dt

∫

ϕt (U)

ρ(x, t)
[
e(t, x,p,g,∇)+

1

2
〈〈v, v〉〉 +

1

2
j 〈〈̃v, ṽ〉〉

]

=

∫

ϕt (U)

ρ(x, t)
(
〈〈b, v〉〉 +

〈〈̃
b, ṽ

〉〉
+ r

)
+

∫

∂ϕt (U)

(
〈〈t, v〉〉 +

〈〈̃
t, ṽ

〉〉
+ h

)
da. (4.127)

Let us postulate that energy balance is invariant under arbitrary spatial changes of
frame ξt : S → S, i.e.

d

dt

∫

ϕ′
t (U)

ρ ′(x′, t)

[
e′(t, x′,p′,g,∇)+

1

2

〈〈
v′, v′

〉〉
+

1

2
j ′

〈〈
ṽ′, ṽ′

〉〉]

=

∫

ϕ′
t (U)

ρ ′(x′, t)
(〈〈

b′, v′
〉〉

+
〈〈̃
b′, ṽ′

〉〉
+ r ′

)
+

∫

∂ϕ′
t (U)

(〈〈
t′, v′

〉〉
+

〈〈̃
t′, ṽ′

〉〉
+ h′

)
da.

(4.128)

We know that

e′(t, x′,p′,g,∇) = e(t, x,p, ξ ∗
t g, ξ ∗

t ∇), r
′ = r, h′ = h, (4.129)

ρ ′(x′, t) = ξt∗ρ(x, t), v′ = ξt∗v + w, b′ − a′ = ξt∗(b − a), (4.130)

t′ = ξt∗t, t̃′ = ξt ∗̃t, b̃′ − ã′ = ξt∗(̃b − ã). (4.131)
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Subtracting balance of energy forϕt(U) from that of ϕ′
t(U) at t = t0, we obtain

∫

ϕt (U)

[
L vρ

(
1

2
〈〈w,w〉〉 + 〈〈v,w〉〉

)
+ L v(ρj)

(
1

2
〈〈∇w · p,∇w · p〉〉 + 〈〈̃v,∇w · p〉〉

)

+ ρ

(
∂e

∂g
: Lwg +

∂e

∂∇
: (∇∇w + R · w)+ 〈〈a,w〉〉 + j 〈〈̃a,∇w · p〉〉

)]

=

∫

ϕt (U)

ρ 〈〈b,w〉〉+

∫

∂ϕt (U)

〈〈t,w〉〉 da+

∫

ϕt (U)

〈〈
ρb̃,∇w · p

〉〉
+

∫

∂ϕt (U)

〈〈̃
t,∇w · p

〉〉
da.

(4.132)

Assuming thatξt is such that̃v′
∣∣
t=t0

− ṽ = 0, i.e. ∇w = 0, Cauchy’s theorem applied
to (4.132) implies that there is a second-order tensorσ such thatt = 〈〈σ ,n〉〉. Now
applying Cauchy’s theorem to (4.132) for an arbitraryξt implies the existence of
another second-order tensor̃σ such that̃t = 〈〈σ̃ ,n〉〉.

REMARK . Microstructure manifold is the tangent space of the ambient space
manifold at every point. However, microstructure is not related to the deformation
mapping. This is why, unlike the so-called second-grade materials (see Fried and
Gurtin [14]), two separate stress tensors exist.

As U and w are arbitrary, and replacingρ by ρdv in (4.132), we conclude that

L vρ = 0, (4.133)

L vj = 0. (4.134)

Now let us simplify the last two integrals in (4.132). The volume integral is
simplified to read

∫

ϕt (U)

〈〈
ρ(̃b − j ã),∇w · p

〉〉
dv =

∫

ϕt (U)

ρ(̃b − j ã)⊗ p :

(
1

2
Lwg + ω

)
dv. (4.135)

The surface integral is simplified as

∫

∂ϕt (U)

〈〈̃
t,∇w · p

〉〉
da =

∫

ϕt (U)

(
σ̃ adpcwa|c

)
|d
dv

=

∫

ϕt (U)

[(div σ̃ )⊗ p + σ̃ · ∇p] :

(
1

2
Lwg + ω

)
dv +

∫

ϕt (U)

σ̃ adpcwa|c|d dv,

=

∫

ϕt (U)

[(div σ̃ )⊗ p + σ̃ · ∇p] :

(
1

2
Lwg + ω

)
dv +

∫

ϕt (U)

σ̃ ⊗ p̃ : ∇∇w dv.

(4.136)
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Thus
∫

ϕt (U)

(
−2ρ

∂e

∂g
+ σ + (div σ̃ )⊗ p + σ̃ · ∇p + ρ(̃b − j ã)⊗ p

)
:

1

2
Lwgdv

+

∫

ϕt (U)

(
−2ρ

∂e

∂g
+ σ + (div σ̃ )⊗ p + σ̃ · ∇p + ρ(̃b − j ã)⊗ p

)
: ω dv

+

∫

ϕt (U)

〈〈
−ρa + ρb + div σ − ρ

∂e

∂∇
: R,w

〉〉
dv,

+

∫

ϕt (U)

(
−ρ

∂e

∂∇
+ σ̃ ⊗ p̃

)
: ∇∇w dv = 0. (4.137)

Therefore, becauseU ,w, and z are arbitrary we finally obtain

L vρ = 0, (4.138)

L vj = 0, (4.139)

div σ + ρb = ρa + ρ
∂e

∂∇
: R, (4.140)

2ρ
∂e

∂g
= σ + (div σ̃ )⊗ p + σ̃ · ∇p + ρ(̃b − j ã)⊗ p, (4.141)

[
σ + (div σ̃ )⊗ p + σ̃ · ∇p + ρb̃ ⊗ p

]T
= σ + (div σ̃ )⊗ p + σ̃ · ∇p + ρ(̃b − j ã)⊗ p,

(4.142)

ρ
∂e

∂∇
= σ̃ ⊗ p. (4.143)

In component form, (4.141) reads

2ρ
∂e

∂gab
= σ ab + σ̃ ac |cp

b + σ̃ acpb |c + ρ(̃ba − ãa)pb = σ ab + ρ(̃ba − ãa)pb +
(
σ̃ acpb

)
|c
.

(4.144)
Note that combining (4.140) and (4.143), one can write balance of linear momentum
as

div σ + ρb = ρa + (σ̃ ⊗ p) : R. (4.145)

This means that both stress and micro-stress tensors contribute to balance of linear
momentum. It is seen that there is a single balance of linear momentum, a single
balance of angular momentum both with contributions from forces and micro-forces,
and two Doyle–Ericksen formulas.

We should mention that Toupin [35, 36] showed that for elastic materials for which
energy depends on gradient of the deformation gradient, i.e. the second derivative
of deformation mapping, balance of linear momentum and angular momentum are
both coupled for micro and macro forces. However, as was mentioned earlier, here
we are not considering second-grade materials.
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Generalized covariance of energy balance for spatially constrained structured
continua. In all the previous examples we observed that covariance under a single
spatial diffeomorphism cannot lead to a separate balance ofmicro-linear momentum.
Let us consider two diffeomorphismsξt , ηt : S → S such that both are identity at
t = t0 and

z 6= w, ∇z 6= ∇w, ∇∇z = ∇∇w, (4.146)

where

w =
∂

∂t

∣∣∣
t=t0

ξt , z =
∂

∂t

∣∣∣
t=t0

ηt . (4.147)

We assume that under the simultaneous actions of these two diffeomorphisms,ηt
acts on micro-quantities andξt acts on the remaining quantities (including metric
and connection). Thus, in the new frame

p′ = ηt∗p, ṽ′ = ṽ + ∇pz, ã′ − b̃′ = ηt∗(̃a − b̃). (4.148)

We assume that energy balance is invariant under the simultaneous actions ofξt and
ηt and call this ageneralized covariance. Therefore, generalized covariance implies
that at time t = t0

∫

ϕt (U)

[
L vρ

(
1

2
〈〈w,w〉〉 + 〈〈v,w〉〉

)
+ L v(ρj)

(
1

2
〈〈∇z · p,∇z · p〉〉 + 〈〈̃v,∇z · p〉〉

)

+ ρ

(
∂e

∂g
: Lwg +

∂e

∂∇
: (∇∇w + R · w)+ 〈〈a,w〉〉 + 〈〈j ã,∇z · p〉〉

) ]

=

∫

ϕt (U)

ρ 〈〈b,w〉〉+

∫

∂ϕt (U)

〈〈t,w〉〉 da+

∫

ϕt (U)

〈〈
ρb̃,∇z · p

〉〉
+

∫

∂ϕt (U)

〈〈̃
t,∇z · p

〉〉
da.

(4.149)

Arbitrariness ofw and z gives us conservation of massL vρ = 0, conservation of
microstructure inertiaL vj = 0, and the existence of stress tensorsσ and σ̃ . Thus

∫

ϕt (U)

ρ

(
∂e

∂g
: Lwg +

∂e

∂∇
: (∇∇w + R · w)+ 〈〈a,w〉〉 + 〈〈j ã,∇z · p〉〉

)

=

∫

ϕt (U)

ρ 〈〈b,w〉〉 +

∫

∂ϕt (U)

〈〈t,w〉〉 da +

∫

ϕt (U)

〈〈
ρb̃,∇z · p

〉〉

+

∫

ϕt (U)

[(div σ̃ )⊗ p + σ̃ · ∇p] : ∇zdv +

∫

ϕt (U)

σ̃ ⊗ p̃ : ∇∇zdv. (4.150)
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Arbitrariness ofz,w, and U , and noting that∇∇z = ∇∇w, one obtains

div σ + ρb = ρa + ρ
∂e

∂∇
: R, (4.151)

2ρ
∂e

∂g
= σ , (4.152)

σ
T = σ ,

div(σ̃ ⊗ p)+ ρb̃ ⊗ p = ρã ⊗ p, (4.153)

ρ
∂e

∂∇
= σ̃ ⊗ p. (4.154)

It is seen that generalized covariance gives a separate balance of micro-linear
momentum, i.e. Eq. (4.153).

5. Examples of continua with microstructure
In this section, we present two examples of continua with microstructure and

obtain their governing equations covariantly. We first lookat a theory of elastic solids
with voids (see Nunziato and Cowin [31]), which is a structured continuum with
a one-dimensional microstructure manifold. We show that microstructure covariance
in this case gives all the balance laws and a scalar Doyle–Ericksen formula. We
then geometrically study the classical theory of mixtures (see Bowen [3], Bedford
and Drumheller [2], Green and Naghdi [18], Sampaio [32], Williams [38]) and
obtain the governing equations covariantly.

5.1. A geometric theory of elastic solids with distributed voids

An elastic solid with distributed voids can be thought of as astructured continuum
with a scalar microstructure kinematical variable, as in Capriz [6]; here, we follow
Nunziato and Cowin [31]. In addition to the standard deformation mapping, it is
assumed that mass density has the following multiplicativedecomposition

ρ0(X) = ρ0(X, t)ν0(X, t), (5.1)

whereρ0 is the density of the matrix material andν0 is the matrix volume fraction
and 0< ν0 ≤ 1. Deformation is a pair of mappings(ϕt , ϕ̃t) : B × B → S × R.
Material void velocity and void deformation gradient (a one-form on B) are defined
as

Ṽ (X, t) =
∂ν0(X, t)

∂t
, F̃(X, t) =

∂ν0(X, t)
∂X

. (5.2)

Spatial void velocity is defined as̃v = Ṽ ◦ ϕ−1. Internal energy density atx ∈ S

has the following form
e = e(t, x,g, ν, T ν), (5.3)

where ν = ν0 ◦ ϕ and hence

(T ν)a =
∂ν

∂xa
= F−A

a

∂ν

∂XA
. (5.4)
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For a subsetϕt(U) ⊂ S, balance of energy reads

d

dt

∫

ϕt (U)

ρ(x, t)
(
e(t, x,g, ν, T ν)+

1

2
〈〈v, v〉〉 +

1

2
κ ṽ 2

)
dv

=

∫

ϕt (U)

ρ(x, t)
(
〈〈b, v〉〉 + b̃ ṽ + r

)
dv +

∫

∂ϕt (U)

(
〈〈t, v〉〉 + t̃ ṽ + h

)
da, (5.5)

where κ = κ(x, t) is the so-called equilibrated inertia [31], and̃b and t̃ are the
void body force and traction, respectively, and both are scalars.

Let us first consider a time-dependent spatial change of frame ξt : S → S such
that at t = t0, ξt0 = id. Under this change of frameν ′(x′) = ν(x) and hence

e′ = e′(t, x′,g, ν ′, T ν ′) = e(t, x, ξ ∗
t g, ν, T ν). (5.6)

Therefore, att = t0

ė′ = ė +
∂e

∂g
: Lwg, (5.7)

where w = ∂
∂t
ξt

∣∣
t=t0

. Subtracting balance of energy forϕt(U) from that of ϕ′
t(U) at

t = t0, gives the existence of Cauchy stress and the standard balance laws [39].
Let us now consider a microstructure change of frameηt : (0,1] → (0,1] such

that ηt
∣∣
t=t0

= id and
∂ηt(ν)

∂t
= zt(ν). (5.8)

Void velocity in the new frame has the following form,

ṽ ′ =
∂

∂t
ηt ◦ ν = ηt∗ṽ + zt . (5.9)

Thus, at t = t0, ṽ ′(ν) = ṽ(ν)+ z(ν). Under the void change of frame, we have

e′(t, x,g, ν ′, T ν ′) = e(t, x,g, ν, T ηt · T ν). (5.10)

Note that

d

dt
(T ηt · T ν) =

d

dt

(
∂ηt

∂ν

)
∂ν

∂X
+
∂ηt

∂ν

∂ṽ

∂X
=
∂z

∂ν

∂ν

∂X
+
∂2ηt(ν)

∂ν2

∂ν

∂X
+
∂ηt

∂ν

∂ṽ

∂X
. (5.11)

Thus, at t = t0
d

dt
(T ηt · T ν) = z′(ν)

∂ν

∂X
+
∂ηt

∂ν

∂ṽ

∂X
. (5.12)

Therefore, att = t0

ė′ = ė +
∂e

∂ν,A
ν,Az

′(ν). (5.13)
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Balance of energy in the new void frame att = t0 reads

∫

ϕt (U)

ρ

[
ė +

∂e

∂ν,A
ν,Az

′(ν)+ 〈〈v,a〉〉 +
1

2
κ̇ (̃v + z)2 + κã(̃v + z)

]
dv

=

∫

ϕt (U)

ρ
(
〈〈b, v〉〉 + b̃(̃v + z)+ r

)
dv +

∫

∂ϕt (U)

(
〈〈t, v〉〉 + t̃ (̃v + z)+ h

)
da. (5.14)

Subtracting (5.5) from (5.14), one obtains
∫

ϕt (U)

ρ

[
∂e

∂ν,A
ν,Az

′(ν)+
1

2
κ̇(2̃vz+ z2)+ κãz

]
dv =

∫

ϕt (U)

ρb̃zdv +

∫

∂ϕt (U)

t̃ zda.

(5.15)
Becausez and U are arbitrary, we conclude thaṫκ = 0, which is the balance of
equilibrated inertia [15]. Using Cauchy’s theorem in the above identity, we conclude
that there exists a vector field̃σ (void Cauchy stress), such thatt̃ = σ̃ an̂a. Therefore,
the surface integral in (5.15) can be simplified to read

∫

∂ϕt (U)

t̃ zda =

∫

ϕt (U)

[
(div σ̃ )z+ F−A

aσ̃
aν,Az

′
]
dv. (5.16)

Now, (5.15) can be rewritten as
∫

ϕt (U)

(
ρ
∂e

∂ν,A
ν,A − F−A

a σ̃
aν,A

)
z′(ν)dv −

∫

ϕt (U)

(
div σ̃ + ρb̃ − ρã

)
z(ν)dv = 0.

(5.17)
Becausez and z′ can be chosen independently andU is arbitrary, we conclude that

div σ̃ + ρb̃ = ρã, (5.18)

F−A
a σ̃

aν,A = ρ
∂e

∂ν,A
ν,A. (5.19)

Eq. (5.18) is balance of equilibrated linear momentum [31] and Eq. (5.19) is a
scalar Doyle–Ericksen formula.

5.2. A geometric theory of mixtures

In mixture theory, one is given a finite number of bodies (constituents) that can
penetrate into one another with the understanding that there is no self penetration
within a given constituent. Here, for the sake of simplicity, we ignore diffusion as
our goal is to demonstrate the power of covariance argumentsin deriving the balance
laws. We assume that in our mixtureM there are two constituents; generalization
of our results to the case ofN constituents is straightforward. We denote the
constituents by1 and 2. We should mention that recently Mariano [24] studied
some invariance/covariance ideas for mixtures. Our approach is slightly different as
will be explained in the sequel.
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Each constituent is assumed to have its own reference manifold
(

iB, iG
)
, i = 1,2.

Deformation of M is defined by two deformation mappingsiϕt , i = 1,2 such that

iϕt :
(

iB, iG
)

→
(
S, ig

)
, i = 1,2, (5.20)

i.e., it is assumed that the ambient space manifoldS is equipped with two different
metrics 1g and 2g.3 Material and spatial velocities are defined as

iV(X i, t) =
∂ iϕt(X i, t)

∂t
, iv = iV ◦ iϕ−1

t , i = 1,2. (5.21)

Deformation gradients are tangent maps of the two deformation mappings, i.e.,
iF = T iϕ, i = 1,2.

Given x ∈ iϕt(Bi), it is assumed that this point is occupied by particles from
both B1 and B2, i.e., given a timet0, x is the pre-image of particlesX1 and X2
defined as

X1 = 1ϕ−1
t0
(x) and X2 = 2ϕ−1

t0
(x). (5.22)

Thus, at a later timet
1ϕt(X1) = 1ϕt ◦

1ϕ−1
t0
(x) 6= 2ϕt(X2) = 2ϕt ◦

2ϕ−1
t0
(x), (5.23)

i.e., in general, the two particlesX1 and X2 will occupy two different points ofS
at time t . This means that one can have spatial changes of frame that act separately
on different constituents.4

In the traditional formulation of mixture theories, for each constituent, one
assumes the existence of an internal energy density and a “growth” of internal
energy density. Here, we assume that each constituent has aninternal energy that
depends on all the spatial metrics. For our two-phase mixture M this means that

e1 = e1
(
t, x, 1g, 2g

)
and e2 = e2

(
t, x, 1g, 2g

)
. (5.24)

Dependence of each internal energy density on both the spatial metrics accounts for
the interaction of constituents. Each constituent is assumed to have its own mass
density ρi, i = 1,2, and mass density at pointx is defined as

ρ(x, t) = ν1(x, t)ρ1(x, t)+ ν2(x, t)ρ2(x, t), (5.25)

where νi are volume fractions of the constituents, although at this point we do not
need to defineρ.

Balance of energy for a subsetUt = 1ϕt(U1) = 2ϕt(U2) ⊂ S is written as

d

dt

∫

Ut

∑

i

ρi(x, t)
[
ei

(
x, t, 1g, 2g

)
+

1

2

〈〈
iv, iv

〉〉
i

]

=

∫

Ut

∑

i

ρi(x, t)
(〈〈

ib, iv
〉〉

i
+ ri

)
+

∫

∂Ut

∑

i

(〈〈
it, iv

〉〉
i
+ hi

)
da, (5.26)

3This is similar to what Mariano [24] does when postulating covariance of energy balance.
4This is closely related to what Mariano [24] does in his energy balance covariance argument.
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where 〈〈., .〉〉i is the inner product induced from the metricig and all the other
quantities have the obvious meanings. Balance of energy canbe simplified to read

∫

Ut

∑

i

L iv ρi(x, t)
[
ei

(
x, t, 1g, 2g

)
+

1

2

〈〈
iv, iv

〉〉
i

]

+

∫

Ut

∑

i

ρi(x, t)
[
ėi

(
x, t, 1g, 2g

)
+

〈〈
iv, ia

〉〉
i

]

=

∫

Ut

∑

i

ρi(x, t)
(〈〈

ib, iv
〉〉

i
+ ri

)
+

∫

∂Ut

∑

i

(〈〈
it, iv

〉〉
i
+ hi

)
da. (5.27)

Traditionally, a separate balance of energy is postulated for each constituent [24].
Here, we only postulate a balance of energy for the whole mixture.

We now consider a spatial diffeomorphismξt : S → S that acts only on(S, 1g)
and is the identity map att = t0. We postulate covariance of energy balance, i.e.,
in the new spatial frame energy balance reads

d

dt

∫

U ′
t

ρ ′
1(x

′, t)

[
e′1

(
x′, t, 1g, 2g

)
+

1

2

〈〈1v′, 1v′
〉〉

1

]

+
d

dt

∫

U ′
t

ρ ′
2(x

′, t)

[
e′2

(
x′, t, 1g, 2g

)
+

1

2

〈〈2v′, 2v′
〉〉

2

]

=

∫

U ′
t

ρ ′
1(x

′, t)
(〈〈1b′, 1v′

〉〉
1 + r ′

1

)
+

∫

∂U ′
t

(〈〈1t′, 1v′
〉〉

1 + h′
)
da′,

+

∫

U ′
t

ρ ′
2(x

′, t)
(〈〈2b′, 2v′

〉〉
2 + r ′

2

)
+

∫

∂U ′
t

(〈〈2t′, 2v′
〉〉

2 + h′
2

)
da′. (5.28)

Spatial velocities have the following transformations,
1v′ = ξt∗

1v + wt and 2v′ = 2v. (5.29)

We assume that1b is transformed such that [27]
1b′ − 1a′ = ξt∗

(1b − 1a
)
. (5.30)

Note also that

e′1
(
x′, t, 1g, 2g

)
= e1

(
x, t, ξ ∗

t
1g, 2g

)
, (5.31)

e′2
(
x′, t, 1g, 2g

)
= e2

(
x, t, ξ ∗

t
1g, 2g

)
. (5.32)

Thus, at t = t0,

˙
e′1 = ė1 +

∂e1

∂ 1g
: Lw

1g, (5.33)

˙
e′2 = ė2 +

∂e2

∂ 1g
: Lw

1g. (5.34)
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Subtracting the energy balance (5.27) from (5.28) evaluated at t = t0 yields
∫

Ut

L 1v ρ1(x, t)
[〈〈

w, 1v
〉〉

1 +
1

2
〈〈w,w〉〉1

]
+

∫

Ut

ρ1(x, t)
(
∂e1

∂ 1g
+
∂e2

∂ 1g

)
: Lwg

=

∫

Ut

ρ1(x, t)
(〈〈1b − 1a,w

〉〉
1

)
+

∫

∂Ut

(〈〈1t,w
〉〉

1

)
da. (5.35)

Arbitrariness ofUt and w would guarantee the existence of a Cauchy stress1
σ such

that 1t = 〈〈1
σ , n̂〉〉1 and also will give the following after replacingρ1 by ρ1dv,

L 1v ρ1 = 0, (5.36)

div1
1
σ + ρ1

1b = ρ1
1a, (5.37)

1
σ = 1

σ
T, (5.38)

1
σ = 2ρ1

∂(e1 + e2)

∂ 1g
. (5.39)

Similarly, assuming thatξt : S → S acts only on (S, 2g) and postulating energy
balance covariance will give the following balance laws,

L 2v ρ2 = 0, (5.40)

div2
2
σ + ρ2

2b = ρ2
2a, (5.41)

2
σ = 2

σ
T, (5.42)

2
σ = 2ρ2

∂(e1 + e2)

∂ 2g
. (5.43)

Note the coupling in the Doyle–Ericksen formulas. Note alsothat these balance
laws can be pulled back to eitherB1 or B2.

6. Lagrangian field theory of continua with microstructure, noether’s theorem
and covariance

The original formulations of Cosserat continua were mainlyvariational [35, 36].
There have also been recent geometric formulations in the literature [7, 11]. In
this section we consider a Lagrangian density that depends explicitly on metrics
and look at the corresponding Euler–Lagrange equations. Then an explicit relation
between covariance and Noether’s theorem is established. Similar to the ambiguity
encountered in covariant energy balance in terms of the linkof the microstructure
manifold with the ambient space manifold, here we will see that this ambiguity
shows up in the action of a given flow on different independentvariables of the
Lagrangian density.

The Lagrangian may be regarded as a mapL : T C → R, where C is the space
of some sections5, associated to the Lagrangian densityL and a volume element

5See Marsden and Hughes [27] for details in the case of standardcontinua. The case of structured continua
would be a straightforward generalization.
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dV (X) on B and is defined as

L(ϕ, ϕ̇, ϕ̃, ˙̃ϕ)

=

∫

B

L

(
X, ϕ(X), ϕ̇(X),F(X),G(X),g(ϕ(X)), ϕ̃(X), ˙̃ϕ(X), F̃(X), g̃(ϕ(X))

)
dV (X).

(6.1)

Here ϕ and ϕ̃ are understood as fields representing standard and microstructure
deformations, respectively. Note that, in general, one mayneed to consider more
than one microstructure field with possibly different tensorial properties. Note also
that in this material representation, the two mapsϕ and ϕ̃ have the same role and
it is not clear from the Lagrangian density which one is the standard deformation
map. However, having the coordinate representation for these two maps and their
tangent maps, one can see which one is the microstructure map. Note also thatg
and g̃ are background metrics with no dynamics.

The action function is defined as

S(ϕ) =

∫ t1

t0

L(ϕ, ϕ̇, ϕ̃, ˙̃ϕ)dt. (6.2)

Hamilton’s principle states that the physical configuration(ϕ, ϕ̃) is the critical point
of the action, i.e.

δS = dS(ϕ, ϕ̃) · (δϕ, δϕ̃) = 0. (6.3)

This can be simplified to read
∫ t1

t0

∫

B

(∂L
∂ϕ

· δϕ +
∂L

∂ϕ̇
· δϕ̇ +

∂L

∂F
: δF +

∂L

∂g
: δg

+
∂L

∂ϕ̃
· δϕ̃ +

∂L

∂ ˙̃ϕ
· δ ˙̃ϕ +

∂L

∂F̃
: δF̃ +

∂L

∂g̃
: δ̃g

)
dV (X)dt = 0. (6.4)

As δϕ and δϕ̃ are independent, we obtain the following Euler–Lagrange equations

∂L

∂ϕa
−
d

dt

∂L

∂ϕ̇a
−

(
∂L

∂F aA

)

|A

−
∂L

∂F bA
F cAγ

b
ac + 2

∂L

∂gcd
gbdγ

b
ac = 0, (6.5)

∂L

∂ϕ̃α
−
d

dt

∂L

∂ ˙̃ϕα
−

(
∂L

∂F̃ αA

)

|A

−
∂L

∂F̃ βA
F̃µAγ̃

β
αµ + 2

∂L

∂g̃µλ
g̃βλγ̃

β
αµ = 0. (6.6)

We know that because of material-frame-indifference,L depends onF and g
through C. Thus, Euler–Lagrange equations for the standard deformation mapping
is simplified to read

Pa
A

|A +
∂L

∂ϕa
= ρ0gabA

b, (6.7)

∂L

∂ϕ̃α
−
d

dt

∂L

∂ ˙̃ϕα
+ P̃α

A
|A + P̃β

AF̃µAγ̃
β
αµ + 2

∂L

∂g̃µλ
g̃βλγ̃

β
αµ = 0, (6.8)
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where
Pa

A = −
∂L

∂F aA
, P̃α

A = −
∂L

∂F̃ αA
. (6.9)

When Euler–Lagrange equations are satisfied, given a symmetry of the Lagrangian
density Noether’s theorem tells us what its corresponding conserved quantity is.
Supposeψs is a flow on S generated by a vector fieldw, i.e.

d

ds

∣∣∣
s=0
ψs ◦ ϕ = w ◦ ϕ. (6.10)

Now if we assume that this flow leaves the microstructure quantities unchanged,
i.e., if we assume that the ambient space manifold and the microstructure manifold
are independent, then invariance of the Lagrangian densitymeans that

L

(
XA, ψas (ϕ),

∂ψas

∂xb
ϕ̇b,

∂ψas

∂xb
F bA,GAB,−

∂ψcs

∂xa

∂ψds

∂xb
gcd, ϕ̃

α, ˙̃ϕ
α
, F̃ αA, g̃αβ

)

= L
(
XA, ϕa, ϕ̇a, F aA,GAB, gab, ϕ̃

α, ˙̃ϕ
α
, F̃ αA, g̃αβ

)
. (6.11)

Yavari et al. [39] proved that this implies the following twoconditions

2
∂L

∂gab
= gbc

∂L

∂F cA
F aA + gbc

∂L

∂ϕ̇c
ϕ̇a, (6.12)

∂L

∂ϕa
= 0, (6.13)

i.e., the Doyle–Ericksen formula and spatial homogeneity of the Lagrangian density.
Now, supposeηs is a flow on M generated by a vector fieldz, i.e.

d

ds

∣∣∣
s=0
ηs ◦ ϕ̃ = z ◦ ϕ̃. (6.14)

Invariance of the Lagrangian density with respect toηs means that

L

(
XA, ϕa, ϕ̇a, F aA,GAB, gab, η

α
s (ϕ̃),

∂ηαs

∂pβ
˙̃ϕ
β
,
∂ηαs

∂pβ
F̃ βA,−

∂η
µ
s

∂pα

∂ηλs

∂pβ
g̃µλ

)

= L
(
XA, ϕa, ϕ̇a, F aA,GAB, gab, ϕ̃

α, ˙̃ϕ
α
, F̃ αA, g̃αβ

)
. (6.15)

Differentiating the above identity with respect tos and evaluating it fors = 0, after
some lengthy manipulations we obtain

2
∂L

∂g̃αβ
= F̃ αA g̃βµ

∂L

∂F̃µA
+ gβµ

∂L

∂ ˙̃ϕ
µ

˙̃ϕ
α
, (6.16)

d

dt

∂L

∂ ˙̃ϕ
α +

(
∂L

∂F̃ αA

)

|A

−
∂L

∂ ˙̃ϕ
λ
γ̃ λαµ

˙̃ϕ
µ

= 0. (6.17)

Assuming thatL has the following splitting in terms of internal energy density and
kinetic energy
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L = ρ0e +
1

2
ρ0 〈〈V,V〉〉g +

1

2
ρ̃0

〈〈
Ṽ, Ṽ

〉〉
g̃ , (6.18)

(6.16) is simplified to read

2ρ0
∂e

∂g̃αβ
= F̃ αA g̃βµ

∂L

∂F̃µA
= F̃ αAP̃

βA. (6.19)

Now let us simplify this relation and show that it is exactly equivalent to (4.40).
Note that

P̃ αA = J
(
F−1)A

b σ̃
αb. (6.20)

Thus
F̃ αAP̃

βA = J
(̃
FF−1)α

b σ̃
βb. (6.21)

Hence

2ρ
∂e

∂g̃αβ
= (F0)

α
b σ̃

βb. (6.22)

This means that (6.16) is equivalent to (4.40)!
Following Yavari et al. [39], it can be shown that using Euler–Lagrange equations

and some lengthy manipulations, (6.17) can be simplified to read

∂L

∂ϕ̃α
= 0. (6.23)

This means that if Lagrangian density is microstructurallycovariant, then it has
to be microstructurally homogenous and a micro-Doyle–Ericksen formula should be
satisfied.

de Fabritiis and Mariano [11] study invariance of Lagrangian density of a struc-
tured continuum under different groups of transformations. In particular, they require
invariance of the Lagrangian density when the same copy ofSO(3) acts on ambient
space and microstructure manifolds in order to obtain balance of angular momentum.
This seems to be a matter of choice at first sight but can also beunderstood as
an interpretation of balance of angular momenta for a special class of structured
continua. In the following, we study a similar symmetry of the Lagrangian density.

Constrained microstructure manifold. Now let us assume thatM(X) = Tϕt (X)S.
In this case the Euler–Lagrange equations are

Pa
A

|A +
∂L

∂ϕa
= ρ0gabA

b, (6.24)

∂L

∂ϕ̃a
−
d

dt

∂L

∂ ˙̃ϕa
−

(
∂L

∂F̃ aA

)

|A

−
∂L

∂F̃ bA
F̃ cAγ

b
ac = 0. (6.25)

Now a flow on S would affect the microstructure quantities too. In this case
invariance of the Lagrangian density means that
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L

(
XA, ψas (ϕ),

∂ψas

∂xb
ϕ̇b,

∂ψas

∂xb
F bA,GAB,−

∂ψcs

∂xa

∂ψds

∂xb
gcd,

∂ψas

∂xb
ϕ̃b,

∂ψas

∂xb
˙̃ϕ
b
,
∂ψas

∂xb
F̃ bA

)

= L
(
XA, ϕa, ϕ̇a, F aA,GAB, gab, ϕ̃

a, ˙̃ϕ
a
, F̃ aA

)
. (6.26)

Differentiating the above identity with respect tos and evaluating it ats = 0 yields

2
∂L

∂gab
= gbc

(
∂L

∂F cA
F aA +

∂L

∂ϕ̇c
ϕ̇a +

∂L

∂ϕ̃c
ϕ̃a +

∂L

∂ ˙̃ϕ
c
˙̃ϕ
a
+

∂L

∂F̃ cA
F̃ aA

)
, (6.27)

∂L

∂ϕa
−

(
∂L

∂ϕ̃c
ϕ̃a +

∂L

∂ ˙̃ϕ
c
˙̃ϕ
a
+

∂L

∂F̃ cA
F̃ aA

)
γ cab = 0. (6.28)

7. Concluding remarks

This paper first critically reviewed the geometry of structured continua. Similar to
classical continuum mechanics, one assumes the existence of a well-defined reference
configuration and each material point is mapped to its current position in the ambient
space by the standard deformation mapping. In addition to this, each material point
is given a director, which lies in a microstructure manifold. A separate map, the
microstructure deformation mapping, maps each material point to its director, which
could be a scalar field, a vector field, or in general a tensor field.

The Green–Naghdi–Rivlin Theorem relates balance laws to invariance of balance of
energy under some groups of transformations. Previous attempts to extend this theorem
to structured continua were critically reviewed. It was explained that any generaliza-
tion of this theorem explicitly depends on the nature of the microstructure manifold.
It turns out that in most continua with microstructure, the microstructure manifold is
linked to the ambient space manifold. We gave a concrete example of a structured
continuum, in which the ambient space is Euclidean, for which the microstructure
manifold is againR

3 but thought of as the tangent space ofR
3 at a given point.

Postulating balance of energy and its invariance under isometries ofR3, we obtained
conservation of mass, balance of linear momentum and balance of angular momentum
with contributions from both macro and micro-forces. Limiting oneself to rigid mo-
tions does not allow one to obtain a separate balance of micro-linear momentum. This
leads one to think about investigating covariant balance laws for structured continua.

We first assumed that the structured continuum is such that the ambient space
and the macrostructure manifold can have independent reframings. We showed that
postulating energy balance and its invariance under spatial and microstructure diffeo-
morphisms gives conservation of mass, existence of Cauchy stress and micro-Cauchy
stress, balance of linear and micro-linear momenta, balance of angular and micro-
angular momenta and two Doyle–Ericksen formulas. We then considered structured
continua for which the microstructure manifold is somewhatconstrained in the sense
that a spatial change of frame affects the microstructure quantities too. As concrete
examples, we defined materially and spatially constrained structured continua. In
a spatially constrained continuum the microstructure bundle is the tangent bundle
of the ambient space manifold. In a materially constrained structured continuum,
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microstructure manifold at a given pointX ∈ B is TXB. We showed that postulating
energy balance and its invariance under spatial diffeomorphisms for a MCS continuum
gives conservation of mass, two balances of linear momentum, two balances of angular
momentum and two Doyle–Ericksen formulas. For a SCS continuum, spatial covari-
ance gives balances of linear and angular momenta, which both have contributions
from macro and micro forces. We then defined a generalized covariance in which two
separate maps act on macro and micro quantities simultaneously. Under some assump-
tions, we showed that generalized covariance can give a coupled balance of angular
momentum and two separate balances of linear momentum for macro and micro forces.

As concrete examples of structured continua, we looked at elastic solids with
distributed voids and mixtures and obtained their balance laws covariantly.

In the last part of the paper, we reviewed the Lagrangian fieldtheory of
structured continua, when both ambient space and microstructure manifolds are
equipped with their own metrics. Assuming that standard deformation mapping and
microstructure deformation mapping are independent, theywould have independent
variations and hence Hamilton’s principle of least action gives us two sets of Euler–
Lagrange equations. We then studied the connection betweenNoether’s theorem and
covariance. It was observed that there is some ambiguity in making this connection.
The ambiguity arises from the fact that there are different possibilities in defining
covariance for a Lagrangian density. One choice is to assumethat the Lagrangian
density is covariant under independent actions of spatial and microstructure flows. We
showed that this results in Doyle–Ericksen formulas identical to those obtained from
covariant energy balance for structured continua with freemicrostructure manifolds.
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