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This paper uncovers novel and specific dynamical mechanisms that initiate large-amplitude
collective motions in polyatomic molecules. These mechanisms are understood in terms of
intramolecular energy transfer between modes and driving forces. Structural transition dynamics of
a six-atom cluster between a symmetric and an elongated isomer is highlighted as an illustrative
example of what is a general message. First, we introduce a general method of hyperspherical mode
analysis to analyze the energy transfer among internal modes of polyatomic molecules. In this
method, the �3n−6� internal modes of an n-atom molecule are classified generally into three coarse
level gyration-radius modes, three fine level twisting modes, and �3n−12� fine level shearing
modes. We show that a large amount of kinetic energy flows into the gyration-radius modes when
the cluster undergoes structural transitions by changing its mass distribution. Based on this fact, we
construct a reactive mode as a linear combination of the three gyration-radius modes. It is shown
that before the reactive mode acquires a large amount of kinetic energy, activation or inactivation of
the twisting modes, depending on the geometry of the isomer, plays crucial roles for the onset of a
structural transition. Specifically, in a symmetric isomer with a spherical mass distribution,
activation of specific twisting modes drives the structural transition into an elongated isomer by
inducing a strong internal centrifugal force, which has the effect of elongating the mass distribution
of the system. On the other hand, in an elongated isomer, inactivation of specific twisting modes
initiates the structural transition into a symmetric isomer with lower potential energy by suppressing
the elongation effect of the internal centrifugal force and making the effects of the potential force
dominant. This driving mechanism for reactions as well as the present method of hyperspherical
mode analysis should be widely applicable to molecular reactions in which a system changes its
overall mass distribution in a significant way. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3098141�

I. INTRODUCTION

Molecular reactions are typically large-amplitude collec-
tive motions that involve a large number of degrees of free-
dom in a coherent manner. Understanding the mechanism for
such collective motions is a significant challenge in chemical
and biomolecular physics. The standard reaction rate theo-
ries, such as transition state theory1–6 and Rice-Ramsperger-
Kassel-Marcus �RRKM� theory,7–10 generally postulate that
the internal energy of a molecule is quickly redistributed
among the vibrational modes and the probability for a reac-
tion coordinate �or a reactive mode� to acquire a sufficient
amount of energy for reaction is determined statistically. De-
spite the great success of these standard theories, finding an
appropriate reaction coordinate is generally not a trivial mat-
ter. Moreover, the statistical assumption of the reaction rate
theories sometimes breaks down.6,10–14 Therefore, an impor-
tant challenge remains; namely, to develop a general meth-
odology for constructing a reaction coordinate and for under-

standing the nonlinear dynamical processes that lead to
large-amplitude collective motions. The purpose of this pa-
per is to shed light on these fundamental issues of molecular
reactions from the viewpoint of intramolecular energy trans-
fer that is based on a novel method of mode analysis.

A standard method for mode analysis, namely, normal
mode analysis,6,15 has been developed for a wide variety of
systems including atomic liquids16,17 and biopolymers.18,19

While normal mode analysis is useful in describing small-
amplitude vibrations of a system around an equilibrium �or
an arbitrary reference� point in the configuration space, it
may not be the most efficient way to study large-amplitude
motions of molecules. This is because the normal mode con-
cept is based on the local properties of the potential energy
surface, while large-amplitude motions such as molecular re-
actions are not necessarily a local phenomenon on the poten-
tial energy surface. Rather, they represent a global movement
in configuration space or, more accurately, in phase space.
Therefore, a different method suitable for large-amplitude
motions would be of complementary usefulness. Another
controversial point of normal mode analysis as it applies to
large-amplitude motions of molecules can be the problem of
the separation of rotations and vibrations. A standard method
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is to use the so-called Eckart frame20,21 to approximately
separate the rotational degrees of freedom from the vibra-
tional ones. However, the Eckart frame is also based on the
local geometry of the molecular configuration space, and this
approximation may not be accurate enough in the study of
large-amplitude collective motions.

This paper proposes a complementary method for mode
analysis based on a concise expression for kinetic energy of
an n-body system. While the potential energy surfaces are
believed to govern the dynamics of molecules, the kinetic
energy can also play an important role via the non-Euclidean
mass matrix or metric tensor on the molecular internal
space22–25 and deserves closer attention.26–28 Moreover,
while the potential energy surface changes from system to
system, the expression of the kinetic energy is independent
of the system once mass-weighted coordinates are used, in-
dicating that the roles of kinetic energy are of rather univer-
sal nature. Therefore, the first motivation for our present
study is to exploit a method of mode analysis in which the
roles of the kinetic energy become transparent. For this pur-
pose, the system of principal-axis hyperspherical
coordinates29–38 is remarkably suitable.

As was shown in Refs. 29–31, the use of gyration radii
and quasivelocities associated with these coordinates allows
the internal kinetic energy for an arbitrary n-atom molecule
to be expressed in a very simple manner without any cross
terms among the quasivelocities. Moreover, this kinetic en-
ergy expression can be further transformed into another con-
cise one without the Coriolis coupling term between the ro-
tational and the internal modes. All this can be done based on
the framework of geometric mechanics39–43 and gauge
theory.44–47 Inspired by such a concise expression of kinetic
energy, this paper clarifies the physical meanings of the re-
spective terms of kinetic energy and proposes a method of
hyperspherical mode analysis, which classifies, for general
systems, the �3n−6� internal modes of an n-atom system into
three gyration-radius modes, three twisting modes, and �3n
−12� shearing modes.

We apply the resulting hyperspherical mode analysis to
the structural transition dynamics of a six-atom cluster
�Ar6-like cluster�, which serves as an illustrative example of
molecular reactions throughout this paper. This cluster un-
dergoes structural transitions between two geometrically dis-
tinct isomers, one of which has a symmetric structure with
spherical mass distribution and the other isomer has an elon-
gated geometry. This cluster has been frequently studied
from various perspectives such as potential energy
topography,48,49 phase transitions,50,51 and nonlinear reaction
dynamics.52

Once the internal modes of the cluster are characterized
using the hyperspherical modes, an important next step is to
identify the predominant modes in structural transitions and
construct an appropriate reactive mode and the correspond-
ing reaction coordinate. Indeed, finding an appropriate reac-
tion coordinate has been a longstanding subject in chemical
physics. In the literature,53–55 the steepest descent path con-
necting a saddle point and the minima on the potential en-
ergy surface has been frequently used as a reaction coordi-
nate. Recent methods associated with the so-called transition

paths56–61 propose another scheme to determine the reaction
coordinate, the transition state, and the reaction rates based
on an ensemble of reactive trajectories. Moreover, phase
space approaches associated with cylindrical invariant
manifolds62–66 provide a dynamical perspective on reaction
coordinates and have been successfully applied to molecular
reactions with a relatively small number of degrees of free-
dom in the computation of reaction rates. The latter two ap-
proaches, the transition-path and the phase space approach,
are similar in that both highlight the distinction between re-
active and nonreactive trajectories. This distinction seems to
have a significant advantage in investigating the mechanisms
of molecular reactions. Therefore, the basic strategy of the
present study is to fully utilize an ensemble of reactive tra-
jectories for identifying the predominant modes, for con-
structing a reactive mode/reaction coordinate, and for clari-
fying the driving mechanisms for structural transitions.

As a criterion to identify the most important modes in
reactions, we postulate that the predominant modes are the
modes that have a large amount of kinetic energy in the
course of structural transition in the reactive trajectories.
This criterion for predominant modes is based on the stan-
dard assumption of RRKM theory7–10 that molecular reac-
tions take place when a critical degree of freedom �critical
oscillator� acquires a sufficient amount of energy. In addi-
tion, modern phase space approaches62–66 establish this cri-
terion rigorously, where reactive trajectories are character-
ized as the trajectories that have a sufficient amount of
kinetic energy above a threshold in a reactive mode near a
saddle point. Based on this criterion in terms of kinetic en-
ergy partitioning, we show that the gyration-radius modes
are the predominant modes having a larger amount of kinetic
energy in the course of structural transitions of clusters than
the twisting and shearing modes. This result gives additional
support for the idea of using molecular gyration radii as the
building blocks for the reaction coordinate, as has been done
recently in Ref. 28.

The paper, Ref. 28, is based on the use of the three
gyration-radius modes as the coarse variables;67,68 that is, it
identifies these as the “slow” variables, with the remaining
variables being “fast.” The present paper goes beyond this
approach and uses energetic ideas to identify the specific
mechanisms by which the fast modes induce transitions in
the coarse modes.

To accomplish this, we linearly transform the three
gyration-radius modes into a single reactive mode and two
“bath” modes using principal component analysis.69,70 Cor-
respondingly, the three gyration radii are transformed into a
single reaction coordinate and two bath coordinates. The
twisting and shearing modes are also regarded as bath modes
at this stage.

After constructing the reactive mode using the gyration-
radius modes, a next natural question regarding the mecha-
nism for reaction is how the reactive mode acquires a large
amount of kinetic energy from other modes prior to the onset
of structural transitions inside potential wells. Recent
experiments11–14 along with nonlinear dynamics studies71 in-
dicate that certain characteristic pathways or steps of energy
transfer may exist prior to the onset of reactions, which can
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cause a significant breakdown of the statistical assumptions
in conventional reaction rate theories.6,10 In the present study,
we investigate such characteristic energy transfer processes
by making use of hyperspherical mode analysis. We then
highlight the fact that the activation or inactivation of the
twisting modes occurs, depending on the geometry of the
isomer, before the reactive mode acquires a large amount of
energy to start structural transitions.

A main goal of this paper is to understand the physical
significance of the activation and inactivation of specific
twisting modes that occur before the activation of the reac-
tive mode in respective isomers. We solve this problem in
terms of the kinematic mode coupling between the reactive
mode and the twisting modes by investigating the equations
of motion for the reaction coordinate, which is a linear com-
bination of the gyration radii. As has been studied in Refs.
28, 72, and 73, the equations of motion for the gyration radii
reveal two different kinds of forces acting on the gyration
radii, the potential force and a kinematic force called the
internal centrifugal force. While the potential force has a
general tendency to maintain the mass distribution of respec-
tive isomers, the internal centrifugal force has a persistent
tendency to elongate the mass distribution of the system; that
is, it is a symmetry breaking effect. Importantly, the magni-
tude of the elongation effect of the internal centrifugal force
critically depends on the activity of the twisting modes.
Based on this fact, the critical roles of the twisting modes for
the onset of structural transitions in respective isomers is
clarified. Specifically, in a symmetric isomer with a spherical
mass distribution, activation of specific twisting modes
drives the structural transition into an elongated isomer by
inducing the strong internal centrifugal force. On the other
hand, in an elongated isomer, inactivation of specific twisting
modes initiates the structural transition into a symmetric iso-
mer with lower potential energy by suppressing the elonga-
tion effect of the internal centrifugal force and making the
effects of the potential force dominant.

As is discussed further in the conclusions at the end of
the paper, we believe that the identification of these specific
activation modes will ultimately lead to improved molecular
control strategies.

This paper is organized as follows. In Sec. II, we intro-
duce the definitions of hyperspherical modes in a general
setting, and then clarify their physical meaning by taking an
example of a six-atom cluster. In Sec. III, we show the pre-
dominance of the gyration-radius modes over all other hy-
perspherical modes in the structural transitions of the cluster
from the viewpoint of energetics. We then construct a one-
dimensional reactive mode as a linear combination of the
gyration-radius modes using the method of principal compo-
nent analysis. All other hyperspherical modes are regarded as
bath modes. In Sec. IV, we investigate the mechanism of
energy transfer from the bath modes into the reactive mode
prior to the onset of structural transitions. We then highlight
that the activation or inactivation of the twisting modes, de-
pending on the geometry of the isomer, plays critical roles in
initiating structural transitions by inducing driving forces for
large-amplitude collective motions. This paper concludes in
Sec. V with some remarks on future directions of research.

II. HYPERSPHERICAL MODES

In this section, we introduce the definitions of hyper-
spherical modes for n-atom systems in a general setting
based on a concise expression of the internal kinetic energy.
Then we clarify their physical meaning by taking an example
of a six-atom cluster, whose structural transition dynamics
serves as an illustrative model of molecular reactions
throughout this paper.

A. The kinetic energy in principal-axis hyperspherical
coordinates

We summarize below the derivation of a concise expres-
sion of kinetic energy in principal-axis hyperspherical coor-
dinates �see Eq. �9��. The reader can refer to Ref. 28 for
some additional details. Given a system of n atoms, with
masses mi�i=1, . . . ,n� and positions ri= �rix ,riy ,riz�T, its
overall translational degrees of freedom can be eliminated
via the introduction of the �n−1� mass-weighted Jacobi vec-
tors,

�i = ��i��k=1
i mkrk

�k=1
i mk

− ri+1� �i = 1, . . . ,n − 1� , �1�

where �i are the reduced masses,

�i =
mi+1�k=1

i mk

�k=1
i+1 mk

�i = 1, . . . ,n − 1� . �2�

Let W	��1¯�n−1� be a 3� �n−1�-dimensional matrix
whose columns are the �n−1� Jacobi vectors of the system.
According to the singular-value decomposition theorem, the
matrix W can be decomposed into the product of three ma-
trices as

W = RNUT, �3�

where R is a three-dimensional orthogonal matrix whose
three columns represent the instantaneous principal axes of
the whole system. The matrix N is a 3� �n−1� “diagonal”
matrix of the following structure:

N = 
a1 0 0 0 ¯ 0

0 a2 0 0 ¯ 0

0 0 a3 0 ¯ 0
� , �4�

where the singular values a1, a2, and a3 are the gyration radii
of the system. We caution that this definition of gyration radii
does not coincide with the usual definition in the mechanics
literature �see, for example Ref. 43�. However, the three vari-
ables a1, a2, and a3 in this paper still have the physical mean-
ing of radii of gyration, being invariant under both external
and kinematic �internal� rotations.30–38 In order to clarify the
distinction between a1, a2, and a3 in this paper and the usual
gyration radii in mechanics, the former might better be called
the hyperspherical gyration radii. But just for simplicity, we
call a1, a2, and a3 the gyration radii throughout this paper.
Physically, the gyration radii represent the mass distribution
of the system with respect to the three principal axes and are
related to the three principal moments of inertia M1�M2

�M3 as
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M3 = a1
2 + a2

2, M2 = a1
2 + a3

2, M1 = a2
2 + a3

2. �5�

That is,

a1
2 = 1

2 �M2 + M3 − M1�, a2
2 = 1

2 �M1 + M3 − M2� ,

�6�
a3

2 = 1
2 �M1 + M2 − M3� .

The matrix U in Eq. �3� is an �n−1�� �n−1� orthogonal
matrix of the form U	�u1¯un−1�, where the
�n−1�-dimensional vectors �ui
 are orthogonal to each other
and normalized. In the framework of hyperspherical
coordinates,30 the matrix U can be parametrized by the �3n
−9� hyperangles by restricting the matrix U to a subset of
O�n−1�. Together with a1, a2, and a3, these �3n−6� variables
in the matrices N and U are the internal coordinates that
characterize the shape of the system uniquely, while the
principal-axis frame R specifies the orientation of the whole
system. The use of the �3n−9� hyperangles generally makes
the expression of kinetic energy highly involved. Instead, the
use of �3n−9� quasivelocities makes the expression of ki-
netic energy concise as summarized below.

Based on the singular-value decomposition �Eq. �3��, the
translation-reduced kinetic energy of the n-atom system can
be generally expressed as

K =
1

2�
i=1

n−1

�̇i · �̇i = Krot + Kint. �7�

Here, Krot is the rotational kinetic energy given by

Krot = 1
2LTM−1L , �8�

where L is a three-dimensional vector of the angular momen-
tum with respect to the principal-axis frame and M is its
corresponding 3�3 moment of inertia tensor. Kint is the in-
ternal kinetic energy and can be given explicitly as

Kint =
1

2
�ȧ1

2 + ȧ2
2 + ȧ3

2� +
�a1

2 − a2
2�2

2�a1
2 + a2

2�
�12

2 +
�a2

2 − a3
2�2

2�a2
2 + a3

2�
�23

2

+
�a3

2 − a1
2�2

2�a3
2 + a1

2�
�31

2 +
1

2
a1

2�
k=4

n−1

�1k
2 +

1

2
a2

2�
k=4

n−1

�2k
2

+
1

2
a3

2�
k=4

n−1

�3k
2 , �9�

where ��ij
 and ��ik
 are the quasivelocities defined by

u̇i · u j = − ui · u̇ j 	 �ij �i, j = 1,2,3,i � j� , �10�

u̇i · uk = − ui · u̇k 	 �ik �i = 1,2,3,k = 4, . . . ,n − 1� .

�11�

The vectors �ui
 are the �n−1�-dimensional vectors defined
in the matrix U in Eq. �3�. The quasivelocities ��ij
 are an-
tisymmetric with respect to the exchange of the suffixes as
�ij =−� ji. Both ��ij
 and ��ik
 are the parts of the compo-

nents of the �n−1�� �n−1� antisymmetric matrix UTU̇,
which is essentially an internal angular velocity associated
with the shape changes in the system. We clarify the physical
meanings of these quasivelocities in the following two sub-

sections. Note that the expression �9� is valid for general
n-atom �n�5� systems. If n�4, the quasivelocities ��ik
 do
not exist, and all the terms involving ��ik
 disappear from Eq.
�9� �see Ref. 72 for three- and four-atom systems�. Hereafter,
we assume the general case of n�5 unless otherwise noted.

An advantage of the expression �7� is that there is no
Coriolis coupling term, and the partitioning of K into Krot

and Kint is independent of the choice of body frame. �It
should be noted, however, that the terms on the right-hand
side of Eq. �9� have physical meanings specifically with re-
spect to the principal-axis frame as will be shown in the
following subsections.� When the total angular momentum of
the system is zero, L=0, the rotational kinetic energy Krot

disappears and Kint is essentially the total kinetic energy of
the system.

The internal kinetic energy equation �9� is remarkably
simple in the sense that there is no cross term among the
velocities of gyration radii �ȧi
 and the quasivelocities ��ij

and ��ik
. Moreover, the number of terms on the right-hand
side of Eq. �9� is �3n−6� in total, which is exactly the same
as the number of internal degrees of freedom of the n-atom
system. Therefore, it is tempting to consider the terms of Eq.
�9� as the kinetic energies of respective �3n−6� internal de-
grees of freedom. The first three terms proportional to ȧ1

2, ȧ2
2,

and ȧ3
2 are clearly the kinetic energies of the three gyration

radii. But for the rest of the terms involving ��ij
 and ��ik
, it
is not as simple because one cannot attribute them to any
coordinates since these quasivelocities are not derivatives of
coordinates. Instead, these kinetic energies are the energies
of respective internal modes characterized by the quasive-
locities ��ij
 and ��ik
 themselves. In the following two sub-
sections, we clarify the physical meanings of these internal
modes that correspond to the quasivelocities ��ij
 and ��ik
.
We then propose to use the concise expression of the kinetic
energy equation �9� as a fundamental tool to investigate the
intramolecular energy transfer in the dynamics of n-atom
systems as will be demonstrated in the later sections.

B. Definitions of hyperspherical modes

We introduce below the definitions of hyperspherical
modes, which are inherent in the concise expression for the
internal kinetic energy equation �9�. While the variables �ȧi
,
��ij
, and ��ik
 in Eq. �9� are the components of a given
velocity vector in the tangent space of the configuration
space, the hyperspherical modes themselves are defined as
the basis vectors conjugate to these components.

Suppose that Ẇ is a velocity vector of the system that
satisfies the conditions of zero total angular momentum.

Note that this 3� �n−1� matrix Ẇ can be regarded as a
vector in the tangent space of the �3n−3�-dimensional
translation-reduced configuration space by aligning all the

columns of Ẇ to a single column. As long as the vector Ẇ
satisfies the conditions of zero total angular momentum, Ẇ
can be expanded into �3n−6� terms as
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Ẇ = �
i=1

3

ȧiVai
+ �

ij=12,23,31
�ijV�ij

+ �
i=1

3

�
k=4

n−1

�ikV�ik
, �12�

where �Vai

, �V�ij


, and �V�ik

 are 3� �n−1� matrices, which

constitute the �3n−6� basis vectors of this expansion. Each
of these basis vectors corresponds to a hyperspherical mode.
In what follows, we deduce the expressions for these basis
vectors.

We begin with the following expression for Ẇ:

Ẇ = RṄUT + R��N + N�T�UT, �13�

which is obtained from the time derivative of Eq. �3�. In Eq.

�13�, the matrix �	RTṘ is a 3�3 antisymmetric matrix
corresponding to the angular velocity of the principal-axis
frame with respect to the principal-axis frame itself. The ma-

trix �	UTU̇ is an �n−1�� �n−1� antisymmetric matrix that
can be expanded as

� = �
ij=12,23,31

�ijXij + �
i=1

3

�
k=4

n−1

�ikXik + �
k=4

n−2

�
l=k+1

n−1

�klXkl, �14�

where Xij are defined as the �n−1�� �n−1�-dimensional an-
tisymmetric matrix whose ij component is �1, ji component
is +1, and all other components are zero. The matrices Xik

and Xkl have the similar structure, whose ik or kl component
is �1 and the ki or lk component is +1. In the first two terms
on the right-hand side of Eq. �14�, ��ij
 and ��ik
 are the
quasivelocities introduced in Eqs. �10� and �11�. In the third
term of Eq. �14�, we have introduced additional quasiveloci-
ties defined by

u̇k · ul = − uk · u̇l 	 �kl �k,l = 4, . . . ,n − 1,k � l� . �15�

The quasivelocities in Eq. �15� vanish after the matrix mul-
tiplication N�T in Eq. �13�.

Our strategy here is to express Eq. �13� in the form of
Eq. �12� and compare these two equations to deduce the
basis vectors �Vai


, �V�ij

, and �V�ik


. So far, Eq. �13� is more
general than Eq. �12� because Eq. �13� includes the situation

that Ẇ gives nonzero total angular momentum. Therefore,
we need to assign the conditions of vanishing total angular

momentum to Eq. �13�. If the velocity vector Ẇ in Eq. �13�
satisfies the conditions of vanishing total angular momen-
tum, one can eliminate the angular velocity of the principal-
axis frame � by expressing it in terms of the internal vari-
ables as is known from the gauge theory.47 This can be done
as follows.

The total angular momentum of the system �with respect

to the space-fixed frame� for a given velocity vector Ẇ can
be expressed in the form of a 3�3 antisymmetric matrix as

Ls = ẆWT − WẆT. �16�

By inserting Eq. �13� into Eq. �16�, we obtain

Ls = R��NNT + N�TNT − NNT�T − N�NT�RT. �17�

Using this equation, the condition of vanishing total angular
momentum, Ls=0, can be solved for � to give

� =

0 −

2a1a2

a1
2 + a2

2�12
2a3a1

a3
2 + a1

2�31

2a1a2

a1
2 + a2

2�12 0 −
2a2a3

a2
2 + a3

2�23

−
2a3a1

a3
2 + a1

2�31
2a2a3

a2
2 + a3

2�23 0
�

	 A12�12 + A23�23 + A31�31, �18�

where, in the final equality, Aij �ij=12,23,31� are the 3
�3 antisymmetric matrices whose ij components are
−2aiaj / �ai

2+aj
2� and ji components are +2aiaj / �ai

2+aj
2� and

all other components are zero. Physically, Eq. �18� is the
angular velocity of the principal-axis frame that compensates
for the angular momentum induced by the quasivelocities
�12, �23, and �31 to keep the total angular momentum zero.
After inserting Eq. �18� into Eq. �13� and using Eq. �14� for

�, we obtain a general expression for the velocity vector Ẇ
under the conditions of vanishing total angular momentum as

Ẇ = �
i=1

3

ȧiR
�N
�ai

UT + �
ij=12,23,31

�ijR�AijN + NXij
T�UT

+ �
i=1

3

�
k=4

n−1

�ikRNXik
T UT. �19�

By comparing Eq. �19� with Eq. �12�, we see that the three
gyration-radius modes can be defined as

Vai
	 R

�N
�ai

UT �i = 1,2,3� . �20�

Similarly, the first three hyperangular modes corresponding
to �12, �23, and �31 can be defined as

V�ij
	 R�AijN + NXij

T�UT �ij = 12,23,31� , �21�

and other hyperangular modes corresponding to �ik�i
=1,2 ,3 ,k=4, . . . ,n−1� can be defined as

V�ik
	 RNXik

T UT �i = 1,2,3,k = 4, . . . ,n − 1� . �22�

Thus, Eqs. �20�–�22� give the definitions of the �3n−6� in-
ternal modes. Note that the hyperspherical modes in Eqs.
�20�–�22� are now expressed solely by the quantities that are
obtained through the singular value decomposition in Eq.
�3�. Therefore, one can immediately compute all the hyper-
spherical modes through Eqs. �20�–�22� once the singular
value decomposition equation �3� is obtained.

It can be shown that the hyperangular modes defined
above are orthogonal to each other; in fact, we have

Tr�V	
TV
� = 0 �for 	 � 
� , �23�

where 	 and 
 represent any of �ai
, ��ij
, and ��ik
. These
orthogonal properties indicate that the hyperspherical modes
form a set of orthogonal basis vectors that span the tangent
space of the configuration space under the conditions of zero
total angular momentum, which is a property similar to or-
dinary normal modes.15 Furthermore, the hyperspherical
modes are normalized to the coefficients of the kinetic en-
ergy in Eq. �9�,
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Tr�Vai

T Vai
� = 1 �i = 1,2,3� , �24�

Tr�V�ij

T V�ij
� = �ai

2 − aj
2�2/�ai

2 + aj
2� �ij = 12,23,31� ,

�25�

Tr�V�ik

T V�ik
� = ai

2 �i = 1,2,3,k = 4, . . . ,n − 1� . �26�

Note that the kinetic energy of the system given in Eq. �7�
can also be expressed as 2K=Tr�ẆTẆ�. By inserting Eq.
�12� into this kinetic energy expression, we can see that the
orthonormal conditions, Eqs. �23�–�26�, are vital to the con-
cise expression of kinetic energy in Eq. �9� without any cross
terms. Note finally that the hyperspherical modes are deter-
mined only by the quantities associated with kinetic energy,
i.e., the atomic masses and the shape of the system, and are
totally independent of the potential function of the system. In
Sec. II C, we will clarify the physical meaning of each hy-
perspherical mode by taking an illustrative example of a six-
atom cluster.

C. Representation of hyperspherical modes for an
illustrative model system

In this subsection, we clarify the physical meanings of
the hyperspherical modes defined in Eqs. �20�–�22� based on
an illustrative model of a six-atom cluster. Since the struc-
tural transition dynamics of this cluster is of great interest in
later sections, we first summarize this model system briefly.

Our illustrative model is a cluster composed of six iden-
tical atoms that mutually interact through a pairwise Morse
potential. This cluster, called the M6 cluster, and similar
Lennard-Jones clusters have been studied extensively from
various perspectives such as potential energy topography,48,49

phase transitions,50,51 and nonlinear dynamics.52 The dimen-
sionless Hamiltonian of the system is given by

H
�

=
1

2�
i=1

6

�ṙi · ṙi� + �
i�j

�e−2�dij−d0� − 2e−�dij−d0�� , �27�

where ri �i=1, . . . ,6� is the three-dimensional position vector
of the atom i. The dot over ri represents the time derivative.
All the masses of the atoms can be regarded as unity in the
dimensionless Hamiltonian. The parameter � represents the
depth of the Morse potential and dij is the interparticle dis-
tance between atom i and atom j. The parameter d0, which
corresponds to the equilibrium distance of the pairwise
Morse potential, is set to d0=6.0. This provides a potential
topography similar to that of the Lennard-Jones potential.49

Therefore, this system can be regarded as a model of the Ar6

cluster.
The isomerization scheme of the M6 cluster is shown in

Fig. 1. This cluster has two geometrically distinct isomers:
One is the regular octahedron �OCT� and the other is the
capped trigonal bipyramid �CTBP�.48,49,52 The potential en-
ergy minimum of the OCT isomer is V=−12.49�, and that of
the CTBP isomer is V=−12.13�. These two isomers are con-
nected through a saddle point whose potential energy is V=
−11.83�. In Fig. 1, the potential energy topography along the
steepest descent path is shown. The OCT isomer has a highly

symmetric structure with a deep potential well, while the
CTBP isomer has an elongated �collapsed� structure with a
shallow potential well. Since the mass distribution of each
isomer will be important in the later sections, we here note
the following: The OCT isomer has a spherical mass distri-
bution and the values of the gyration radii are �a1 ,a2 ,a3�
= �5.97,5.97,5.97� at the minimum of the potential energy.
The CTBP isomer has an elongated mass distribution and the
values of gyration radii are �a1 ,a2 ,a3�= �8.19,5.89,4.27� at
the local minimum of potential energy. The horizontal axis of
Fig. 1 measures the variation of the three gyration radii of
the cluster along the path.

Throughout this paper, a microcanonical, constant en-
ergy simulation is employed. Since the main interest of this
study is in the internal dynamics of polyatomic systems, the
total angular momentum of the system is set to be zero
throughout the paper. If the total energy of the cluster is
higher than that of the saddle point, the isomerization reac-
tions between the two isomers are energetically possible. In
this paper, all the simulations are done at the total energy
level of E=−11.0�. At this energy level, the cluster tends to
stay in the two isomers for roughly the same amount of time
in long-time simulations.28 In what follows, our numerical
results are presented in absolute units.

We now investigate the physical meanings of the hyper-
spherical modes defined in Eqs. �20�–�22� based on the M6

cluster. For n=6, there are �3n−6�=12 hyperspherical
modes. Figure 2 shows the three-dimensional representation
of these modes around the OCT �Figs. 2�a�–2�l�� and the
CTBP �Figs. 2�n�–2�y�� isomers. In these figures, the cluster
is aligned so that the first, second, and third principal axes
are parallel to the axes indicated in �m� for OCT and in �z�
for CTBP. Since the three gyration radii happen to be degen-
erate �equal� at the minimum of the potential energy in the
OCT isomer, the corresponding principal axes are not
uniquely determined. Therefore, for the sake of visualization,
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FIG. 1. �Color online� Isomerization scheme of the six-atom Morse cluster.
The cluster has two geometrically distinct isomers, OCT and CTBP. The
potential energy curve along the steepest descent path connecting the saddle
point and the two potential minima is shown. The horizontal axis measures
the arc length of the path, which quantifies the variation of the three gyration
radii along the path. The potential energy of the OCT isomer at the mini-
mum point is V=−12.49�, while that of the CTBP isomer is V=−12.13�.
These minima are connected through a saddle point whose potential energy
is V=−11.83�.
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we have slightly deformed the OCT structure in the direction
of the saddle point along the steepest descent path in Figs.
2�a�–2�l�. Note, however, that the hyperspherical modes are
well defined almost everywhere in the configuration space
except for the points where two or three of the gyration radii
are exactly the same, i.e., the singular values in Eq. �4� are
degenerate.

The arrows in Fig. 2 represent the vectors of the hyper-
spherical modes defined in Eqs. �20�–�22�. Since the vectors
Vai

, V�ij
, and V�ik

in these equations are expressed in terms
of Jacobi vectors, we converted Eqs. �20�–�22� into the cor-
responding expressions in Cartesian coordinates by using the
inversion of Eq. �1� in obtaining the three-dimensional rep-
resentations in Fig. 2. It is important to note that, in each
picture of Fig. 2, the motion characterized by the arrows that
are inverted all at the same time belongs to the same hyper-
spherical mode as the one shown in the figure. This is be-
cause the vectors V	 and −V	, where 	 represents any of
�ai
, ��ij
, and ��ik
, span the same tangent space and differ
only in their signs. In addition, we need only one of either

�ij-mode or � ji-mode as a basis because V�ij
=−V�ji

holds by
virtue of the antisymmetric property of Aij and Xij in
Eq. �21�.

Figures 2�a�–2�c� and 2�n�–2�p� show the a1-, a2-, and
a3-modes, which are the gyration-radius modes defined in
Eq. �20� for the two isomers. It is clearly seen that the
gyration-radius modes are related to inflation and contraction
of the system along the three principal axes, respectively.
Therefore, combinations of these gyration-radius modes
characterize the change in the overall mass distribution of the
system with respect to the three principal axes. The other
three modes, �12-, �23-, and �31-modes defined by Eq. �21�
are shown in Fig. 2�d�–2�f� and 2�q�–2�s� for the respective
isomers. As can be seen from these figures, all the arrows in
the �12-, �23-, and �31-modes are perpendicular to the third,
first, and second principal axes, respectively. Furthermore, in
each of these �ij-modes, one part of the system tends to
rotate around the kth �k� i , j� principal axis in one direction,
and the other part of the system tends to rotate in the oppo-
site direction, giving rise to some twist around the kth

(a) (b) (c)

1a -mode 2a -mode 3a -mode

(d) (e) (f)

12ω -mode 31ω -mode
23ω -mode

(g) (h)

14γ -mode
15γ -mode

(i) (j)

24γ -mode 25γ -mode

(m) (k) (l)

34γ -mode 35γ -modePA1

PA2

PA3

(n) (o) (p)

1a -mode 2a -mode 3a -mode

12ω -mode 31ω -mode
23ω -mode

(q) (r) (s)

(t) (u)

14γ -mode
15γ -mode

(v) (w)

24γ -mode 25γ -mode

34γ -mode 35γ -mode

(z) (x) (y)

PA1

PA2
PA3

FIG. 2. �Color online� The 12 hyperspherical modes of the six-atom cluster, M6, around the OCT ��a�–�l�� and the CTBP isomers ��n�–�y��. The cluster is
aligned so that the first, second, and third principal axes �PA1, PA2, and PA3, respectively� are parallel to the axes indicated in �m� for OCT and in �z� for
CTBP. �The OCT isomer shown here is slightly deformed from the potential energy minimum. See the text for detail.� The three gyration-radius modes, a1-,
a2-, and a3-modes, shown in �a�–�c� and �n�–�p� for the two isomers, respectively, are related to the elongation and the contraction of the systems along the
three principal axes. For the three twisting modes, shown in �d�–�f� and �q�–�s�, the arrows in each �ij-mode are perpendicular to the kth �k� i , j� principal
axis; one part of the system tends to rotate around the kth principal axis in one direction, and the other part of the system tends to rotate in the opposite
direction, giving rise to a twist around the kth principal axis. The remaining six modes associated with �ik �i=1,2 ,3 ,k=4,5�, shown in �g�–�l� and �t�–�y�, are
the shearing modes; while all the atoms in each �ik-mode tend to move parallel to the ith principal axis, some move in the positive direction and others move
in the negative direction, giving rise to a shear in the system.

144111-7 Driving mechanisms for collective motions J. Chem. Phys. 130, 144111 �2009�

Downloaded 19 Apr 2009 to 131.215.225.9. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�k� i , j� principal axis. Thus we call the �12-, �23-, and
�31-modes the twisting modes. Note that, since these modes
are internal modes, they do not induce any total linear nor
angular momentum due to the condition introduced in Eq.
�18�. The remaining six modes associated with �ik �i
=1,2 ,3 ,k=4,5� are shown in Figs. 2�g�–2�l� and 2�t�–2�y�.
In each of these �ik-modes, some atoms tend to move in one
of the two directions parallel to the ith principal axis, and the
remaining atoms tend to move in the opposite direction, giv-
ing rise to a shear in the system. Thus, we call these
�ik-modes the shearing modes.

In principle, one can determine the hyperspherical
modes for arbitrary configurations of an n-atom system in the
same way as above as long as the singular value decompo-
sition equation �3� is well defined. In the case of a general
n-atom system �n�4�, the numbers of the gyration-radius
modes, twisting modes, and shearing modes are 3, 3, and
�3n−12�, respectively. Thus, only the number of shearing
modes ��ik-modes� increases when the number of atoms n
increases. If n=4, there are no shearing modes, and we have
only three gyration-radius modes and three twisting modes.
If n=3, we have only two gyration-radius modes and one
twisting mode.

We note here that the �ik-modes have an arbitrariness
with respect to the exchange of the suffixes k. For example,
the �14-mode shown in Fig. 2 could also be labeled as the
�15-mode and vice versa. This is due to the arbitrariness of
the singular value decomposition of the matrix W �Eq. �3��
with respect to the ordering of the last �n−4� columns uk

�k=4, . . . ,n−1� of the matrix U. In fact, the �ik-modes have
a larger class of arbitrariness associated with the orthogonal
transformations of U that act only on the last �n−4� columns
uk �k=4, . . . ,n−1� without affecting the first three columns
uk �k=1,2 ,3�. This arbitrariness in the �ik-modes leads to
arbitrariness in the definitions of kinetic energies in the
shearing modes: In the current framework, while the sums of
kinetic energies in the shearing modes �with respect to the
second subscript k�, �ai

2 /2��k=4
n−1�ik

2 , which appear in Eq. �9�,
are uniquely determined for respective i�=1,2 ,3�, there is
arbitrariness in the decomposition of each of these sums into
the kinetic energies in the respective shearing modes, K�ik
	�ai

2 /2��ik
2 , where k=4, . . . ,n−1. For example, in our six-

atom cluster �n=6�, the sum of the kinetic energies in the
�14-mode and �15-mode, K�14

+K�15
, is always unique and

exact, whereas each of K�14
and K�15

is determined arbi-
trarily. This arbitrariness in the kinetic energies in the shear-
ing modes should be noted in the following sections when
we discuss the kinetic-energy partitioning among the internal
modes in Figs. 4, 7, and 8. In order to resolve such arbitrari-
ness in the shearing modes, one needs to introduce extra
rules so that the columns uk �k=4, . . . ,n−1� of U are
uniquely determined. However, it is important that no matter
how such rules are introduced, the resulting �ik-modes al-
ways have the physical meaning of the shearing modes along
the ith principal axis as is shown in Figs. 2�g�–2�l� and 2�t�–
2�y�. Thus, as far as the present study is concerned, we do
not find significant physical motivation in resolving the arbi-
trariness in the shearing modes, and we do not deal with this
arbitrariness here.

As mentioned earlier, an advantage of the hyperspherical
modes is that the kinetic energy of each mode is exactly
defined by the corresponding term of Eq. �9� �except for the
arbitrariness in the shearing modes as mentioned above�.
Therefore one can scrutinize the flow of kinetic energy
among the hyperspherical modes in conformational dynam-
ics of arbitrary molecular systems. Such information on the
kinetic energy flow can in turn provide crucial information
for understanding the mechanism for large-amplitude collec-
tive motions. In the following sections, we demonstrate this
procedure systematically by studying the structural transition
dynamics of the M6 cluster.

III. CONSTRUCTION OF A REACTIVE MODE
AND A REACTION COORDINATE

The purpose of this section is to construct a reactive
mode and a corresponding reaction coordinate that plays a
predominant role in the structural transitions of the M6 clus-
ter. By applying the framework of the hyperspherical modes
introduced in Sec. II, we first show that the gyration-radius
modes are the most predominant modes having a large
amount of kinetic energy in the course of structural transi-
tions. Based on this fact, we transform the three gyration-
radius modes into a single reactive mode and two bath
modes by making use of principal component analysis. All
other hyperspherical modes, the twisting modes, and the
shearing modes are also regarded as bath modes. This clas-
sification of the internal modes serves as a basis for the study
of the driving mechanisms for structural transitions in
Sec. IV.

A. Predominant hyperspherical modes
in structural transition

In this subsection, we extract the predominant modes in
the structural transition of the M6 cluster from the 12 hyper-
spherical modes shown in Fig. 2. Our criterion for the pre-
dominant modes is that they must be highly active having a
large amount of kinetic energy during the course of structural
transitions. This criterion for the predominant modes is based
on the standard picture for reactions in the RRKM theory,7–10

where it is generally postulated that molecular reactions take
place when a certain critical degree of freedom �or a critical
oscillator� acquires a sufficient amount of energy. The legiti-
macy of this picture is further confirmed by the modern
phase space approaches,62–66 where it is clearly shown that a
reactive mode possesses a sufficient amount of kinetic en-
ergy above a threshold near a saddle point in an ensemble of
reactive trajectories. Thus, we investigate here the partition-
ing of kinetic energy among the hyperspherical modes in an
ensemble of reactive trajectories. The reactive trajectories are
defined essentially in the same way as in the transition-path
formalisms56–61 as follows.

First, we need to determine the appropriate vicinities for
the two isomers of the M6 cluster in configuration space. For
this purpose, we use the gyration radii of the cluster based on
the results of Ref. 28. Figure 3�a� shows a typical time evo-
lution of the three gyration radii, a1, a2, and a3, of the M6

cluster at the total energy E=−11.0�. We see that the values
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of gyration radii switch between the vicinities of the two sets
of values at the equilibrium points, i.e., �a1 ,a2 ,a3�
= �5.97,5.97,5.97� for OCT and �a1 ,a2 ,a3�
= �8.19,5.89,4.27� for CTBP, reflecting the occurrence of
structural transition between the two isomers. This result
shows that the values of gyration radii can serve as useful
order parameters to define the vicinities of the two isomers in
the configuration space.

Figure 3�b� also shows the usefulness of gyration radii in
defining the vicinities of the two isomers. In this figure, a
trajectory with total energy E=−11.0� is projected onto the
three-dimensional space of gyration radii. The points plotted
with circles are in the potential well of OCT, while those
plotted with crosses are in the potential well of CTBP. Here
we used the quenching method48 for this assignment of po-
tential wells. We see that the three-dimensional space of gy-
ration radii clearly distinguishes the two isomer regions and
characterizes the occurrence of a single structural transition.
Based on Figs. 3�a� and 3�b�, we tentatively use a1 as the
order parameter to define the vicinities of the isomers. We
then regard the region a1�6.9 as the isomer region of OCT
and the region a1�8.0 as the isomer region for CTBP. The
region in between these two isomer regions, where 6.9�a1

�8.0, is regarded as a transition region. Then, the reactive
trajectories from OCT to CTBP are defined as the segments

of trajectories in the transition region that depart from the
isomer region of OCT and arrives at the isomer region of
CTBP without returning to the initial isomer region of OCT.
The reactive trajectories from CTBP to OCT are defined in
the same way. A trajectory in the transition region that de-
parts from one isomer region and returns to the same isomer
region before entering into the other isomer region is re-
garded as a nonreactive trajectory.

Using the reactive trajectories defined as above, we now
investigate the partitioning of kinetic energy among the hy-
perspherical modes. Figure 4�a� shows the distribution of
kinetic energy among the 12 hyperspherical modes averaged
over an ensemble of reactive trajectories in the transition
region. Here, the kinetic energy in each hyperspherical mode
is defined as the corresponding term of Eq. �9� as is pre-
scribed in Sec. II. As is clearly seen from Fig. 4�a�, the ki-
netic energy is not equipartitioned among the hyperspherical
modes, but the a1- and a3-modes have markedly more �about
1.5–2 times� kinetic energy than other internal modes. The
kinetic energy partitioning for the reactions from OCT to
CTBP is essentially the same as that from CTBP to OCT.
This is due to the time-reversal symmetry of the dynamics.
The result of Fig. 4�a� indicates that the two gyration-radius
modes a1 and a3 need to be activated in order for the cluster
to achieve structural transitions in both directions. Thus, the
gyration-radius modes are the predominant modes according
to our criterion for predominance as mentioned at the begin-
ning of this subsection.

On the other hand, Fig. 4�b� shows the average partition-
ing of kinetic energy among the 12 hyperspherical modes
over arbitrarily chosen long-time trajectories in the two iso-
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FIG. 3. �Color online� �a� A typical time evolution of the three gyration
radii, a1�a2�a3, at total energy E=−11.0�. In the time interval shown in
the figure, the system had undergone structural transitions seven times from
OCT to CTBP and six times from CTBP to OCT. �b� The projection of a
trajectory with the total energy E=−11.0� onto the three-dimensional space
of gyration radii. The points plotted with circles are attributed to the poten-
tial well of OCT, while those plotted with crosses are attributed to the
potential well of CTBP by the quenching method. The trajectory had under-
gone structural transition once. The three axes labeled as a1�, a2�, and a3� in �b�
represent the orthonormal frame G, which will be introduced through the
principal component analysis in Eq. �30�. The axis labeled as a1� represents
the reactive mode of this study �see Sec. III B�.
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FIG. 4. �Color online� �a� Distribution of kinetic energy over the 12 hyper-
spherical modes of the M6 cluster computed by averaging over the reactive
trajectories in the transition region at total energy E=−11.0�. The plot with
squares corresponds to the reactive trajectories from OCT to CTBP, while
the plot with circles corresponds to the reactive trajectories from CTBP to
OCT. �b� Distribution of kinetic energy among the 12 hyperspherical modes
in the isomer regions �potential wells� averaged over arbitrarily chosen
long-time trajectories. The plot with squares represents the distribution of
kinetic energy in the isomer region of OCT, while the plot with circles
represents the distribution of kinetic energy in the isomer region of CTBP.
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mer regions. Open squares represent the average partitioning
of kinetic energy in the isomer region of OCT, while the
open circles represent that in the isomer region of CTBP. It is
clearly seen that kinetic energy is equipartitioned among the
12 hyperspherical modes in both the OCT and CTBP re-
gions. By comparing the results of Figs. 4�a� and 4�b�, we
see that for the onset of structural transitions it is crucial to
create the biased energy distribution as in Fig. 4�a� from the
equipartitioned one as in Fig. 4�b� in each isomer region. The
equipartition of kinetic energy in the isomer regions �Fig.
4�b�� suggests that the dynamics inside each isomer region is
statistical as far as the ensemble of arbitrarily chosen long-
time trajectories are concerned. However, this does not nec-
essarily mean that the energy distribution among the internal
modes evolves completely randomly in the isomer regions in
the short time intervals right before the onset of structural
transitions. Indeed, we show in Sec. IV that the distribution
of kinetic energy over the internal modes evolves in quite
characteristic manners in respective isomer regions before
the onset of structural transitions.

The importance of the activation of the two gyration-
radius modes, a1-mode and a3-mode, in the structural transi-
tions of the M6 cluster may be understood by looking at Figs.
2�a�, 2�c�, 2�n�, and 2�p�: In order for the cluster to change its
structure from OCT to CTBP, the cluster needs to acquire
sufficient momentum or energy to elongate in the direction
of the a1-mode �Fig. 2�a�� and to contract in the direction of
the a3-mode �inverse of Fig. 2�c��. On the other hand, in
order for the cluster to change its structure from CTBP to
OCT, the cluster needs to acquire sufficient momentum or
energy to contract in the direction of the a1-mode �inverse of
Fig. 2�n�� and to elongate in the direction of the a3-mode
�Fig. 2�p��. From other pictures in Fig. 2, one might see that
activation of the twisting modes ��ij-modes� and the shear-
ing modes ��ik-modes� do not directly contribute to the struc-
tural transitions between the two isomers.

In our previous study,28 we observed numerically that
the three gyration-radius modes change slowly in time com-
pared to other hyperangular modes. This time-scale separa-
tion supported the idea of using the gyration radii as the
predominant collective variables.67,68 The result of Fig. 4�a�
of this study could be seen as another dynamical evidence
for the predominance of gyration radii in structural transi-
tions of the cluster. It is generally expected that the gyration-
radius modes need to be activated in order for a molecular
system to undergo reactions that accompanies a significant
change in the mass distribution. This is because only the
gyration-radius modes are directly linked to the dynamics of
the overall mass distribution of a system with respect to the
principal-axis frame, while all other hyperspherical modes,
the twisting modes, and the shearing modes, are by definition
associated only with the motions under the conditions of
fixed overall mass distribution. �Note, however, that the
twisting modes and the shearing modes can still influence
and drive the dynamics of the overall mass distribution of a
system indirectly via the mode coupling with the gyration-
radius modes as we scrutinize in Sec. IV.�

B. Reactive mode and reaction coordinate

While the result of Fig. 4�a� has indicated that the two of
the gyration-radius modes, a1-mode and a3-mode, are pre-
dominant in the structural transition of the M6 cluster, it is
generally expected that the number of reactive modes can be
reduced to 1 at least in the vicinity of the rank one saddle
point.62–66 In addition, it is convenient to have only one re-
active mode rather than two for the study of the mechanism
for structural transition in Sec. IV. These considerations mo-
tivate us to transform here the three gyration-radius modes
into one reactive mode and two bath modes based on the
principal component analysis.69,70 The basic idea here is to
find appropriate coordinate axes in the space of gyration ra-
dii, as shown in Fig. 3�b�, so that one of the axes captures the
structural transitions as clearly as possible.

First, we introduce a 3�3 variance-covariance matrix C
whose components are defined by

Cij = ��ai − �ai���aj − �aj��� �i, j = 1,2,3� , �28�

where the brackets �·� represent the long-time average of a
quantity. It is important to note that the three-dimensional
space of gyration radii, as shown in Fig. 3�b�, is Euclidean,
although the �3n−6�-dimensional internal space of an
n-atom system as a whole is generally non-Euclidean.22–25

This Euclidean nature of the space of gyration radii can be
seen from the expression for kinetic energy in Eq. �9�, where
the metric components for gyration radii are diagonal and
unity. As a result, one can measure variance and covariance
of the three gyration radii based simply on the standard Eu-
clidean norm as in Eq. �28�. The time period for this averag-
ing should be long enough so that the system undergoes
structural transitions back and forth for a sufficient number
of times. Since the matrix C is symmetric, this matrix can be
diagonalized by a 3�3 orthogonal matrix G through a simi-
larity transformation, GTCG. The first column of the matrix
G, which is defined as the eigenvector corresponding to the
largest eigenvalue of C, captures the direction in which the
trajectory migrates the most widely in the space of gyration
radii �see Fig. 3�b��. The second and third columns of the
matrix G are defined as the eigenvectors corresponding to
the second largest and smallest eigenvalues of C, respec-
tively. By using the matrix G, we can transform the original
gyration radii a	�a1 ,a2 ,a3�T into new ones a�
	�a1� ,a2� ,a3��

T as

a� = GTa . �29�

The new gyration radius a1� is expected to serve as the reac-
tion coordinate that describes the structural transition better
than a1, while a2� and a3� are expected to be the less important
coordinates, or simply the bath coordinates as we see below.

As an explicit expression for the matrix G, we obtained

G = 
 0.801 − 0.292 0.523

− 0.045 0.841 0.539

− 0.597 − 0.455 0.660
� �30�

by diagonalizing the matrix, Eq. �28�, based on an ensemble
of trajectories with total energy E=−11.0�. The directions of
the first, second, and third column vectors of G in Eq. �30�
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are depicted in Fig. 3�b� with labels a1�, a2�, and a3�, respec-
tively. Equation �30� as well as Fig. 3�b� indicate that the first
gyration radius a1 contributes the most to a1� as can be seen
from the fact that the magnitude of the �1,1�-component of G
is the largest among the components in the first column.
Similarly, the third gyration radius a3 contributes to a1� the
second most, while a2 contributes the least to a1�. We also see
that a2� overlaps largely with a2.

Figure 5�a� shows the time evolution of the three new
coordinates, a1�, a2�, and a3�, introduced in Eq. �29�, for the
same trajectory as in Fig. 3�a�. While the two variables, a1

and a3, change significantly upon structural transition in Fig.
3�a�, only one variable a1� changes significantly in Fig. 5�a�.
This indicates that the principal component analysis has suc-
cessfully transformed the original three gyration radii into
the single predominant coordinate a1�, which captures the
structural transitions clearly, and other two coordinates, a2�
and a3�. Figure 5�b� shows the projection of the same trajec-
tory as in Fig. 3�b� onto the two-dimensional space of a1� and
a2�. We see that there are two regions where the trajectory is
densely populated. In the left region, all the points on the
trajectory �plotted with circles� are quenched to the bottom
of the potential well of OCT. On the other hand, in the region
on the right, all the points on the trajectory �plotted with
crosses� are quenched to the bottom of the potential well of

CTBP. The two potential wells are clearly separated, and the
system undergoes structural transition along the coordinate
a1� by passing through the region in between these two wells.
Thus, a1� can be regarded as the reaction coordinate. In Sec.
IV, we use the reaction coordinate a1� as well as the two-
dimensional space of a1� and a2� as in Fig. 5�b� frequently to
describe the mechanisms for structural transitions of the clus-
ter.

Since a1� is a better reaction coordinate than a1, we now
refine the definitions of the reactive trajectories using a1�
based on Fig. 5�b�: First, the transition region is defined as
the region where 1.5�a1��3.5. Then the reactive trajectories
from OCT to CTBP are defined as the segments of trajecto-
ries that start from the region a1��1.5 and arrives in the
region a1��3.5 without returning to the initial region a1�
�1.5. Similarly, the reactive trajectories from CTBP to OCT
are defined as the segments of trajectories that start from the
region a1��3.5 and arrives in the region a1��1.5 without
returning to the initial region a1��3.5. Computations in
Sec. IV will be performed using these definitions of reactive
trajectories.

We next introduce the new modes and new kinetic ener-
gies that correspond to the new coordinates a1�, a2�, and a3�
introduced above. Since the matrix G is a constant matrix,
the velocity of gyration radii ȧ	�ȧ1 , ȧ2 , ȧ3�T, is transformed
into the new velocity, ȧ�= �ȧ1� , ȧ2� , ȧ3��

T in a similar way to
Eq. �29� as

ȧ� = GTȧ . �31�

Similarly, the corresponding basis vectors, Va1
, Va2

, and Va3
,

defined in Eq. �20�, which represent the gyration-radius
modes, are transformed as



Va1�

Va2�

Va3�
� = GT
Va1

Va2

Va3

� , �32�

which is a symbolic expression of Vai�
=� j=1

3 GjiVaj
, where Gji

is the ji-component of the matrix G. These new basis vec-
tors, Va1�

, Va2�
, and Va3�

, represent the transformed gyration-
radius modes, the a1�-, a2�-, and a3�-modes. Equations �31� and
�32� ensure the relation,

�
i=1

3

ȧiVai
= �

i=1

3

ȧi�Vai�
. �33�

Finally, the expression for the kinetic energy of gyration radii
in Eq. �9� is transformed as

1
2 �ȧ1

2 + ȧ2
2 + ȧ3

2� = 1
2 �ȧ1�

2 + ȧ2�
2 + ȧ3�

2� . �34�

Each term on the right-hand side of this equation represents
the kinetic energy in the respective ai�-mode �i=1,2 ,3�.

Figure 6 shows the new gyration-radius modes, a1�-, a2�-,
and a3�-modes, defined by Eq. �32� with the matrix G in Eq.
�30� for the two isomers of the M6 cluster. The representation
schemes in Fig. 6 are the same as in Fig. 2. Note that the
coordinates, a1�, a2�, and a3�, in Fig. 5 are essentially the vari-
ables that quantify the degree of deformation of the cluster in
the directions represented by the respective modes in Fig. 6.

0

2

4

6

8

10

12

0 400 800 1200 1600 2000

a
'
,
a
'
,
a
'

1
2

3

Time

(a)

(b)

a'1

a
' 2

a'1

a'2

a'3

-1

0

1

2

1 2 3 4 5

OCT CTBPTransition
region

FIG. 5. �Color online� �a� Time evolution of the transformed gyration radii
a1�, a2�, and a3� for the same trajectory as in Fig. 3�a�. �b� The projection of the
trajectory in Fig. 3�b� onto the two-dimensional space of the transformed
gyration radii a1� and a2�. The points plotted with circles are attributed to the
potential well of OCT, while those plotted with crosses are attributed to the
potential well of CTBP by the quenching method. The coordinate a1� serves
as the reaction coordinate of the present study. The region in between the
broken lines, where 1.5�a1��3.5, is defined as the transition region.
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We see from Fig. 6�a� that the activation of the a1�-mode
around the OCT isomer facilitates the vibration of the cluster
to elongate/contract in the direction of the first principal axis
and contract/elongate in the direction of the third principal
axis in the same phase, which can in turn induce the struc-
tural transition into the CTBP isomer. Similarly, the activa-
tion of the a1�-mode around the CTBP isomer shown in Fig.
6�d� facilitates the vibrations to contract/elongate in the di-
rection of the first principal axis and elongate/contract in the
direction of the third principal axis in the same phase, which
can induce the structural transition into the OCT isomer.
Note that, in Fig. 6�d�, we have plotted the a1�-mode in the
negative direction �the vector −Va1�

� so that the relevance of
the a1�-mode to the structural transition from CTBP to OCT
becomes transparent. Thus, the a1�-mode is expected to serve
as the reactive mode for both the reaction from OCT to
CTBP and for the reaction from CTBP to OCT. On the other
hand, the a3�-mode shown in Figs. 6�c� and 6�f�, which is
regarded as the least important gyration-radius mode accord-
ing to the principal component analysis, possesses the ten-
dency of isotropic inflation and contraction of the system.
Since the isotropic inflation and contraction are not relevant
for the structural transition between the OCT and CTBP, we
see that the a3�-mode serves as a bath mode.

Figure 7�a� shows the distribution of kinetic energy
among the 12 internal modes averaged over the reactive tra-
jectories in the transition region. Here, the first three modes
are the transformed gyration-radius modes, a1�-, a2�-, and
a3�-modes, whose kinetic energies are defined as the respec-
tive terms on the right-hand side of Eq. �34�. Kinetic energies
in all other modes, the twisting modes �ij and the shearing
modes �ik, are defined in the same way as in Fig. 4 based on
Eq. �9�. Open squares represent the distribution of kinetic
energy averaged over the reactive trajectories from OCT to
CTBP, while open circles represent the distribution of kinetic
energy averaged over the reactive trajectories from CTBP to
OCT. While the two gyration-radius modes, a1 and a3, have
a large amount of kinetic energy in the transition region in
Fig. 4�a�, here in Fig. 7�a�, only the a1�-mode has a large

amount of kinetic energy. This indicates that the predominant
a1- and a3-modes are successfully merged into the single
reactive mode a1�, and all other 11 modes can be regarded as
bath modes at least in the transition region.

Figure 7�b� shows the partitioning of kinetic energy
along the reaction coordinate a1� computed by averaging over
an ensemble of the reactive trajectories from CTBP to OCT.
Due to the time-reversal symmetry, the partitioning of kinetic
energy averaged over an ensemble of reactive trajectories
from OCT to CTBP is essentially the same as the one in Fig.
7�b� �data not shown�. The left and right ends of the curves
�at a1�=1.5 and a1�=3.5� correspond to the borders of the
transition region at the OCT side and the CTBP side, respec-
tively. We see that the a1�-mode has markedly a larger amount
of kinetic energy than other 11 internal modes over the
whole range of the reaction coordinate. The kinetic energy in
the a1�-mode is the largest at both ends of the transition re-
gion and reaches a minimum value at around a1�=2.4, which
roughly corresponds to the top of the potential energy barrier
in the saddle region. The kinetic energies in all other bath
modes also decrease toward to center of the figure, and they
tend to be constant in the saddle region along the reaction
coordinate. Thus, it is fair to speculate that a large amount of
kinetic energy in the reactive mode at both ends of the figure
is consumed to surmount the potential energy barrier without
dissipating into other bath modes largely. This result indi-
cates that the reaction coordinate and the bath modes are

(a) (b) (c)

1a' -mode 2a' -mode 3a' -mode

(d) (e) (f)

1a' -mode 2a' -mode 3a' -mode

FIG. 6. �Color online� The transformed gyration-radius modes, a1�-, a2�-, and
a3�-modes, defined by Eq. �32� with Eq. �30� for the OCT isomer ��a�–�c��
and for the CTBP isomer ��d�–�f��. In �d�, the a1�-mode is shown in the
negative direction �the vector −Va1�

� so that the relevance of the a1�-mode to
the structural transition from CTBP to OCT becomes transparent. The rep-
resentation schemes are the same as in Fig. 2. The a1�-mode �shown in �a�
and �d�� serves as the reactive mode for both the reaction from OCT to
CTBP and the reaction from CTBP to OCT.
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FIG. 7. �Color online� �a� The distribution of kinetic energy among the 12
hyperspherical modes of the six-atom cluster computed by averaging over
the reactive trajectories in the transition region at total energy E=−11.0�.
The three gyration-radius modes are the transformed ones, a1�-, a2�-, and
a3�-modes. The plot with squares corresponds to the reaction from OCT to
CTBP, while the plot with circles corresponds to the reaction from CTBP to
OCT. �b� shows the change in the kinetic energy in each mode along the
reaction coordinate a1� computed by averaging over reactive trajectories in
the transition region. The top curve represents the kinetic energy in the
reactive mode a1�. All other curves represent the kinetic energies in the
remaining hyperspherical modes as indicated.
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fairly decoupled. It could be another evidence for the regu-
larity of the structural transition dynamics in the saddle re-
gion, which has been predicted and assessed from the view-
point of phase space structures.52,62–66

Thus, in this section, we have constructed the reaction
coordinate a1� and the corresponding reactive mode, a1�-mode.
It should be noted that the reaction coordinate and the reac-
tive mode are complementary concepts that characterize the
same molecular degree of freedom. In general, a mode de-
fines the directionality of deformation �vibration� of a system
while a coordinate quantifies the amount of deformation in
each mode. In Sec. IV, we investigate the partitioning of
kinetic energy in terms of the modes �Sec. IV A�, whereas
we investigate equations of motion �Sec. IV B� and the driv-
ing mechanisms for structural transitions �Sec. IV C� in
terms of the coordinates. All other 11 hyperspherical modes,
the a2�-mode, a3�-mode, the three twisting modes ��ij
, and
the six shearing modes ��ik
, can be regarded as bath modes
at least in the transition region.

IV. INTRAMOLECULAR ENERGY TRANSFER AND
THE DRIVING MECHANISMS FOR STRUCTURAL
TRANSITIONS

While Sec. III has focused on the dynamics of the cluster
in the transition region to construct the reactive mode and the
reaction coordinate a1�, we study here the dynamics of the
cluster inside the two potential wells to clarify the driving
mechanisms for structural transitions. We highlight the
mechanisms for the energy transfer from bath modes into the
reactive mode a1� by investigating the coupling between the
reactive mode and the bath modes in the respective potential
wells.

A. Energy transfer from the bath modes into the
reactive mode

We first investigate the dynamics in the potential well of
the OCT isomer to clarify how a large amount of kinetic
energy is transferred from the bath modes into the reactive
mode a1� right before the system starts a structural transition
into CTBP. In order to clarify this energy transfer process,
we investigate the “past” time evolution of kinetic-energy
distribution among the 12 hyperspherical modes in the OCT
isomer in the time course of reactive trajectories right before
they start structural transition. Since each time evolution of
kinetic-energy distribution possesses large fluctuations, we
average the time evolutions over an ensemble of reactive
trajectories so that the general tendencies of energy transfer
become clear. This can be done as follows.

One first collects an ensemble of reactive trajectories
that undergo structural transition from OCT to CTBP �see
Sec. III B for the definition of reactive trajectories�. For each
trajectory, the time origin, t=0, is reset to the last moment
that the trajectory crosses the border of the transition region,
the line a1�=1.5 in Fig. 5�b�, from the left to the right to start
the structural transition into CTBP. We then computed

average kinetic-energy partitioning over these trajectories at
different time instances in the negative time domain �t�0�
before the system starts structural transition.

Figures 8�a� and 8�b� show the time evolution of the
computed average kinetic-energy distribution in the OCT
isomer prior to the onset of structural transition. The sche-
matic diagram above Fig. 8�a� shows the time domains of the
plots in the panels �a� and �b�. The plot with diamonds in Fig.
8�b� corresponds to the average kinetic-energy distribution at
time t=−0.9 prior to the onset of structural transition. As
time goes on, the average energy distribution evolves in the
order of the plots with inverted triangles �t=−0.8�, triangles
�t=−0.7�, circles �t=−0.6�, and squares �t=−0.5�. Figure 8�a�
is the continuation of Fig. 8�b�, where the average kinetic-
energy distribution changes in the order of the plots with
diamonds �t=−0.4�, inverted triangles �t=−0.3�, triangles �t
=−0.2�, and circles �t=−0.1�. The average energy distribu-
tion shown with squares in Fig. 8�a� is the final distribution
at time t=0. As is expected, the reactive mode a1� has a large
amount of kinetic energy at t=0, after which the reactive
trajectories undergo structural transition from OCT to CTBP
by consuming the kinetic energy in the reactive mode.

From the results in Figs. 8�a� and 8�b�, we see that the
three twisting modes, �12, �23, and �31, as well as the
a2�-mode, exchange kinetic energy actively with the reactive
mode a1� before the reactive mode acquires sufficient energy
to get out of the OCT region. In particular, the three twisting
modes and the a2�-mode are highly active at the time around
t=−0.4 to �0.5. Thus, the activation of these four modes is
expected to serve as a precursor of the structural transition
from the OCT isomer.

We next investigate the energy transfer processes in the
CTBP isomer prior to the onset of structural transition into
OCT. Similarly to the procedure to obtain Figs. 8�a� and
8�b�, we collected an ensemble of reactive trajectories that
undergo structural transition from CTBP to OCT. For each
trajectory, the time origin, t=0, is reset to the last moment
that the trajectory crosses the border of the transition region,
the line a1�=3.5 in Fig. 5�b�, from the right to the left to start
structural transition into OCT. The kinetic energy distribu-
tion is then averaged over the ensemble of these trajectories
at different time instances from t=−3.6 to t=0 before the
system starts structural transition.

Figures 8�c� and 8�d� show thus computed time evolu-
tion of average kinetic energy distribution in CTBP. The
schematic diagram above Fig. 8�c� shows the time domains
of the plots in the panels �c� and �d�. The time series of
kinetic energy distribution starts from the one plotted with
diamonds in Fig. 8�d� at time t=−3.6 and evolves in the
order of the plots with inverted triangles �t=−3.2�, triangles
�t=−2.8�, circles �t=−2.4�, and squares �t=−2.0�. Figure 8�c�
continues from Fig. 8�d� in the order of the plots with dia-
monds �t=−1.6�, inverted triangles �t=−1.2�, triangles �t=
−0.8�, circles �t=−0.4�, and finally squares �t=0�. Similarly
to Fig. 8�a�, the reactive mode a1� has a large amount of
kinetic energy at t=0, after which the reactive trajectories
undergo structural transition into OCT by consuming the ki-
netic energy in the reactive mode.

The time evolution of average kinetic energy distribution
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in Figs. 8�c� and 8�d� in the CTBP isomer is quite different
from the one in Figs. 8�a� and 8�b� in the OCT isomer: While
the three twisting modes, �12, �23, and �31, are highly active
right before the activation of the reactive mode a1� in OCT
�see Figs. 8�a� and 8�b��, these three twisting modes are
highly inactive in CTBP, having very low kinetic energy
right before the activation of the reactive mode a1� �see Figs.
8�c� and 8�d��. Instead, the two shearing modes, �24 and �25,
are active right before the reactive mode a1� acquires a large
amount of kinetic energy in CTBP. We scrutinize the mecha-
nisms for such characteristic energy transfer processes prior
to the onset of structural transitions in respective isomers in
the following two subsections.

It should be noted that the time evolution of the average
kinetic energy distribution right after the system has moved
into each of the two isomers is essentially the reverse of the
time evolution shown in Fig. 8. This is due to the time-
reversal symmetry of the dynamics. We have confirmed that
the three twisting modes and the a2�-mode become active
right after the system has moved into the OCT isomer �data
not shown�. On the other hand, in the CTBP isomer, the three
twisting modes become inactive and the two shearing modes,

�24 and �25, and the a2�-mode becomes active right after the
system has moved into the CTBP isomer region �data not
shown�.

Another important fact that can be observed from Fig. 8
is that the timescale for intramolecular energy transfer is dif-
ferent in the two isomers. We see from Fig. 8 that the aver-
age distribution of kinetic energy evolves faster in the OCT
isomer than in the CTBP isomer. For example, in the OCT
isomer, it only takes about 0.4 time units �measured in abso-
lute unit� for the kinetic energy in the reactive mode a1� to
increase from the minimum to the maximum in Fig. 8�a�. In
the CTBP isomer, on the other hand, it takes about 1.6 time
units �measured in absolute unit� for the similar increment of
kinetic energy in the reactive mode a1�. Thus, it is fair to
speculate that intramolecular energy transfer is faster in the
OCT isomer than in the CTBP isomer. Such timescales for
energy transfer can be closely related to the timescales for
mixing in the phase space, which can in turn influence the
statistical nature of the reaction rate processes. We wish to
scrutinize the issues on the timescales of energy transfer and
reaction rates in a separate publication.

a'1a'2a'3ω12ω23ω31γ14 γ
15

γ24γ25γ34γ35
0

0.05

0.1

0.15

0.2

0.25
t = -0.5
t = -0.6
t = -0.7
t = -0.8
t = -0.9

0

0.05

0.1

0.15

0.2

0.25
t = 0
t = -0.1
t = -0.2
t = -0.3
t = -0.4

(a)

E
n
er
g
y
(ε
)

(b)

E
n
er
g
y
(ε
)

(c)

E
n
er
g
y
(ε
)

(d)

E
n
er
g
y
(ε
)

0

0.05

0.1

0.15

0.2

0.25
t = 0
t = -0.4
t = -0.8
t = -1.2
t = -1.6

0

0.05

0.1

0.15

0.2

0.25
t = -2.0
t = -2.4
t = -2.8
t = -3.2
t = -3.6

a'1a'2a'3ω12ω23ω31γ14 γ
15

γ24γ25γ34γ35

t = 0

t = -0.4

t = -0.4

t = 0

t = -0.5

t = -0.9
t = -0.5

t = -0.9

t = 0

t = 0
t = -1.6

t = -1.6

t = -2.0

t = -3.6

OCT

Panel (a)Panel (b)

Transition

Time-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4{{
regionregion

a' =1.51

CTBP
region

CTBP

Panel (c)Panel (d)

Transition

Time-3.6 -3.2 -2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6{{

regionregion

a' =3.51

OCT
region

FIG. 8. �Color online� Panels �a� and �b� show the time evolution of average kinetic energy distribution among the 12 hyperspherical modes in the potential
well of OCT prior to the onset of structural transition into CTBP at t=0. The distribution evolves in time in the order of the plot with diamonds �t=−0.9�,
inverted triangles �t=−0.8�, triangles �t=−0.7�, circles �t=−0.6�, and squares �t=−0.5� in �b�, and continues to the plot with diamonds �t=−0.4�, inverted
triangles �t=−0.3�, triangles �t=−0.2�, circles �t=−0.1�, and squares �t=0� in �a�. The schematic above �a� shows the time domains of the plots in the panels
�a� and �b�. Panels �c� and �d� show the average time evolution of kinetic energy distribution over the 12 internal modes in the potential well of CTBP prior
to the onset of structural transition into OCT at t=0. Time evolutions of the energy distribution in �c� and �d� are in the same order as in �a� and �b� but for
the different time duration from t=−3.6 to t=0 as indicated. The schematic above �c� shows the time domains of the plots in panels �c� and �d�.
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B. Characterization of mode coupling

For the purpose of understanding the mechanisms be-
hind the characteristic energy transfer processes right before
the onset of structural transitions observed in Fig. 8, we char-
acterize here the forces that are responsible for the coupling
between the reactive mode, a1�-mode, and other bath modes.
To this end, in this subsection, we mainly work on coordi-
nates instead of modes.

Our reaction coordinate a1� is a linear combination of the
three gyration radii as defined in Eq. �29�, and the equations
of motion for gyration radii are given in Ref. 28 as

ä1 = �12�12
2 + �13�31

2 + a1��14
2 + �15

2 � −
�V

�a1
, �35�

ä2 = �21�12
2 + �23�23

2 + a2��24
2 + �25

2 � −
�V

�a2
, �36�

ä3 = �31�31
2 + �32�23

2 + a3��34
2 + �35

2 � −
�V

�a3
�37�

for a six-atom system, where

�ij =
ai�ai

2 + 3aj
2��ai

2 − aj
2�

�ai
2 + aj

2�2 �i, j = 1,2,3,i � j� . �38�

Physical significance of each term in Eqs. �35�–�37� has been
studied in detail in Ref. 28. In short, while the final �fourth�
terms on the right-hand sides of these equations are the com-
ponents of the ordinary potential force, all the other terms
represent the internal centrifugal force. The latter force is
termed centrifugal because each term of this force is propor-
tional to the square of the quasivelocity, �ij or �ik, which is
essentially the internal angular velocity. The six terms pro-
portional to �ij

2 in Eqs. �35�–�37� have a symmetry breaking
effect on the mass distribution of a system. This is due to the
relationship

�12,�13,�23 � 0, �21,�31,�32 � 0, �39�

so that the terms proportional to �ij
2 always work positively

on the largest gyration radius a1 and negatively on the small-
est gyration radius a3. As a result, a system is always forced
to elongate in the longest �most massive� direction and con-
tract in the shortest �least massive� direction along principal
axes. This explains the symmetry breaking effect of the
terms proportional to �ij

2 on the overall mass distribution of
the system. The terms proportional to �ik

2 in Eqs. �35�–�37�
have an inflating effect because these terms always act posi-
tively on all of the three gyration radii to inflate the overall
mass distribution of the system. The internal centrifugal
force is different from ordinary centrifugal forces because
ordinary centrifugal forces come into play only when the
system has finite angular momentum, while the internal cen-
trifugal force arises even in the systems with zero total an-
gular momentum. In fact, the internal centrifugal force origi-
nates from molecular vibrations themselves, more
specifically, the twisting modes ��ij
 and the shearing modes

��ik
, as can be seen from Eqs. �35�–�37�. Thus the internal
centrifugal force can mediate the mode coupling as well as
the energy transfer among the gyration-radius modes and
other internal modes �the twisting and shearing modes�.

It is convenient to introduce a three-dimensional vector
representation of Eqs. �35�–�37�,

ä = fICF + fPot, �40�

where fICF represents the terms of the internal centrifugal
force �terms including ��ij
 and ��ik
� and fPot represents the
terms of the potential force �the last terms of Eqs. �35�–�37��.
Since the gyration radii a= �a1 ,a2 ,a3�T are transformed into
the new coordinates a�= �a1� ,a2� ,a3��

T by the multiplication of
the constant matrix as a�=GTa �see Eq. �29��, where G is the
matrix defined by Eq. �30�, the equations of motion for the
new coordinates can be written �since G is time independent�
as

ä� = GTfICF + GTfPot. �41�

The terms GTfICF and GTfPot are the internal centrifugal force
and the potential force represented in the new coordinates.

In order to characterize the effects of the internal cen-
trifugal force and the potential force, we plotted the averaged
field of GTfICF in Fig. 9�a� and that of GTfPot in Fig. 9�b� in
the two-dimensional space of a1� and a2� at total energy E=
−11.0�. This two-dimensional space is the same as the one in
Fig. 5�b�, where the potential well of OCT is located in the
left region of this space, and that of CTBP is located in the
right region. Here the average is taken over an ensemble of
arbitrarily chosen long-time trajectories with total energy E
=−11.0� at each point of the space of a1� and a2�. Figure 9�c�
shows the superposition of the averaged force fields in Figs.
9�a� and 9�b�. In Figs. 9�a�–9�c�, the direction of each arrow
represents the direction of the respective force at each point
in the a1�-a2� space, and the length of each arrow is propor-
tional to the magnitude of the respective force at each point.

As can be seen from Fig. 9�a�, the internal centrifugal
force has a clear directionality from the OCT isomer region
to the CTBP isomer region. This can be naturally understood
from the fact that the internal centrifugal force has the gen-
eral tendency to deform a spherical mass distribution of a
system like OCT to the elongated ones like CTBP as noted
above. In contrast to the internal centrifugal force, the poten-
tial force field has the directionality to the bottom of the
potential well in each region of the two isomers as can be
seen from Fig. 9�b�: In this a1�-a2� space, the point corre-
sponding to the potential minimum of OCT is located at
�a1� ,a2��= �0.95,0.56�, and that of CTBP is located at
�a1� ,a2��= �3.75,0.62�. Thus, we see that the potential force
has a general tendency to preserve the structure of each iso-
mer in the respective potential well as is naturally expected.

It is important to note that the internal centrifugal force
is much stronger in the OCT region than in the CTBP region
�see Fig. 9�a��. In general, the internal centrifugal force in
molecular vibrations tends to be strong around the structures
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where the values of two or three of the gyration radii are
close to each other. This property of the internal centrifugal
force can be concisely explained as follows. First, we ex-
press the internal centrifugal force in terms of the kinetic
energies in the twisting modes K�ij

and the shearing modes
K�ij

, which are defined by the respective terms of Eq. �9�.
Using K�ij

and K�ij
, the squares of the quasivelocities of �ij

2

and �ik
2 can be expressed as

�ij
2 =

2K�ij
�ai

2 + aj
2�

�ai
2 − aj

2�2 , �ik
2 =

2K�ik

ai
2 . �42�

By applying Eq. �42� to the respective terms on the right-
hand sides of Eqs. �35�–�37�, we obtain

fICF =

2a1�a1

2 + 3a2
2�

a1
4 − a2

4 K�12
+

2a1�a1
2 + 3a3

2�
a1

4 − a3
4 K�31

+
2

a1
�K�14

+ K�15
�

2a2�a2
2 + 3a1

2�
a2

4 − a1
4 K�12

+
2a2�a2

2 + 3a3
2�

a2
4 − a3

4 K�23
+

2

a2
�K�24

+ K�25
�

2a3�a3
2 + 3a1

2�
a3

4 − a1
4 K�31

+
2a3�a3

2 + 3a2
2�

a3
4 − a2

4 K�23
+

2

a3
�K�34

+ K�35
�
� . �43�

Here, the six terms containing the factors K�ij
have the sym-

metry breaking effect on the overall mass distribution of the
system, while the other six terms containing the factors K�ik

have the inflating effect on the overall mass distribution of
the system as we discussed right after Eqs. �35�–�37�. Since
the kinetic energies K�ij

and K�ik
are generally not zero but

tend to be equal in the dynamics in potential wells after
averaging �see Fig. 4�b��, magnitudes of the terms containing
the factors K�ij

in Eq. �43� tend to be very large when ai and
aj are close to each other due to the small denominators of
the form �ai

4−aj
4�. Therefore, the internal centrifugal force

�more specifically, the symmetry breaking effect of the inter-
nal centrifugal force� tends to be strong in the molecular
vibrations near the structures where two or three of the gy-
ration radii are close to each other. Therefore, since the three
gyration radii are very close to each other in the OCT isomer
of our M6 cluster �see Fig. 3�a��, the symmetry breaking
effect of the internal centrifugal force is inevitably very
strong in this isomer. This is the reason why the internal
centrifugal force field in Fig. 9�a� is strong in the OCT iso-
mer. On the other hand, since the values of the three gyration
radii are apart in the CTBP isomer �see Fig. 3�a��, the inter-
nal centrifugal force is not very strong in this isomer.

In order to characterize the joint effects of the internal
centrifugal force and the potential force, it is useful to intro-
duce an integral curve of the sum of the averaged force fields
along the reaction coordinate a1�, which is shown in Fig. 9�d�.
In obtaining the curve in Fig. 9�d�, we first computed aver-
age force fields for both the internal centrifugal force and the
potential force along a1� using an ensemble of arbitrarily cho-
sen long-time trajectories. These average force fields are
summed and integrated along a1�. This integral curve, called
mean force potential, is useful to quantify the net dynamical
stability of each isomer. The mean force potential in Fig. 9�d�
possesses two wells; the left well corresponds to the OCT
isomer and the right one corresponds to the CTBP isomer.

Since the depths of the two wells are roughly equal, we see
that the stabilities of OCT and CTBP are comparative. In-
deed, the cluster stays in the two isomers for roughly the
same amount of time at the total energy E=−11.0� as we
noted in Sec. II C. In Sec. IV C, we utilize this mean force
potential to explain the driving mechanism for structural
transition.

C. Driving mechanisms for structural transitions:
Roles of the twisting modes

Based on the properties of the forces acting on the reac-
tion coordinate presented in Sec. IV B, we now clarify the
dynamical mechanisms behind the characteristic time evolu-
tions of kinetic energy distribution among the internal modes
right before the onset of structural transitions observed in
Fig. 8. We primarily focus here on the questions of why the
three twisting modes, �12, �23, and �31, tend to be highly
active right before the onset of structural transition in the
OCT isomer �see Figs. 8�a� and 8�b��, and why the three
twisting modes tend to be highly inactive right before the
onset of structural transition in the CTBP isomer �see Figs.
8�c� and 8�d��. This is because the activity of the twisting
modes, in general, plays a major role for the onset of struc-
tural transitions between a symmetric and asymmetric struc-
tures such as the OCT and CTBP isomers of our M6 cluster
as we see below.

Equation �43� exemplifies the fact that activity of the
�ij-modes �twisting modes� and �ik-modes �shearing modes�
directly controls the strength of the internal centrifugal force
acting on the gyration radii: For example, when the three
twisting modes are active having a large amount of kinetic
energy, i.e., �K�ij


 are large in Eq. �43�, the symmetry break-
ing effect of the internal centrifugal force becomes strong.
Therefore, the fact that the three twisting modes become
highly active in the OCT isomer right before the onset of
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structural transition �see Figs. 8�a� and 8�b�� is a direct evi-
dence that the symmetry breaking effect of the internal cen-
trifugal force is the major driving force for the structural
transition from OCT to CTBP.

On the other hand, in the CTBP isomer, when the three
twisting modes are inactive having a little amount of kinetic
energy, the symmetry breaking effect of the internal centrifu-
gal force is suppressed. In this situation, the effect of the
potential force becomes dominant, and as a result, it becomes
highly likely that the cluster is driven from the CTBP isomer
to the OCT isomer. This is because OCT has much deeper
potential well than CTBP �see Fig. 1�, and is much more
favorable as long as the potential force is dominant. This
explains why the three twisting modes tend to become highly
inactive in the CTBP isomer prior to the onset of structural
transition in Figs. 8�c� and 8�d�. From this perspective, we
expect that the major driving force for the reaction from
CTBP to OCT is the potential force.

In order to demonstrate the above driving mechanisms
for structural transitions more quantitatively, we present here
the averaged force fields in the a1�-a2� space that effectively
correspond to the ones right before the onset of structural
transitions. Figure 10�a� shows an averaged force field under
the condition that the three twisting modes are highly active,
having more than 30% of the total kinetic energy in total.
This kinetic energy partitioning is based on the one at the
time t=−0.4 before the onset of the structural transition from
OCT to CTBP in Fig. 8, where the three twisting modes
occupy approximately 33% of the total kinetic energy in to-
tal. Note that if the kinetic energy was equipartitioned, the
three twisting modes would only have 25% of the total ki-
netic energy in total. Thus, the force field in Fig. 10�a� can be
regarded as an effective force field right before the structural
transition from OCT to CTBP. It is clearly seen from Fig.
10�a� that the force field has the strong tendency to accelerate

�drive� the system from the OCT region into the CTBP re-
gion along the reaction coordinate a1�. This effect can also be
characterized by the corresponding mean force potential,
which is shown in Fig. 10�b�. This mean force potential is
obtained by numerically integrating the averaged force field
in Fig. 10�a� along the reaction coordinate a1� in the similar
way as in Fig. 9�d�. The left minimum of this mean force
potential corresponds to the OCT isomer, while the right one
corresponds to the CTBP isomer. Figure 10�b� clearly shows
that the force field in Fig. 10�a� makes the OCT less favor-
able and CTBP more favorable. Thus, the activation of the
three twisting modes can be the principal factor to drive the
structural transition from OCT to CTBP.

In a similar way, we can understand the driving mecha-
nism for the structural transition from CTBP to OCT. Figure
10�c� shows the average force field under the conditions that
the three twisting modes are highly inactive having less than
15% of the total kinetic energy in total and the two shearing
modes �24 and �25 are highly active having more than 30%
of the total kinetic energy in total. This kinetic energy parti-
tioning is based on the one at time t=−1.2 prior to the onset
of structural transition from CTBP to OCT in Fig. 8�c�. In
Fig. 10�c�, there is no strong force field in the direction from
OCT to CTBP as opposed to Fig. 10�a�. This is because the
symmetry breaking effect of the internal centrifugal force is
suppressed due to the twisting modes being inactive. Instead,
in Fig. 10�c�, the potential force is dominant. As a result, this
force field makes the OCT more favorable than CTBP, as can
be more clearly seen from the corresponding mean force po-
tential in Fig. 10�d�. In this way, the activation and inactiva-
tion of the twisting modes switch the effective force field in
the reaction coordinate and control the onset of large-
amplitude collective motions. These are the main reasons
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why the three twisting modes are highly active in OCT and
are highly inactive in CTBP right before structural transi-
tions.

Finally, we note the possible roles of the two shearing
modes �24 and �25, which tend to be active right before the
onset of structural transition from CTBP to OCT �see Fig.
8�c��. As can be seen from Eq. �36�, these two shearing
modes induce the components of the internal centrifugal
force that enlarge the second gyration radius a2. Since a2

largely overlaps with a2� �see Fig. 3�b� and the 2,2-
component of the matrix G in Eq. �30��, this effect of the
�24- and �25-modes is characterized by a force field that is
almost parallel to the positive a2� axis in the a1�-a2� space.
Meanwhile, the isomer region �potential well� of CTBP is
slightly curved into the direction of the negative a2� axis from
the transition region toward the bottom of the potential well,
as we can see from the potential force field in Fig. 9�b�.
Therefore, in order for a trajectory in the vicinity of the
bottom of the potential well of CTBP to get out of this well,
the internal centrifugal force in the direction of the positive
a2� axis can also be helpful in addition to the main driving
force directed to the negative a1� axis. This explains why the
two shearing modes �24 and �25 tend to be active right before
the onset of structural transition from CTBP to OCT.

To summarize, this paper has clarified the driving
mechanisms for the structural transitions of the M6 cluster in
terms of the switching of the effective force field acting on
the reaction coordinate. The field of the internal centrifugal
force in the reaction coordinate sensitively changes depend-
ing on the amount kinetic energy in the twisting modes and
the shearing modes. This is why kinetic energy needs to be
partitioned in a characteristic manner among the internal
modes right before structural transitions as we have seen in
Fig. 8. The result of the present study can be formulated in a
rather general setting as follows. In molecular reactions in
which a system decreases the sphericity �symmetry� of its
mass distribution, activation of the twisting modes can be the
critical step that triggers the reaction. This is because the
activation of the twisting modes gives rise to a strong sym-
metry breaking effect of the internal centrifugal force. On the
other hand, in molecular reactions in which a system in-
creases the sphericity �symmetry� of its mass distribution,
inactivation of the twisting modes could generally increase
the chance of the reaction as long as the spherical �symmetri-
cal� product has lower potential energy, which is often the
case in many molecules, clusters, and crystals.

V. CONCLUDING REMARKS

This paper has presented novel driving mechanisms for
the onset of large-amplitude collective motions of atomic
clusters. The key setting in which this is done is that of
hyperspherical mode analysis. In this framework, the �3n
−6� internal �vibrational� modes of an n-atom system are
classified generally into three gyration-radius modes, three
twisting modes, and �3n−12� shearing modes. By taking ad-
vantage of this mode analysis, the intramolecular energy
transfer among the hyperspherical modes in the structural
transition dynamics of a six-atom cluster has been analyzed.

It was found that a large amount of kinetic energy flows into
the gyration-radius modes when the structural transitions
take place. Based on this fact, a reactive mode and a corre-
sponding reaction coordinate were constructed as a linear
combination of the three gyration-radius modes. It was then
found that activation or inactivation of the three twisting
modes, depending on the isomer of the cluster, plays crucial
roles right before the onset of structural transition. In the
symmetric isomer called OCT, which has a spherical mass
distribution, activation of the twisting modes initiates the
structural transition into the other elongated isomer called
CTBP by inducing a strong internal centrifugal force, which
has an effect of elongating the mass distribution of the sys-
tem. On the other hand, in the CTBP isomer, inactivation of
the twisting modes initiates the structural transition into the
OCT isomer by suppressing the elongation effect of the in-
ternal centrifugal force and making the effects of the poten-
tial force dominant.

The present method of hyperspherical mode analysis is
in contrast to as well as being complementary to conven-
tional normal mode analysis. While normal-mode analysis is
based on the local properties of potential energy surfaces and
is useful for the study of small vibrations around equilibrium
points, hyperspherical mode analysis is based on global
properties of the mass matrix, or metric tensor, of the inter-
nal �shape� space of n-atom systems and could be suitable
for the study of large-amplitude motions, such as isomeriza-
tion dynamics as well as dissociation and association reac-
tions. An advantage of the hyperspherical mode analysis is
that this analysis is useful for the study of intramolecular
energy transfer as we have shown throughout this paper
based on the concise expression of internal kinetic energy in
Eq. �9�. It is expected that the method of hyperspherical
mode analysis can be naturally extended to the systems with
nonzero angular momentum to study the energy transfer be-
tween rotational modes and internal modes. This is because
the expression for the rotation-vibration kinetic energy, equa-
tion �7�, is also concise, having neither cross terms nor Co-
riolis coupling terms.

One expects that the three gyration radii can generally
serve as predominant reaction coordinates in a wide class of
molecular reactions in which a system changes its mass dis-
tribution in a significant way. This expectation is based on
the fact that only the gyration radii can directly control the
overall mass distribution of a system. All other modes, the
twisting modes and the shearing modes, by themselves can-
not alter the overall mass distribution of a system directly as
we noted in Sec. III. Therefore, whenever a system needs to
change its overall mass distribution, a large amount of ki-
netic energy must flow into the gyration-radius modes. An-
other reason for the predominance of the gyration radii is in
the fact that they are slow variables compared to other modes
as was shown in Ref. 28. Thus, it will be a quite important
next step to reduce the full dynamics of a large molecular
system to a closed low-dimensional dynamical system of gy-
ration radii. As we have seen in Sec. III, the dynamics of
gyration radii is fairly decoupled from other bath modes in
the collective motions going over the saddle regions �transi-
tion regions�. On the other hand, in the dynamics in potential
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wells, gyration radii are strongly coupled with other bath
modes, and this coupling is indeed essential for the onset of
collective motions as we have seen in Sec. IV. Therefore,
appropriate characterization of such mode coupling is crucial
in order to reduce the whole dynamics of a system to the
low-dimensional dynamics of gyration radii.

The roles of the twisting modes clarified in this paper
can be of general interest from the viewpoint of control of
molecular conformations. As we have seen in Sec. IV, the
elongation effect �symmetry breaking effect� of the internal
centrifugal force depends critically on the activity of the
twisting modes. Therefore, if one would like to synthesize or
maintain molecular conformations with a spherical mass dis-
tribution, it would be important to keep the twisting modes
inactive. On the other hand, if one would like to elongate and
destroy molecular conformations with a spherical mass dis-
tribution, the twisting modes of the system should be acti-
vated. From this respect, it would be interesting to study the
roles of the twisting modes in the formation processes of
fullerenes and viral capsids, which generally have highly
symmetric and spherical mass distributions.

An important future goal is to construct a reaction rate
theory by taking into consideration the driving mechanisms
for molecular reactions presented in this paper. As we have
noted in Sec. IV, activation or inactivation of the twisting
modes serves as a “precursor” step of structural transition in
each isomer. The existence of such precursor steps for reac-
tions indicates that the reaction processes are not totally sta-
tistical but rather have a deterministic nature. If the timescale
for such a precursor step is short enough compared to the
average lifetime of an isomer, the reaction process of the
isomer could be regarded as statistical. However, if the time-
scale for such precursor step is comparative to the average
lifetime, the reaction processes can no longer be statistical.
In the case of our M6 cluster, the timescale for intramolecular
energy transfer is fast in OCT and slow in CTBP as we have
noted briefly at Fig. 8, while the average lifetime of the OCT
isomer and that of the CTBP isomer are comparative at the
total energy of the present study �E=−11.0��. Therefore it is
expected that the nonstatistical nature becomes more promi-
nent in the CTBP isomer than in the OCT isomer. In the
future work, it will be crucially important to take into con-
sideration such nonstatistical nature, which has so far been
disregarded in conventional reaction rate theories.

To improve conventional reaction rate theories, it is use-
ful as well as important, to clarify the phase space structures
that correspond to the driving mechanisms for reactions pre-
sented in this paper. According to the dynamical system
approaches,62–66 it is known that cylindrical invariant mani-
fold “tubes” mediate the reaction dynamics going over the
saddle region in the molecular phase space. In this picture,
the trajectories inside the tube are essentially the reactive
trajectories having sufficient kinetic energy in a reactive
mode to achieve reactions. We expect that the result of Fig.
7, which highlighted the fact that the gyration-radius reactive
mode has large amount of kinetic energy in the saddle region
in reactive trajectories, can be interpreted in terms of a cor-
responding tube structure in a coarse-grained phase space of
gyration radii. Moreover, the driving mechanisms for struc-

tural transitions inside potential wells presented in Sec. IV
could be characterized in terms of the so-called “lobes”71 in
the coarse-grained phase space of gyration radii. An analysis
of such coarse-grained phase space structures could make it
possible to account for the nonstatistical reaction processes
appropriately.
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