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This article is concerned with the theory of quasivelocities for non-holonomic
systems. The equations of non-holonomic mechanics are derived using the
Lagrange—d’Alembert principle written in an arbitrary configuration-dependent
frame. The article also shows how quasivelocities may be used in the formulation
of non-holonomic systems with symmetry. In particular, the use of quasivelocities
in the analysis of symmetry that leads to unusual momentum conservation
laws is investigated, as is the applications of these conservation laws and
discrete symmetries to the qualitative analysis of non-holonomic dynamics.
The relationship between asymptotic dynamics and discrete symmetries of the
system is also elucidated.
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1. Introduction

Quasivelocities are the velocities of a mechanical system expressed relative to
a configuration-dependent frame. The mathematical underpinnings of quasivelocities in
texts such as [1] and [2] have not been as developed as is desirable, although their
usefulness was clearly demonstrated. The additional clarity provided by the present article
should expand the scope of applications and uses of this important concept.

The goal of this article is to develop the use of quasivelocities in the dynamics of
non-holonomic systems with symmetry. Key forms of the equations of dynamics including
the Hamel equations and the Euler—Lagrange—Poincaré equations are derived, and their
relationship to quasivelocities is spelled out. The equations of motion for non-holonomic
systems are obtained, and conditions under which an appropriate choice of frame evokes
otherwise hidden momentum conservation laws are found. The resulting formalism is
utilized in the analysis of the dynamics of some instructive non-holonomic systems
including the Chaplygin sleigh and the sleigh coupled to an oscillator.

Said from a slightly different perspective, quasivelocities are the components of
a mechanical system’s velocity relative to a set of vector fields that span the fibres
of the tangent bundle of the configuration space. These vector fields need not be
associated with (local) configuration coordinates, so in fact, this article does not
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mention ‘quasicoordinates’, a vacuous concept that has led to some confusion in the
literature. A good example of quasivelocities is the set of components of the body angular
velocity of a rigid body rotating about a fixed point.

One of the reasons for using quasivelocities is that the Euler—Lagrange equations
written in generalized coordinates are not always effective for analyzing the dynamics of
a mechanical system of interest. For example, it is difficult to study the motion of the Euler
top if the Euler—Lagrange equations (either intrinsically or in generalized coordinates) are
used to represent the dynamics. On the other hand, the use of the angular velocity
components relative to a body frame pioneered by Euler [3] results in a much simpler
representation of dynamics. Euler’s approach was further developed by Lagrange [4] for
reasonably general Lagrangians on the rotation group and by Poincaré [5] for arbitrary
Lie groups (see [60] for details and history). Other examples include the use of velocity and
angular velocity components relative to a moving frame in the study of dynamics of a rigid
body moving on a surface as discussed in [7,8].

Quasivelocities used in [4] and [5] are associated with a group action. Hamel [9]
obtained the equations of motion in terms of quasivelocities that were unrelated to a group
action on the configuration space. The Hamel equations include both the Euler-Lagrange
and Euler—Poincaré equations (e.g. for the rigid body) as special cases.

This article derives the Hamel equations from a variational point of view; that is, it
develops the form of the principle of critical action that is equivalent to the Hamel
equations. It is then shown how the quasivelocity approach is useful in the treatment
of non-holonomic systems with symmetry. In particular, the selection of suitable
quasivelocies appropriate to the presence of discrete symmetries is developed along with
the application to the qualitative analysis of dynamics.

Non-holonomic systems with symmetry are studied in [10,33] and improved in related
references, such as [11]. According to these papers, symmetry and constraints define
certain sub-bundles of the tangent bundle of the configuration manifold. As will be shown,
it is beneficial to select frames that respect this sub-bundle structure, that is, frames
obtained by concatenation of the bases of these sub-bundles. These frames elucidate the
momentum equations and conservation laws in the system.

The dynamics of a non-holonomic system with symmetry on the sub-bundle whose
fibres are tangent to the group orbits is governed by the momentum equation, an equation
that was introduced in [10]. As shown in [12], the momentum equation is important in the
energy-based analysis of stability of relative equilibria. In the absence of external
dissipation these relative equilibria are often orbitally asymptotically stable in certain
directions in the phase system. Related work on this subject includes [13—15]. Additional
background and references may be found in [16].

The definition of non-holonomic momentum and the derivation of the momentum
equation in [10] relies on the formalism that uses spatial frames. This article utilizes the
flexibility of Hamel equations and gives a derivation of the momentum equation in a body
frame. In a sense, this is a more natural and straightforward approach since the spatial
momentum is almost never conserved in the non-holonomic setting.

The structure of the momentum equation is then used to find conditions under which
one has frames that reveal otherwise hidden momentum conservation laws. In some
instances the construction of such a frame is algorithmic, although it often leads to
implicitly defined frames. In other instances a frame that depends on the group variables in
a non-trivial way is necessary for uncovering momentum conservation laws. An example
of this latter case is the unbalanced Chaplygin sleigh.
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It is not unusual to have points in the configuration space where the fields that define
these frames become linearly dependent. This feature is studied and its utilization in the
qualitative analysis of a system’s dynamics is discussed.

This article is organized as follows. In Section 2 we review the Hamel equations.
In Section 3 non-holonomic systems are briefly discussed and their dynamics is written in
the form of constrained Hamel equations. In Section 4 the equations of motion of systems
with symmetry are derived using quasivelocities. This derivation differs from that in [10]
and in [11] in interesting ways and illustrates the influence of symmetry on the structure of
qusivelocities. The non-holonomic momentum conservation and the corresponding frame
selection are discussed. In Section 5 non-holonomic systems on Lie groups and their
measure-preserving properties are treated. Examples are given in Section 6, where, in
particular, momentum conservation in the unbalanced Chaplygin sleigh and integrability
of the coupled sleigh-oscillator system are established. Finally, the asymptotic behaviour
of momentum conservation laws is studied.

2. Lagrangian mechanics

In this section, we review the equations of motion for holonomic systems from the
Lagrangian viewpoint.

2.1. Equations of motion
2.1.1. The Euler—Lagrange equations

A Lagrangian mechanical system is specified by a smooth manifold Q called the
configuration space and a function L: 7Q — R called the Lagrangian. In many cases, the
Lagrangian is the kinetic minus potential energy of the system with the kinetic energy
defined by a Riemannian metric on the configuration manifold and the potential energy
being a smooth function on Q. If necessary, non-conservative forces can be introduced
(e.g. gyroscopic forces that are represented by terms in L that are linear in the velocity),
but this is not discussed in this article.

In local coordinates ¢=(¢', ..., ¢") on the configuration space Q we write L = L(q, ¢).
The dynamics is given by the Euler—Lagrange equations:

doL oL .
&a—ql—a—ql, l—l,...,}’l. (21)

These equations were originally derived by Lagrange in 1788 by requiring that simple
force balance F=ma be covariant, i.e. expressible in arbitrary generalized coordinates.
A variational derivation of the Euler-Lagrange equations, namely Hamilton’s principle
(also called the principle of critical action), came later in the work of Hamilton in 1834/35.
For more details see [6,16].

2.1.2. The Hamel equations

In this paragraph we introduce the Hamel’s equations. In Section 2.3 we derive these
equations from a global variational principle, generalizing the reduced principle of critical
action for systems with symmetry.
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In many cases the Lagrangian and the equations of motion have a simpler structure
when written using so-called non-commuting variables. An example of such a system is
the rigid body. Below we develop a general approach that allows one to obtain the
Euler—Lagrange equations in such non-commuting variables.

Let ¢=(q',....q") be local coordinates on the configuration space Q and ;e TQ,
i=1,...,n, be smooth independent local vector fields defined in the same coordinate
neighbourhood.! The components of u; relative to the basis 9/d¢’ will be denoted w-é; that is,

; d
. _ J v P
ul(q) - wl(Q) aq/ B} l?] - 19 e n, (2.2)
where a sum on j is understood.
Let v=(v',...,V") € R" be the components of the velocity vector § € TQ relative to the
basis uy, ..., u,, 1.e.
¢ = v'uiq); (2.3)
then
l(q, ) == L(g,v'ui(q)) (2.4)

is the Lagrangian of the system written in the local coordinates (¢, v) on the tangent bundle
TQ. The coordinates (¢, v) are the Lagrangian analogues of non-canonical variables in
Hamiltonian dynamics.

Given two elements v, weR"” define the antisymmetric bracket operation
[ ], R"x R"— R" by

[V’ w]q = [viuia Wlu]](Q)

where [-, -] is the Jacobi—Lie bracket of vector fields on Q. Therefore, each tangent space
T,0 is isomorphic to the Lie algebra V,:=(R", [, ],). Thus, if the fields u,...,u, are
independent in U C Q, the tangent bundle 7U is diffeomorphic to a Lie algebra bundle
over U.

The dual of [-, ], is, by definition, the operation [-, -]Z 1 Vg x Vy; — V; given by

{[v, 0(]2, w) = (adja, w) := (&, [v, w],).

Here ad* is the dual of the usual ad operator in a Lie algebra; note that in general this
operation need not be associated with a Lie group.

Let u=(uy,...,u) €TQ x---xTQ. For a function f: 0 — R, define u[f] € V; by
ulf1=(u[f1, ..., u,[f]), where u,[ /] = ¥}9,f is the usual directional derivative of f along the
vector field u;. Viewing u; as vector fields on 7Q whose fibre components equal 0 (that is,
taking the vertical lift of these vector fields), one defines the directional derivatives u/]
for a function /: TQ — R by the formula

ol

ulll =g

The evolution of the variables (¢, v) is governed by the Hamel equations

dal[az

* Ll

q



04:10 28 April 2009

Downl oaded By: [California Institute of Technol ogy] At:

Dynamical Systems 191

coupled with (2.3). In (2.5), u[l]=(ui[]), . ... u,[]). If u;=8/dq", Equations (2.5) become
the Euler—Lagrange Equations (2.1). Below, we will derive Equations (2.5) using the
principle of critical action. A different approach that makes connections with algebroids is
studied in [17].

2.2. The virtual displacement principle

A virtual displacement at geQ is an element of the tangent space 7,0 denoted
8g=(8¢",...,8¢"). The principle of virtual displacements states that the equations of
motion are determined by the requirement

daL odL\_;
(dt 3q’ Bq‘) ! 20
The quantities 8q',...,8¢" for a Lagrangian system are independent. Therefore,
Equation (2.6) is equivalent to the Euler—Lagrange Equations (2.1)
We now rewrite the virtual displacement principle using the frame u;, i=1,...,n. From

Equations (2.2)-(2.4) we obtain
oL a(v'yrf)

uimzu,»(Lw’zvfwf))——w p
* q* g

ol 0 T R N i

7 = 3 L) = g

Denote the components of the virtual displacement 8¢ relative to the basis
ui(q), . .., u,(q) by w' and define the quantities ¢}/(¢q) by

(i, ] = . (2.7)
One finds that

— [3% o %]

dq/ dq/
Thus, from (2.7),

(vl)"= ¢viph and - ([v.al;) = v,
The principle of virtual displacements becomes
d oL dL ; d oL oL ;
— — ——$g’ = J i
(G )0 <[dzaqf}” )

oL dy/, AL d(v'yk) o\
dr Bql E)(jf dr gk gl !

oy
@5@— 3-S5
s
g

—ulll +—

d ol 0
— ull] )k[aq, i ;Z,Aw’,})

dr v o

d ol
dt&’ I[Z]+am 11V>t
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Since the components w' of 8¢ are independent, we conclude that the equations of
motion are

daor

— T _ . i . 2.8
drov C v + M,[Z], ( )

]l 8‘)}71

which is the coordinate form of Equations (2.5).
Equations (2.8) were introduced in [9] (see also [1] for details and some history).

2.3. The principle of critical action

Let y:[a,b]— Q be a smooth curve in the configuration space. A variation of the curve
y(t) is a smooth map B:[a,b] x [—¢,6]— O that satisfies the condition B(z,0)=y(1).
This variation defines the vector field

ap(t, s)

Sy(t) =
y(2) o |,

along the curve y(1).

Theorem 2.1: Let L:TQ — R be a Lagrangian and |: TQ — R be its representation in local
coordinates (q,v). Then, the following statements are equivalent:

(1) The curve q(t), where a <t <b, is a critical point of the action functional

b
J L(q,¢)dt (2.9)

a

on the space of curves QUQ; ¢, qp) in Q connecting q, to q, on the interval [a, b],
where we choose variations of the curve q(t) that satisfy dq(a)=3q(b)=0.
(i1) The curve ¢(t) satisfies the Euler—Lagrange equations

doL_oL
drag  dq°
(iii) The curve (q(1), v(¢)) is a critical point of the functional

b
J l(g,v)dt (2.10)

a

with respect to variations 8v, induced by the variations g = w'u{q), and given by
dv=w+[v,w],.

(iv) The curve (q(t), v(t)) satisfies the Hamel equations

ao_[ o,
deav | oy .
coupled with the equations ¢ = (u(q),v) = v'ui(q).

For the early development of these equations see [5] and [9].
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Proof: The equivalence of (i) and (ii) is proved by computing the variational derivative of
the action functional (2.9),

b b b
oL oL oL doL
5| L Ndt = — —38g |dt = — — ——)d8¢gds.
L @9 L(aq 7% ") L(aq dzaq) 1

Denote the components of §g(¢) relative to the basis u(q(?)),...,u,(q(t)) by
w(t)=(w'(?), ..., w"(r)), that is,

84(1) = (u, w) = w/(Duq(1)).

To prove the equivalence of (i) and (iii), we first compute the quantities 8¢ and d(8¢)/dz:

83 = O (a(0)] = 87 a0 + V(0 a8

d i i i i
% =5, (W Ouila() = (uia(0) + W«oi—;qa

Since §¢ = d(8¢)/d¢, we obtain

SV(Oua(t) = W (Dua(0) + P (Ow0) (2—;’ Vi - ilqj w,‘) (¢()
— () + e (@O OWHO) ()

that is,’

Sv(t) = w(1) + (D), w(B)] 4

To prove the equivalence of (iii) and (iv), we use the above formula and compute the
variational derivative of the functional (2.10):

b b
SJ l(q,v)dt = (8_] 8q + a—lﬁv)dl
p «\0gq av

(e
’ al d (ol
= a(u[l]ﬂ/ + 5 [V, W]q([) — a <5) \V)dl

u[l]+|: 31]* —ia—l>wdl.

; al
—q wu; +— (W =+ [v, w]q([)))dt

v, —
u av

q(1)

This variational derivative vanishes if and only if the Hamel equations are satisfied. [

2.4. Systems with symmetry

Assume now that a Lie group G acts on the configuration space Q. This action is denoted
q — gq= $,(q). Throughout this article we make the assumption that the action of G on Q
is free and proper. The quotient space Q/G, whose points are the group orbits, is called the
shape space. It is known that if the group action is free and proper then shape space is
a smooth manifold and the projection map 7:Q — Q/G is a smooth surjective map with
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a surjective derivative T, at each point. The configuration space thus has the structure of
a principal fiber bundle. We denote the bundle coordinates (r,g) where r is a local
coordinate in the base, or shape space Q/G, and g is a group coordinate. Such a local
trivialization is characterized by the fact that in such coordinates the group does not act on
the factor r but acts on the group coordinate by left translations. Thus, locally in the base,
the space Q is isomorphic to the product Q/G x G and in this local trivialization, the map =
becomes the projection onto the first factor.

Let g denote the Lic algebra of the group G. When the configuration space is
a principal fiber bundle, some of the vector fields uy,...,u, can be defined globally, as
shown below.

Definition 2.2: We say that the Lagrangian is G-invariant if L is invariant under the
induced action of G on TQ.

2.5. The Euler—Lagrange—Poincaré equations

Assuming that the vectors e,(r), a=1,...,k, form a basis of g = 7,G for each r € Q/G, we
define the frame e(r) by

e(r) = (er(r), . .., ex(r)) € gF. (2.11)

Let A be a principal connection on the bundle 7: Q0 — Q/G (see [16] for a review of
principal connections). Below, we will discuss how the structure of the Lagrangian can be
used for selecting a connection. Tangent vectors in a local trivialization Q =Q/G x G at
the point (r,g) are denoted (v, w). We write the action of A, on this vector as Ay (v, w).
Using this notation, we can write the connection form in the local trivialization as
Ay(v, w) = Adg(w,+ Av), where wy, is the left translation of w to the identity and, since we
are working locally in shape space, we can regard A as a g-valued one-form on Q/G.
The connection components A;, are defined by writing Av = A)%e,.
Define the vector fields u; by

0
o
Thus the fields u, span the horizontal space and the remaining fields u, ., span the vertical

space (tangent space to the group orbit) at ¢ € Q. The components of the velocity vector ¢
relative to basis (2.12) are

Uy

- -AZ(F)Lg*ea(r)’ Usta = g*ea(r)a a=1,...,0, a=1,... k. (2.12)

¢ and QY =&+ AP,
where the & are Lie algebra variables. The Lie algebra element & =£&%,() and the group
element g are related by the equation =L, 1-g=g"'g

Theorem 2.3: The equations of motion of a system with a G-invariant Lagrangian
L:TQO— R are

daol al al . .

dior - ar = _<BQ B+ (iiy, A) — (v, i;A) + (€, Q>>’ (2.13)
da o o .
&E = adgﬁ + <@, lrg>, (214)

¢ = g(Q —iA). 2.15)
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Equations (2.13) and (2.14) are independent of the group element g and govern the
reduced dynamics. The reconstruction equation (2.15) is used to obtain the group
dynamics. The terms that appear on the right-hand sides of Equations (2.13)—(2.15) are
defined below.

Proof: Using Equation (2.11), we see that

de = (y(r), e), (2.16)
where y is a g ® g*-valued one-form on Q/G. In coordinates we have

de
= YhaD)es(r).
7

Let C¢, be the structure constants of the Lie algebra g and let B, be the curvature of the
connection Ay; that is By(X, Y) =dAy(hor X, hor Y), where X and Y are two vector fields.
The curvature can be written in the local representation as

By((vi, wi), (v2, w2)) = Adg(B(v1, v2)). (2.17)

The coordinate representation of B is B(vi, v;) = Bgﬁv‘{‘vzﬂ , with B, given by the formula

4 8“4:1 8’/42 ¢ pqa pb
Bzxﬁ - 8r/3 - W - CdbAaAﬂ'
Define the form & by
E=y—ady, (2.18)

which, in coordinates, reads &, = y5, — C, Aq. Straightforward calculation shows that

[t 4] = (Bl + Vi Al = Vi Af it (2.19)
[thers U] = EgpUortes (2.20)
[t+as o8] = Cipttorc (2.21)

Thus, from the definitions of 5, £ and formulae (2.19)—-(2.21) one obtains

[(7’1 5 0)’ (’;23 0)]q = B(rl 5 7’2) - <ii‘1 Vs isz) + <if‘z Vs if'lA)a
[(V, 0)> (05 Q)]q = (if‘ga Q)’ [(05 Ql)a (Oa QZ)]q = adQ1 92- (222)

Using (2.22) and evaluating [-, ~]Z, Equations (2.5) become (2.13)—(2.15). ]

Now assume that the G-invariant Lagrangian equals the kinetic minus potential energy
of the system and that the kinetic energy is given by a Riemannian metric ((-,-)) on the
configuration space Q.

Definition 2.4: The mechanical connection A™" is, by definition, the connection on Q
regarded as a bundle over shape space Q/G that is defined by declaring its horizontal space
at a point ¢ € Q to be the subspace that is the orthogonal complement to the tangent space
to the group orbit through ¢ € Q using the kinetic energy metric. The locked inertia tensor
I(g) : g — g" is defined by (l(¢)&, n) = ((§o(9),n0(q))), where &, is the infinitesimal
generator of & € g and where ((-,-)) is the kinetic energy inner product.
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Given a system with symmetry, one may use the mechanical connection to set up
Equations (2.13) and (2.14). This choice of connection changes the Lie algebra variables
from & to the local version of the locked angular velocity €2, which has the physical
interpretation of the body angular velocity. This choice also is such that the kinetic energy
metric becomes block-diagonal, that is,

(g, ) = (r, 7)) + (€2, 2.

When the momentum p=0dg/ is used as an independent variable, Equations (2.13)
and (2.14) are called the Euler—Lagrange—Poincaré equations. In coordinates, these
equations read:

d o/ ol C b b . ¢ b
= _(Ba,9 + (vipAs — V;fa«‘lﬁ))pcrﬂ — EopPe Y,

P = Cyppe Q' + Egppei®
(see also [11]).

Example: The generalized rigid body. If the configuration space is a Lie group G and the
Lagrangian is G-invariant, Equations (2.13) and (2.14) become

d al ol
——=ad;—. 2.23

droe ~ ““eae 223)
These equations are called the Euler—Poincaré equations (see [3]® and [4], Vol. II, for the
case G =S0(3), and [5] for the general case); they describe the momentum dynamics of
a generalized rigid body. For more on the history of these equations see [6].

3. Non-holonomic systems
3.1. The Lagrange—d’Alembert principle

Assume now that there are velocity constraints imposed on the system. We confine our
attention to constraints that are homogeneous in the velocity. Accordingly, we consider
a configuration space Q and a distribution D on Q that describes these constraints. Recall
that a distribution D is a collection of linear subspaces of the tangent spaces of Q; we
denote these spaces by D, C 7,0, one for each g € Q. A curve ¢(f) € Q will be said to satisfy
the constraints if ¢(f) € Dy, for all ¢. This distribution will, in general, be non-integrable;
i.e. the constraints are, in general, non-holonomic.*

Consider a Lagrangian L: TQ — R. In coordinates ¢', i=1,...,n, on Q with induced
coordinates (¢', ¢') for the tangent bundle, we write L(¢', ¢'). The equations of motion are
given by the following Lagrange—d’Alembert principle.

Definition 3.1: The Lagrange—d’Alembert equations of motion for the system are those
determined by

b
6J Lig.9)dr =0,

where we choose variations 3¢(7) of the curve ¢(7) that satisfy 8q(a)=38q(b)=0 and
8q(t) € Dy, for each ¢ where a <t <b.
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This principle is supplemented by the condition that the curve g(¢) itself satisfies the
constraints. Note that we take the variation before imposing the constraints; that is,
we do not impose the constraints on the family of curves defining the variation. This is
well-known to be important to obtain the correct mechanical equations (see [10] for
a discussion and references).

One way to write the dynamics is to make use of the Euler—Lagrange equations
with multipliers. This is done below in coordinates.

The distribution D can be locally written as

D={Ge TQ|A}(q)' =0, s=1,....p}.

The constrained variations §q(¢) € TQ satisfy the equations

A(@)¥q' =0, s=1,....p. 3.1)
Using (2.6) and (3.1), one writes the equations of motion with Lagrange multipliers as
doL dL A
diog —ag T (@), Aj(9q

3.2. The constrained Hamel equations

Given a non-holonomic system, that is, a Lagrangian L:7Q — R and constraint
distribution D, select the independent (local) vector fields

u:Q—->TQ, i=1,...,n,
such that D, =span{u;(q),...,u,_,(q)}. Each ¢ € TQ can be uniquely written as
g = (u(q).v") + (u(q). ™),  where (u(g).v") € D, 3.2)

i.e., (u(g), V") is the component of § along D,. Similarly, each a € T*Q can be uniquely
decomposed as

a = {ap, u*(q)) + {ay, u*(q)),

where (ap,u*(q)) is the component of « along the dual of D, and where
u*(q) € T*Q x - - - x T*Q denotes the dual frame of u(g). Using (3.2), the constraints read

v=73" or H=0.
This implies
sv=8" or &M =0. 3.3)
Using the principle of critical action and (3.3) proves the following theorem.

Theorem 3.2:  The dynamics of a non-holonomic system is represented by the constrained
Hamel equations

d o/ D ol * _ u s D
(dlav_ |:v ,av]q—u[l]>p_0, vi=0, ¢=(u(g),v"). (3.4
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In coordinate notation, equations in (3.4) read as follows:

do 0l
dlavi_c

o Tl §=vulg). ij=1....n—p.

3.3. The Hamel equations with Lagrange multipliers
Assuming that the distribution D is locally written as

D, ={veR"|[(d'(q).v) = af(q)vi =0, s=1,...,p},
and taking into account that variations are written as §q(f) = (w(?), u(q(t))), we obtain
(A(q(1)), 89(1)) = {a(q(1)), w(1)). (3.5

In the above, a(q) = (a'(q),....d"(q)) € T;0 x --- x T;0. Equation (3.5) implies that
the constrained variations of the curve v(r) € R" are given by

8v(t) = (1) + (1), WD)y With {a(g(1)), w(t) = 0.

b b aryt doal E
5Jal(q, V) dr = J(l (u[l] + |:V, 51| — a5 + )\,SCI w dl,

q

Therefore,

which implies

drav av p

ii’_[vﬂ 3_1] Sl =2, (ag)) =0, §={u(g),v). (3.6)

If the fields u(q), ..., u,—,(q) span the subspace D,, Equations (3.6) are equivalent to
(3.4). We will see in Section 6 that Equations (3.6) are useful when studying the dynamics
of the spatial momentum.

Below we evaluate the Lagrange multipliers for systems whose Lagrangian L: 7Q — R
equals the kinetic minus potential energy, and the kinetic energy is given by a Riemannian
metric on Q:

. 1 ..
L(q,q) = §<(q, q) — U(q).

Let G;:T,0 — T;0 be the kinetic energy metric; that is, (¢,q) = (G4v,v). Let
p = 0l/dv = Gqv € T,Q be the conjugate momentum. The constraints in the momentum
representation are given by

(a(g), G; ') = (1, b(g)) =0,
where b(q) = G, 'a(q) € T,Q. Using (3.6), we get

o= D", ulp +ulll 4+ A (3.7)
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Let A=(A,...,1,). Taking the time derivative of (u,b(q)) =0 and replacing 1 with the
right-hand side of (3.7), we obtain

(1, (@) + (V7 1T + ull), b(q)) + X(a(q), b)) =

which implies

a=—((u. b(@) + (V7. 1l + ul). b(9))) - (alq). b(q)) ™"

_(<§_i b@> + <[VD» §—ﬂ + ull], b(a)>> {a(q), b(g) ™" (3.8)
q

4. Dynamics of non-holonomic systems with symmetry
4.1. Reduced dynamics

Assume that a Lie group G acts freely and properly on the configuration space Q and that
the Lagrangian L and constraint distribution D are invariant with respect to the induced
action of G on TQ.

Although it is not needed for everything that we will be doing, the examples and the
theory are somewhat simplified if we make the following assumption.

4.1.1. Dimension assumption

The constraints and the orbit directions span the entire tangent space to the configuration
space:

D, + T,Orb(q) = T,0.

If this condition is satisfied, we say that the principal case holds.

Let S be the sub-bundle of D whose fibre at g is S,=D,N T, Orb(g). We assume in this
article that S, # {0}.> The sub-bundle S is invariant with respect to the action of G on TQ
induced by the left action of G on (. Choose subspaces U,COrb(g) such that
Orb(q)=S,® U, and the sub-bundle ¢/ is G-invariant. Since the dlstrlbutlons S and U
are left-invariant, there exist subspaces bf and bI; of the Lie algebra g such that in
a local trivialization S, = Lg*b and U, = Lg*bu

Let b% and b be the bundles over Q/G Whose fibres are the subspaces b‘s and bu of the
Lie algebra g. Given & € g, we write its components along these subspaces as £ and &
Let A be a connection defined in a local trivialization by the formula

A; = Adg(§ + Ar),

where & € g and where A is a g-valued form on Q/G. This form is such that the constraints
in a local trivialization read

& A = 0. (4.1

That is, the ¢/-component of the form A is defined by the constraints. The S-component of
A is arbitrary at the moment; later on we will see how the structure of the Lagrangian
affects the choice of this component.
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Let r=(r',...,r°) be local coordinates in the shape space Q/G, and let e,(r), ..., ex(r)
be a basis of g=T,G for each reQ/G such that e(r),...,en(r) span b° and
emi1(r), ..., ex(r) span bY.

As before, we define the vector fields u(g),...,u,(g) by formulae (2.12). Thus, the
fields u,, o =1,...,0, span the horizontal space, the fields u,,,, a=1,...,m, span the
fibres of S, and the remaining fields span the fibres of ¢/. The components of the velocity
vector ¢ relative to these vector fields are 7 and Q = &+ A7. The constraints in this
representation are Q=0.

Using the non-holonomic Hamel Equations (3.4) and the G-invariance of the
constraint distribution D, one obtains the reduced non-holonomic equations of motion
from (2.13) and (2.14) by projecting Equation (2.14) onto the fibres of the bundle bg, and
imposing constraints, i.e. setting Q = Q°.

Summarizing, we have the following theorem.

Theorem 4.1:  The reduced non-holonomic dynamics is given by the equations

dal o |al , s
Eg - 5 <8§2 l)B + <lr7/’ A) - (7/’ er> + (5’ Q )>’ (42)
d ol AT
[&a—g}s = [adﬂs 8—9 + <8—Q, lr(€>}8. (43)

In the above, the Lagrangian / is written as a function of (r, 7, 2), B is the curvature of A
(see (2.17)), and the quantities y and & are defined by Equations (2.16) and (2.18),
respectively. Note that the partial derivatives of / in (4.2) and (4.3) are computed before
setting € = Q°.

Equations (4.2) and (4.3) can be rewritten as

dol. ol |l , s
dt 8}" 8}" <8§2 I’B + <11y’ A) - <)/,er> + (Eﬂ Q )>:

dol [ (o
draes — |7 e \a s
where 1.(r, 7, Q5) := (r,7,Q°) is the constrained reduced Lagrangian. These equations
follow directly from (4.2) and (4.3) because
al, al

d_d v doy o u
o orle=es’ drdr drorle=os’ 9 drla=as’ QS 9QS la—s’

Note that in general

ol
QS 7 99 aQ la=qs’

4.2. The moving body firame and non-holonomic connection

In the rest of the article, we assume that the Lagrangian equals the kinetic minus potential
energy and that the kinetic energy is given by a Riemannian metric on the configuration

space Q.
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Definition 4.2: Under the dimension assumption and the assumption that the Lagrangian
is of the form kinetic minus potential energies, the non-holonomic connection A™* is, by
definition, the connection on the principal bundle Q — Q/G whose horizontal space
at g€ Q is given by the orthogonal complement to the space S,=D,N T, Orb(q) within
the space D,

Under the assumption that the distribution D is invariant and from the fact that the
group action preserves orthogonality (since it is assumed to preserve the Lagrangian and
hence the kinetic energy metric), it follows that the distribution and the horizontal spaces
transform to themselves under the group action. Therefore, the non-holonomic connection
in a local trivialization is defined by the formula

AMC = Ady(€ + AP), (4.4)

where & € g and where A is a g-valued one-form on Q/G. Given ¢ = (7,€) € T,0, the
vertical and horizontal components of ¢ in a local trivialization are

0,6+ A7) and (r, — AF).
Using Definition 4.2, we rewrite £ + A7 in (4.4) as
(€ + A%+ F + A1), E+A%er®, ¢4 Aliert

Using the non-holonomic connection, define the body angular velocity Q € g by the
formula

Q=&+ Ar.
If the body angular velocity is used, the constraints (4.1) read
QY =0.
Let the kinetic energy metric in a local trivialization be written as

(g, q) = (G, ) +2(K(r) 7, &) + (Z(r) &, §). (4.5)

The constrained locked inertia tensor Zgs : b5 — (b°)* is given in a local trivialization by
(Ts(r) 1) = (Lgak, Loan)), £ € b°.

Similarly, define Zy(r) : b — (0“)*, Zsy(r) : BY — (b°)*, and Zys(r) : b5 — (BY)* by

(Zu(r)E,n) = (L&, Lgn), & € b,

(Zsu(ME,n) = (L&, Len), &€ bY, neb,
(Tus(E,n) = (Lgsk, Lean), &€ b5, neb”,

respectively.
Definition 4.2 implies that the constrained kinetic energy metric written as a function
of (7, Q5) is block-diagonal, that is, it reads

(G, i) + (Ts(r)®, QF).
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Substituting £ = Q° — A7 in (4.5), one obtains

(GP)F, i) + 2(Ks(r)i, Q) + (Zs()QS, QS) — 2(Ts(r) A%, Q) — 2T su(r) A47, ),

and therefore

AS = TS5 (Ks(r) — T35 (T su(rn)AY.
In the rest of the article, we follow the following index conventions:

(1) The first batch of indices range from 1 to m corresponding to the symmetry
directions along the constraint space. These indices will be denoted «, b, c,....

(2) The second batch of indices range from m + 1 to k corresponding to the symmetry
directions not aligned with the constraints. Indices for this range will be denoted

byd,b,d,....
(3) The indices 4, B, C,... on the Lie algebra g range from 1 to k.
(4) The indices «, B,... on the shape variables r range from 1 to o. Thus, o is the

dimension of the shape space Q/G and so o =n—k.

The summation convention for all of these indices will be understood.
In the basis 3/ar',....9/0°, ey(r),...,ex(r), with ey(r),...,en(r) spanning b° and
€mi1(r),. .. ex(r) spanning bY, the components of the non-holonomic connection are

AL = T%Kyp — T Tpy AY and  AYS

Note that the 7% need not equal Z%.
One often uses the non-holonomic momentum relative to the body frame p = d/./0Q°
and writes the reduced dynamics as

dal al Az
I »

drar o ar

— P+ TusT5'p + M5B+ iy, A) = (i) + €T3 (46)
p= [ad;; P+ it + (ifA,i,:S)]S. @.7)

Equation (4.7) is called the momentum equation in body representation.
In these equations the reduced Lagrangian is represented as a function of (r,r,p),
A is a (6%)*-valued one-form on Q/G given by

A = (Ky — TysA® — Ty Adr,

and 7 is a b° ® (b°)*-valued one-forms on Q/G defined by the formula

(p.is7) = [ad;glpi,-.z\ +(p+ TusTs'p, i,-é’)]s.

Remark: The first term in the right-hand side of the shape Equation (4.6) appears for the
following reason. The term 1 (Z 5 Q5, Q5) in the constrained reduced Lagrangian /.(r, i, 2°)
produces the term §(3,Zs 2%, Q%) in the right-hand side of the shape equation. When
p is used instead of €, this term becomes 1(3,ZsZ5'p,IT5'p) =1(T5' 0, TsT5'p,p) =
—3(p,8,Z5" p). On the other hand, the contribution of the term 1 (p,Z5'p) in L(r,7,p)
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is %(p, 3,.1'51 p). Thus, in order to obtain the correct term, —%(p, 8,.Igl p), one needs to
subtract (p, 8,.I§1 p) from the right-hand side of the shape equation.

Sometimes it is desirable to use a slightly different representation of Equations (4.2),
(4.3) and (4.6), (4.7). Recall that the inertia tensor is an invertible operator Z : g — g*.
Its inverse Z ~! maps g* to g, and defines the operators

78:05 — 0%, IY:b; — b4, T:.p;, — b5, TUS:.p5 - bY (4.8)
by the formulae
T \a =T+ T, TSaecb®, TUSacbh’, ac b%,
T 'a=TMa + T, TMaecb®, TUaebtY, ac by,

The operators (4.8) are uniquely defined by these formulae since g = b% @ b”. Note that
I and 74° normally are not zero operators. However, it is straightforward to see that

TUST s+ T47ys : 6% — B
maps every £ € b° to 0. Therefore,
(Iu)_l(IMSIS _|_IZ/{IMS)I§1 — (IL{)—ll'MS + II/{SIEI — 0,

and one can replace the terms IugIgl p with —(Z%)~174S p.
In coordinate notation, the reduced equations of motion become

dal. ol . .
&y;; - 31_“" = _Dbazgdpcpd - K:aﬂyrﬁry
— (B — T4, I By + Dopa T )pei. (4.9)
pa = (Cy, — Co T4 TV pepa + Deper® + Deaopi® . (4.10)

Here and below £.(r%,i%, Q) is the constrained Lagrangian, and Z% and 7%, are the
components of the tensors Z,' and (Z")7", respectively. We stress that in general
7% + 7% and 7%, # T,e. The coefficients Bgﬂ, Diy» Diop and Kp, are given by the
formulae

aAC  0AS :
C o B C 44 4B C 44 C q4
ap = aB o CBAAa'Aﬁ + J/A,s-Aa — ViaaAgs

Dy = —(Cyp — CopTU TV AL + CopheaT§ + Vig — Vi T4 T 4.11)
Dpop = Aep(Vh — Cip A,
]Caﬁy = AC’VBZﬁs

and yf, are the components of the form y introduced in (2.16). Equations (4.9) and (4.10)
originated in [10] and [19].

The keys to the qualitative behaviour of this system and stability in particular are the
terms on the right-hand side of the momentum Equation (4.10). One case of interest is
where the matrix Cj — Cg’aIZja,I""' is skew. This is discussed in [12]. This again divides
into two cases: the terms quadratic in 7 are present or not. There are cases where
these terms vanish and one does not obtain asymptotic stability — for example the
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rolling penny problem. If the terms quadratic in 7 are present one often obtains asymptotic
stability, as in the rattleback top.

A key case of interest to us in this article are the Euler—Poincaré-Suslov equations
discussed below where there are no internal or shape degrees of freedom, i.e. no
coordinates r*. We discuss in detail in this case when one does or does not obtain partial
asymptotic stability.

Whether the non-holonomic systems exhibit asymptotic behaviour or not it is striking
that we have the following proposition.

Proposition 4.3: The non-holonomic equations (4.9) and (4.10), in the case that I. is
quadratic in p and v, are time reversible.

Proof: The equations are verified to be invariant under the discrete Z, symmetry
(t > —t,p > —p,i — —7),
giving the stated result. ]

Furthermore, in this setting it is easy to check that energy is always preserved. This is
in contrast to the type of asymptotic stability exhibited by, say a harmonic oscillator with
external dissipation (friction), which is not reversible.

4.3. Momentum conservation relative to the body frame

Here we discuss how one can select the basis in D,NT,Orb(g) in order to observe
momentum conservation in the non-holonomic setting. More details can be found in [20].

Theorem 4.4:  For n(r) € b°, the quantity (p,n(r)) is a conservation law of the reduced
non-holonomic dynamics (4.6) and (4.7) if

(1) The form t is exact;
(i) The component of [ad};l p+ (A 1:6)]s along n(r) equals zero, i.e.,

<[ad§§1pp + <i1:A> ir'€>]3a 77(V)> =0.

Proof: Taking the flow derivative of (p, n(r)), we obtain

d . . . Lo .
T 0.n0) = () + (o) = ([adi,p + (i) + AL 5E)| L 0) + (.-
Condition (ii) implies

d
q; - n) = {[{p,i;0)]s, n()) + (p, 1) = (p, Gz, ) + 7).
Equation
dn = —(z.n) (4.12)

implies that the flow derivative of (p, n(r)) vanishes. Condition (i) of the theorem ensures
the existence of n(r) € b°. Ll
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Corollary 4.5:  Assume that the form t is exact and [ad;,lpp + (i;A,1;E)]g = 0. Then there

. . S . . . .
exists a basis 0,(r), . .., nu(r) of b° such that the momentum equation written relative to this
basis becomes

p=0.

This basis, if it exists, is often non-trivial even for simple (e.g. commutative) symmetry
groups.

Example: Consider a system whose Lagrangian L: TR® — R and constraint are

L= (7 +(1 =G + ) - V)

N —

and
& = b(r)s',
respectively. This system is R*-invariant. The group elements are written as s = (s', s*) € R*.
The potential energy V(r) and the constraint coefficient h(r) are smooth functions of the
shape variable . The subspace b° of the Lie algebra R for this system is one-dimensional;
it is spanned by
9 ad
—+b(r)—.
ds! 60 0s?
The momentum equation for this system is computed to be
p = b(b'(r)pr.

The right-hand side of the momentum equation satisfies the conditions of Corollary 4.5.
Using (4.12), dn = —b(r)b'(r)n dr, which implies

n(r) = "0 + b(r)dp).
Thus, if one defines the vector fields u;, u», us € TR® by the formulae
a _le(r) 3 a a
ulzga Uy =e? @‘i‘b(}’)@ s U3:@,

non-holonomic momentum conservation is observed.

5. Euler—Poincaré—Suslov equations

An important special case of the reduced non-holonomic equations is the following: The
configuration space is a Lie group G and the system is characterized by a left-invariant
Lagrangian / = $(ZQ, Q) =17 5Q1Q%, where Q = ¢g~'¢ € g, 7 45 are the components of
the inertia tensor Z : gi— g*, and by the left-invariant constraint

(a,Q) =a,0" =0, (5.1)

where a lies in the dual space g* and (-,-) denotes the natural pairing between the
Lie algebra and its dual. Multiple constraints may be imposed as well.
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In the absence of constraints the reduced dynamics is governed by the Euler—Poincaré
Equations (2.23). Here we represent these equations as

p = adgp, (5.2)
where p =ZQ € g* is the body momentum. In components, these equations read
P = CT*Ppepp = Cppe?. (5.3)

5.1. Measure Preservation

It is of interest that while the unconstrained dynamics on 7G preserves the phase volume,
the reduced dynamics (5.2) may fail to be measure—preserving and thus may exhibit
asymptotic behaviour, as was shown by [21]. See [34-39] for the use of invariant measure
in understanding dynamics and integrability of non-Hamiltonian mechanics.

Theorem S5.1:  The Euler—Poincaré Equations (5.2) have an integral invariant with positive
C" density if and only if the group G is unimodular.”

We only outline the proof here, for the complete exposition refer to [21]. Sufficiency
can be seen as follows: A criterion for unimodularity ([21]) is CS. = 0 (with the summation
convention). Since the divergence of the right hand side of Equation (5.3) is
CS-I*Ppp = 0, the corresponding flow preserves the volume form dp; A --- A dpj in g*.
Recall that the flow of a vector field f is volume—preserving if and only if divf=0.
The necessity is derived from the following theorem of [21]: A flow of a homogeneous vector
field in R" has an integral invariant with positive C' density if and only if this flow preserves
the standard volume in R".

Now, turning to the case where we have the constraint (5.1) we obtain the Euler—
Poincaré—Suslov equations

p=ad{p+ra (5.9

together with the constraint (5.1), where A is the Lagrange multiplier. Using (3.8), we
obtain
h=—(adyp, T 'a)/(a, T a) = —(p, ado T~'a) /(a, T a).
One can then formulate a condition for the existence of an invariant measure of the

Euler-Poincaré—Suslov equations. The following result was proved by [21] for compact
algebras and for arbitrary algebras by [22].

Theorem 5.2: The Euler—Poincaré—Suslov Equations (5.4) have an integral invariant with
positive C" density if and only if

Kad . a+T=ya (5.5)
for some y € R, where K=1/(a, T"'a) and T € g* is defined by (T, ) =Tr(adg).
In coordinates condition (5.5) reads
KC 3T acap + CS = yas. (5.6)

The proof is done by solving for the Lagrange multiplier A and computing the divergence
of the right-hand side.

For a unimodular Lie group the quantities Z’;Zl CB, A=1,...,k, always vanish.
In particular if the group is compact or semisimple, then the group is unimodular.
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Further, in the semisimple case we can use the Killing form to identify g* with g and
condition (5.6) can be written as

0 'a,a) = ya, yeR.

For a matrix Lie algebra the Killing form is a multiple of the trace and so pairing a with
itself (via the Killing form or multiple of the trace) we have

(Z7'a,al,a) = (ya,a)

and, since the left-hand side is zero, we conclude that y must be zero. Thus in this case only
constraint vectors ¢ which commute with Z~'a allow volume in g* to be preserved.

This means that ¢ and Z 'a must lie in the same maximal commuting subalgebra.
In particular if @ is an eigenstate of the inertia tensor, the flow is measure-preserving. In the
case that the maximal commuting subalgebra is one-dimensional this is a necessary
condition. This is the case for groups such as SO(3) (see below). One can introduce several
constraints of this type.

We can thus formulate the following result as a symmetry requirement on the
constraints.

Theorem 5.3: A compact Euler—Poincaré—Suslov system is volume-preserving (and
therefore generically cannot exhibit asymptotic dynamics in the momentum space) if the
constraint vectors a are eigenvectors of the inertia tensor, or the constrained system is Z,
symmetric about all principal axes. If the maximal commuting subalgebra is one-dimensional
this condition is necessary.

In the case when the group is not compact a little more freedom is allowed as we shall see
in the case of the Chaplygin sleigh below.

5.2. Spatial momentum dynamics

Let e4 be a basis of g, and let u = Rg+e4. Then g= (u(g), n), where n= gg . If G=S0(3),
n is the spatial angular velocity.
The Lagrangian and the constraints are

1
R(g.n) = 5 (U, )
and

(a®(g),m) =0,

respectively. In the above, l(g) = Ad;qZAdg—l and a®(g) = Ad},a € g*.
Define the spatial momentum u by the formula

AR
n = 8_7; = Adz,_lp

Then, using (3.6), we obtain

i = rak(g), (5.7)
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where, according to (3.8)

b= —(u.b"(g)) - {a"(8). b"(e)) .
Equation (5.7) implies that the spatial momentum is not generically conserved in the
non-holonomic setting.

6. Examples

In this section, we illustrate the above theory by discussing a number of key non-
holonomic examples where the dynamics is conveniently described using quasivelocities.
Perhaps the simplest non-holonomic system is the following:

6.1. Euler—Poincaré—Suslov problem on SO(3)

In this case, one can formulate the problem as the standard Euler equations
IQ=7IQ x Q,

where Q = (2, Q,, 23) is the system angular velocities in a frame where the inertia matrix
is of the form Z =diag(/;, I, I3) and the system is subject to the constraint

a-2=0,

where a = (ay, a», az).
The non-holonomic equations of motion are then given by

IQ=TIQxQ+ra, a-Q=0,
and the Lagrange multiplier is given by
T4 (ZQ x Q)
I a '

One can then check that if a» = a3 =0 (a constraint that is an eigenstate of the moment of
inertia operator) for example, the (reduced) phase volume is preserved.

A=

6.2. Chaplygin sleigh

Here we describe the Chaplygin sleigh, one of the simplest mechanical system which
illustrates the possible dissipative nature of non-holonomic systems. Note that this
dissipation is ‘non-physical’ in the sense that the energy is preserved while the volume on
the level surfaces of energy is not.

The Chaplygin sleigh is discussed for example in [1] (see also the paper [13], where an
interesting connection with systems with impacts is made).

The sleigh is essentially a flat rigid body in the plane supported at three points, two of
which slide freely without friction while the third is a knife edge constraint which allows no
motion perpendicular to its edge.

We will derive the equations from the Euler—Poincaré—Suslov equations (5.4) on SE(2).
Let 6 be the angular orientation of the sleigh, (x, y) be the coordinates of the contact point
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as shown in Figure 1. The blade is depicted as a bold segment in the Figure. The body
frame is

e = 8—89, e = cose%+ sin@%, ez = —sin@%—i—cos@%
(Figure 1); the vector ¢; may be visualized as a vector orthogonal to the body and directed
towards the reader. Let Q = g~ '¢ € se(2), the components of Q relative to the body frame
are (Q', 22, Q%), where Q' = 6 is the angular velocity of the sleigh relative to the vertical
line through the contact point, and % and € are the components of linear velocity of the
contact point in the directions along and orthogonal to the blade, respectively. Let the
centre of mass be located on the line through the blade at the point ae, relative to the body
frame. See Figure 1 for details. Denote the mass and the moment of inertia of the sleigh by
m and J. The constraint reads *=0.

The velocity of the centre of mass relative to the body frame is ©2%e, + (2° + aQ2'es.
The Lagrangian is just the kinetic energy of the sleigh, which is the sum of the kinetic
energies of the linear and rotational modes of the body. Therefore the reduced Lagrangian
and the reduced constrained Lagrangian of the Chaplygin sleigh are ([16])

1

(Q) = = ((J + ma)( Q") + m((Q)? + () + 24Q'QY),

[\

and

() = % ((J +ma®)( Q") +m(2%)),
respectively. The constrained space b® is defined by
b = {Q3 = 0).
The dual of % is
(b%)" = {ps = 0}.

Figure 1. The Chaplygin sleigh.
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P2

Py

Figure 2. The momentum dynamics of the unbalanced Chaplygin sleigh.

6.2.1. Equations of motion in the body frame

The reduced dynamics of the Chaplygin sleigh is given by the Euler—Poincaré—Suslov
equations on the algebra se(2). The two independent equations are

2
. ap\p2 . mapy
- _ S ol S— 6.1
D Toma P T tma? (6.1)
where
ol. 1 al. )
plzﬁza—kma)ﬂ, pz:agﬁzmg

are the components of non-holonomic momentum relative to the body frame. If a0,
equations in (6.1) have a family of relative equilibria given by p;=0, p,=const.
Linearizing at any of these equilibria, we find that there is one zero eigenvalue and one real
eigenvalue. The trajectories of (6.1) are either equilibria situated on the line p; =0, or
elliptic arcs, as shown in Figure 2. Assuming a > 0, the equilibria located in the upper half
plane are asymptotically stable (filled dots in Figure 2) whereas the equilibria in the lower
half plane are unstable (empty dots). The elliptic arcs form heteroclinic connections
between the pairs of equilibria.

If a=0, momentum dynamics is trivial. Taken together with the analysis of
equations in (6.1), this means that we do not observe asymptotic stability if and only
if a=0.

The condition a =0 means that the centre of mass is situated at the contact point of the
sleigh and the plane. The inertia tensor Z becomes block-diagonal in this case, i.e. the
direction defined by the constraint is an eigendirection of the inertia tensor.

6.2.2. The dynamics of the spatial momentum
Recall that the spatial angular velocity is defined as n = RZ,I ¢ =2gg"" €se¢(2). For the
group SE(2) the components of n are computed to be

n'=0, n=x+x0, n =j—x0.
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The corresponding frame consists of the generators of the left action of SE(2) on itself.
The latter are given by the formulae

and the corresponding brackets are computed to be

[ur, ] = —us,  [ur,u3] = uz, [uz,u3] =0.

The Lagrangian becomes

J+ma
2

+ 2an' [~ (* = yn')sin@ + (i + xn') cos 9]),

2 m
(g.0) = ' +5 (0 = ' + () +n')?

and the constraint becomes
—(* — yn")sin® + (n* + xn')cos6 = 0.
The spatial components of the non-holonomic momentum are
wi = (J+ma)n' —my(p® — yn') +mx(p’ + xn') + man' (x cos 6 + ysin ),
2 =m{(n* — yn') — an' siné),
ns =m[(n* — yn') + an' cos 6],

The momentum belongs to the subspace of se*(2) defined by the equation

. ma
—p28in6 + p3cost — W(Ml +yu2 — xp3) = 0.

J+
Using (5.7), the dynamics of spatial momentum for the Chaplygin sleigh is
= A(xcosO+ ysinh), i, = —Asinf, 3 = Acosh,

where X is as given by the formula

_ J(uy + ypo — xps)(p2 cos 6 + a3 sin 0)

A 7
(J + ma?)

Regardless of the value of a, the spatial momentum of the Chaplygin sleigh is conserved
if and only if #=const, i.e. when the contact point of the sleigh is moving along
a straight line.

6.2.3. Momentum conservation for the unbalanced Chaplygin sleigh

We now show that the components of momentum are conserved if one uses the vector
fields uy, u», u3 € T SE(2) given by

d . 0 . 0
u; = cos ko %—i—%sm k@(cose a—x—l—sme 5), (6.2)
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k . 0 a . a
Uy = ——sink® — + cos k| cos® — +sinf — ), (6.3)
a a0 ax ay

. ol 0
= —sinf — 0—, 6.4
u3 sin o + cos oy (6.4)

where k? :=ma*/(J + ma®).

The structure of the momentum trajectories in Figure 2 in combination with
translational symmetry of the sleigh suggests that there may exist vector fields
u=u'(O)e, +u*(@)e> such that (p,u)=const. That is, the components of the non-
holonomic momentum along a field whose direction and magnitude relative to the body
frame depends on the angle & may be conserved. Note that 6 is not a shape variable as in
Theorem 4.4.

Differentiating the quantity (p, u(6)) and taking into account Equations (6.1) yields

. mapi . api
Ml — 2 2 ul.

-,
(J + ma?)* J + ma?
Using the formula p; = (J + ma®)Q' = (J + ma®)6, we obtain

du! ma 5, di? |
=au .

@__J+ma2u’ do

This system defines two independent vector fields (6.2) and (6.3). The field w5 is defined by
formula (6.4) in order to have the sleigh constraint to be written as & =0, where (¢!, £2, &)
are the components of g relative to the frame uy, u», us.

Conservation of momentum can be confirmed by the Hamel equations for the sleigh.
Computing the Jacobi—Lie brackets for the fields u;, up, u3, we obtain

K2 .
[ty, us] = ——coskOuy + ksinkOuy + us,
a

k .
[ty, u3] = — ZCOS kOsin kO u; — cos® kb ur,
K k .
[tz, u3] = — sin® kO u; + — cos kB sin kO uy,
a a
which implies
k2
Cl, = ——coskt, Ci, =ksinko, i, =1,
k
Cl, = —- o8 kosinko, Ci; = —cos’kf, Cj; =0,
LK 2 _k : 3
Cyy = asin ko, C33= s k@sinkd, Cy; =0.

Written relative to the frame uy, u», u3, the Lagrangian and the constrained Lagrangian
become

&) = = ((J + ma®)E) + m(ED* + 2macos kOE'E — 2masin kO E*E + m(£)?)

N =
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and

1
1(§) =5 ((J +ma)E) +m(E)’).
The constrained Hamel equations are computed to be

dole _, ddl _
drogt 7 drog2

Thus, the components of momentum relative to the frame u;, u,, u3 are conserved.

6.3. Chaplygin sleigh with an oscillator

Here we analyse the dynamics of the Chaplygin sleigh coupled to an oscillator. We show
that the phase flow is integrable, and generic invariant manifolds are two-dimensional tori.

6.3.1. The Lagrangian, non-holonomic connection and reduced dynamics

Consider the Chaplygin sleigh with a mass sliding along the direction of the blade.
The mass is coupled to the sleigh through a spring. One end of the spring is attached to the
sleigh at the contact point, the other end is attached to the mass. The spring force is zero
when the mass is positioned above the contact point. See Figure 1 where the sliding mass is
represented by a black dot and the blade is shown as a bold black segment.

The configuration space for this system is R x SE(2). This system has one shape
(the distance from the mass to the contact point, r) and three group degrees of freedom.

The reduced Lagrangian /: TR x s¢(2) — R is given by the formula

I(r, 7, £) = %mr'2 + mig? + % (7 + mrP)E"Y + 2mre' & + (M + m)(E) + (£))) — %krz,

where &=g '¢ €se(2) and k is the spring constant. The constrained reduced
Lagrangian is
G188 = S i 3 (0 mr)E ) + (M 4 m)ER) - Sk
The constrained reduced energy
S i 3 (T mP)E Y+ (M +m)EP) + 5k

is positive-definite, and thus the mass cannot move infinitely far from the sleigh
throughout the motion.
The non-holonomic connection is

&+ Ar,

where
m

3
_ =0.
M+m’ A

Al=0, A=
The constraint is given by the formula

QP =0.
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The reduced Lagrangian written as a function of (r, 7, ) becomes

1 Mm
2M+m

Ir,i, Q) = i+ % ((J +mr?)( Q') + 2mrQ' Q@ + (M + m)((2%) + (2°)) — %krz.

The constrained reduced Lagrangian written as a function of (r, 7, p) is

1 Mmi* 1 P 13 kr?
2M+m 2\J+mr? M+m 2

lc’(ra rap) =

The reduced dynamics for the sleigh-mass system is computed to be

Mm Mmr )
= 3 pl — kr,
M+m (M + m)(J + mr?)
mr mzr

5 — : (6.5)
== ma+m) PP sy ) P

. mr 2

D=0y

We now select a new frame in the Lie algebra se(2) in order to eliminate the second
term in Equation (6.5). Put

er = ((J+m?)@5,0,0), e =(0,1,0), e3=1(0,0,1).
The reduced Lagrangian written in this frame becomes

1 Mm
2M+m

, 1
+ 2mr(J + mrz)fw‘?wQ1 523) — Ekrz.

.7, 82) = P+ % ((+mAPQRY + (M +m((@ + (@)

Using Equations (4.2) and (4.3), the reduced dynamics becomes

Mm_ _ M P —kr (6.6)
M+ m (M + m)(J + mp2yitiatt ! ’
mr
h = — 6.7
pi O+ m)J + mr2) PP (6.7)
. mr >
=—5 D 6.8
D2 (J—|—mr2)ﬁ+l 141 ( )

6.3.2. Relative equilibria of the sleigh-mass system

Assuming that (r, p) =(ro, po) 1s a relative equilibrium, Equation (6.8) implies rop(l) =0.
Thus, either ry=0 and p{ is an arbitrary constant, or, using (6.6), p! =0 and ry=0.
Thus, the only relative equilibria of the sleigh-mass system are

r=0, p=po.
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6.3.3. The discrete symmetries and integrability

It is straightforward to see that Equations (6.6)—(6.8) are invariant with respect to the
following transformations:

(1) (r,pl,pz)—>(r, _plop2)n

(1) (r,p1,p2) = (=r,p1,—p2),
(111) (l’ r’p)%(_la _rap)a
(IV) (l’ rsplapZ)_)(_t’r’pl’_pZ)'

We now use these transformations to study some of the solutions of (6.6)—(6.8).
Consider an initial condition (r, 7, p) = (0,79, po). Then the r-component of the solution
subject to this initial condition is odd, and the p-component is even. Indeed, let

(r(0), p(1)), >0, (6.9)

be the part of this solution for # > 0. Then

(—=r(—=0),p(—1), t<0, (6.10)

is also a solution. This follows from the invariance of Equations (6.6)—(6.8) with respect
to transformation (iii). Using the formula

dr())  _ d(=r(=1)
dr li=o d¢ =0

we conclude that (6.9) and (6.10) satisfy the same initial condition and thus represent
the forward in time and the backward in time branches of a the same solution.
Thus, r(—t)=—r(¢) and p(—1) = p(1).

Next, pi(#) =0 implies that p,(7) =const and r(¢) satisfies the equation

Mm
M+ m

i = —kr,
and thus Equations (6.6)—(6.8) have periodic solutions

1(t) = Acoswt + Bsinwt, py =0, pp=C,

where A4, B, and C are arbitrary constants and w = \/k(M + m)/Mm.
Without loss of generality, we set 4 =0 and consider periodic solutions

r(f) = io/wsinwt, p; =0, pr=pj, (6.11)
which correspond to the initial conditions

r0)=0, #0)=ry, pi(0)=0, ps(0)=7p).

We now perturb solutions (6.11) by setting

r0)=0, F#0)=ry, pi(0)=p), pa0)=pS. (6.12)
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Assuming that p! is small and using a continuity argument, there exists 7 = Tpiy > 0
such that

”(TPJ"U) =0

for solutions subject to initial conditions (6.12). That is, the r-component is 2z-periodic if
PV is sufficiently small.

Using Equation (6.6) and periodicity of r(f), we conclude that p; is 2z-periodic as well.
Equation (6.7) then implies that p,(¢) is also 2t-periodic. Thus, the reduced dynamics
is integrable in an open subset of the reduced phase space. The invariant tori are
one-dimensional, and the reduced flow is periodic. A generic periodic trajectory in the
direct product of the shape and momentum spaces is shown in Figure 3.

Using the quasi-periodic reconstruction theorem [23,24], we obtain the following
theorem.

Theorem 6.1:  Generic trajectories of the coupled sleigh-oscillator system in the full phase
space are quasi-periodic motions on two-dimensional invariant tori.

Typical trajectories of the contact point of the sleigh with the plane are shown in
Figure 4. The symmetry observed in these trajectories follows from the existence, for each
group trajectory g(z), of a group element / such that g(z+ 2t) = hg(¢), where 2t is the

Figure 3. A reduced trajectory of the sleigh-mass system.

Figure 4. Trajectories of the contact point of the blade for various initial states.
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period of the corresponding reduced dynamics. It would be interesting to see if the
technique of pattern evocation [25,26] extends to the current circumstances.

6.4. Asymptotic behaviour of momentum integrals

Assuming that the only non-zero term in the right-hand side of the momentum
equation (4.7) is (p,i;7), Theorem 4.4 and Corollary 4.5 give sufficient conditions for
existence of m independent momentum integrals (p,n.(r)), a=1,...,m. The ficlds
na(r) € b° satisfy Equation (4.12), their existence follows from the integrability of the
distribution associated with the form t (see Theorem 4.4 for details). In the coordinate
form, Equation (4.12) reads

dn’ = —D> (r)n* dr*, (6.13)

where the quantities Dfla(r) are defined by formula (4.11).

The properties of distribution (6.13) resemble the properties of linear homogeneous
systems of differential equations as the coefficients of the differential forms in (6.13) are
linear functions in the components of . It is straightforward to show that the space of
integral manifolds of distribution (6.13) has the structure of an m-dimensional vector space.

Definition 6.2: The Wronskian of the m integral manifolds n=1,(r), a=1,...,m, is the
determinant

n%(r) ... n,ln(r)
W(r) = det : : . (6.14)
ner) oo ()

The properties of the Wronskian of the system of invariant manifolds of (6.13) are similar
to those of the Wronskian of the solutions of a system of linear ordinary differential
equations.

Theorem 6.3: The Wronskian satisfies the equation
din W= —Trr:=-D; (r)dr". (6.15)

Proof: Taking into account (6.13) and (6.14), we obtain

ow
—=—-WDs,..
ore
Therefore,
ow
dw = Wdr"‘ =—WDi dr* = —WTrr,
which is equivalent to formula (6.15). ]

Corollary 6.4: The Wronskian can be evaluated by the formula

r

W(r) = W(ro) expj Trr. (6.16)

o

The integral in (6.16) is independent of path from rq to r.
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Formula (6.16) allows one to obtain the Wronskian explicitly in the multi-dimentional
shape space setting. This result can be used to study the reduced energy levels even if the
momentum integrals cannot be effectively computed as in [40] . We demonstrate this in the
following section for the rolling disk.

6.5. The rolling falling disk

To illustrate the results of Section 4.3 and Section 6.4, consider a disk rolling
without sliding on a horizontal plane (Figure 5). The configuration space for this
system is (—m/2,7/2) x SO(2) x SE(2). The coordinates on the configuration space are
denoted (0, ¥, ¢, x, y). As the figure indicates, we denote the coordinates of contact of the
disk in the xy-plane by (x, y), and let 6, ¢, and i represent the angle between the plane of
the disk and the vertical axis, the ‘heading angle’ of the disk, and ‘self-rotation’ angle of the
disk, respectively. Denote the mass, the radius and the moments of inertia of the disk by m,
R, A and B, respectively. The Lagrangian is given by the kinetic minus potential energies:

L= % [(¢" = R(¢sind + y)* + (%) sin® 0 + (¢ cos O + RO)*]
+ % [A(6* + ¢7 cos 0) + B(¢sin 0 + )] — mgR cos,

where ¢' = Xcos¢ + ysing + Ry and 2 = —xsin¢ + ycos¢, while the constraints are
given by
X = —yRcosg, y= —y/Rsin ¢.

Note that the constraints may also be written as =0,2=0.
This system is invariant under the action of the group G =SO(2) x SE(2); the action
by the group element («, B, a, b) € SO(2) x SE(2) is given by

@, v, 0, x,9)1— O, Y +a,¢+ B,xcos B— ysin B+ a,xsin B+ ycos §+ b).

The fibres of the constraint distribution D, are spanned by the vector fields 9y, 95, and
—R cos¢pd,— R sin¢ 3, + dy. Therefore,

S, =D, N T,0rb(q) = span(dy, — Rcos ¢ d, — Rsingdy + dy).

Figure 5. The geometry for the rolling disk.
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We select the basis of the subspace b° C s0(2) x se(2) to be
e; =(1,0,R,0) and e, =(—tané, cos™' 6, — Rtan®, 0).
The two components of the non-holonomic momentum relative to e; and e, are

p1 = Agcos® 6 + (mR> + B)(¢sin 6 + 1) sin 6,
pr = —A¢cos® 0sin 6 + (mR> + B)(¢sin 6 + ) cos> 6.

The momentum equations for the falling disk are computed to be

' tan @ B 6, J mk: 6
- an — s = = - .
D1 4 IR +BP2 > D2 1 D1

According to Corollary 4.5, there exists a basis 1,(6), 1(6) of the subspace b® such that
the components (p, 1;(6)) and (p, n»(f)) of non-holonomic momentum are constants
of motion.

We write the momentum levels as ¢; and ¢,, i.e.

L. m@) =c1, (p.m(0) =ca. (6.17)

Given the momentum levels ¢; and ¢,, Equations in (6.17) define p, and p, as functions of
6. The vector fields n;(f) and 1,(6) form the fundamental solution of the linear system

dn' , |, mR 5 dp* B 2
@:—taner) +TTI, E_mRz—i—Bn’ (618)
It is possible to write the solutions of system (6.18) in terms of the hypergeometric
function. See [27-29] for details. For additional work and history of the falling disk
see [16,30,31].

Kolesnikov [32] proves that the disk does not fall, i.e. the absolute value of the tilt does
not reach the value of 7/2 in finite time, for all but a codimension one set of initial
conditions. It is interesting that the proof does not use the explicit formulae for the fields
n1(0) and 7x(6).

Indeed, the boundaries for the tilt of the disk 6 are determined by the inequality
UA6) < h, where h is the energy level and

U.(6) = % (1(6)/4 + p3(6)/(mR* + B)) + mgR cos 6

is the amended potential restricted to the momentum level (6.17). The crucial step in the
proof is to show that limy_, ;> U.(6) =00 for most initial conditions. As in Section 6.4,
consider the Wronskian

W) — det[’“(@) né(O)}

m®) 150
By Liouville’s formula (which is a special case of (6.16))

0
W) = w(0) epr —tan6dO0 = W(0)cos 0.
0
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Therefore, W(0) — 0 as 6 — +/2. Formulae (6.17) thus imply that the absolute value of at
least one of the momentum components p(0), p»(0) approaches infinity as 6 — +m/2, and
so does U.(0) for all but a codimension one subset of ¢ =(cy, ¢»).

7. Conclusions

In this article, we studied the use of quasivelocities and Hamel equations in the dynamics
of non-holonomic systems with symmetry. In particular, we discussed the importance of
the choice of a basis of the tangent bundle of the configuration space in studying
momentum conservation and integrability of non-holonomic systems. We showed that
these ideas could be very helpful in analysing specific examples such as the sleigh-mass
system and the falling disk.

In future work, we intend to extend some of these ideas to infinite-dimensional systems,
to the analysis of control of non-holonomic systems, and to the dynamics of discrete
non-holonomic systems, both free and controlled.

Acknowledgements

We thank Yakov Berchenko-Kogan, Hernan Cendra, Michael Coleman, Brent Gillespie, P.S.
Krishnaprasad, Jared Maruskin, Richard Murray, Tudor Ratiu, and Andy Ruina for numerous
discussions, and the referees for helpful suggestions. The research of AMB was supported by NSF
grants DMS-0604307 and CMS-0408542. The research of JEM was partially supported by AFOSR
Contract FA9550-08-1-0173. The research of DVZ was partially supported by NSF grants DMS-
0306017 and DMS-0604108.

Notes

1. In certain cases, some or all of «; can be chosen to be global vector fields on Q.
2. If Q is a Lie group, this formula is derived in [18§].

3. Euler wrote the three components of the equations %g—é = g—é
substituted for g—/, where / is the reduced rigid body Lagrangian.
Constraints are non-holonomic if and only if they cannot be rewritten as position constraints.
If §,={0}, a set of non-holonomic constraints is said to be purely kinematic.

Recall that the components A, are defined by the constraints.

A Lie group is said to be unimodular if it has a bilaterally invariant measure.

x &, with explicit formulae

Nowks
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