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Abstract This study investigates Lagrangian coherent structures (LCS) in the planar
elliptic restricted three-body problem (ER3BP), a generalization of the circular restricted
three-body problem (CR3BP) that asks for the motion of a test particle in the presence of
two elliptically orbiting point masses. Previous studies demonstrate that an understanding
of transport phenomena in the CR3BP, an autonomous dynamical system (when viewed in
a rotating frame), can be obtained through analysis of the stable and unstable manifolds of
certain periodic solutions to the CR3BP equations of motion. These invariant manifolds form
cylindrical tubes within surfaces of constant energy that act as separatrices between orbits
with qualitatively different behaviors. The computation of LCS, a technique typically applied
to fluid flows to identify transport barriers in the domains of time-dependent velocity fields,
provides a convenient means of determining the time-dependent analogues of these invariant
manifolds for the ER3BP, whose equations of motion contain an explicit dependency on
the independent variable. As a direct application, this study uncovers the contribution of the
planet Mercury to the Interplanetary Transport Network, a network of tubes through the solar
system that can be exploited for the construction of low-fuel spacecraft mission trajectories.
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1 Introduction

The three-body problem is a dynamical system rich in mathematical intricacy and practical
applicability. A classic problem in the study of celestial mechanics, the general three-body
problem asks for the motion of three masses in space under mutual gravitational interaction.
The benefit to investigating the three-body problem is twofold: results of such studies often
bear broader implications in the theory of dynamical systems, and the investigations them-
selves are patently well-suited to address challenges in Astronomy. In particular, obtaining a
global picture of the dynamical barriers that govern the transport of material through a celes-
tial system is an issue of import to scientists in a surprisingly wide range of fields (Dellnitz
et al. 2005; Porter and Cvitanović 2005). The main goal of this paper is to use the theory
of Lagrangian coherent structures (LCS) introduced by Haller (2001) to determine transport
barriers in the elliptic restricted three-body problem (ER3BP).

Koon et al. (2000a) demonstrate that an understanding of transport phenomena in the
circular restricted three-body problem (CR3BP), a problem that asks for the motion of a test
particle in the presence of two circularly orbiting point masses, can be obtained through inves-
tigation of the stable and unstable manifolds of certain periodic solutions to the three-body
problem equations of motion. Evidently, a globalization of the stable and unstable mani-
folds of periodic orbits about the L1 and L2 Lagrange points (unstable equilibrium points in
the CR3BP) reveals a web of tubes through phase space that form separatrices between its
dynamically different regions. This labyrinth of tubes, dubbed an “Interplanetary Transport
Network” (Marsden and Ross 2005), can be exploited in a variety of ways, including the
explanation of unusual comet trajectories (Koon et al. 2001), the investigation of transport
of material throughout the solar system (Gómez et al. 2004), and the construction of orbits
with prescribed itineraries for low-fuel spacecraft mission trajectories (Koon et al. 2000c).

Elaborating on the latter notion, the complexities of multi-body dynamics recently have
begun to play a more prominent role in the realm of space mission design (Marsden and Ross
2005). Substantial improvements in fuel efficiency for certain classes of missions can be
achieved through an exploitation of the natural dynamics of the three-body problem (Koon
et al. 2000c). NASA’s Genesis Discovery mission, for instance, exploited subtleties in the
dynamics of the Sun–Earth–spacecraft three-body system to traverse a route whose intrica-
cies simpler models like the patched conic approximation fail to describe adequately (Koon
et al. 1999).

Computational methods for determining the invariant manifolds of dynamical systems
are well-developed for autonomous systems of differential equations like those describing
the CR3BP (Parker and Chua 1989). When we turn our attention to non-autonomous differ-
ential equations, the methods available for computing stable and unstable manifolds are no
longer applicable, as the notions of stable and unstable manifolds for time-dependent vector
fields are not even well-defined. Such is the case in the elliptic restricted three-body problem,
where no choice of reference frame can rid the differential equations of motion of their time
dependency. However, (Shadden et al. 2005) shed light on this issue in their development of
the theory of LCS for time-dependent flows. In their report, the authors provide a rigorous
justification that LCSs–transport barriers in the domains of time-dependent velocity fields
that can be computed algorithmically–“represent nearly invariant manifolds even in systems
with arbitrary time dependence” under suitable conditions (Shadden et al. 2005).
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Lagrangian coherent structures in the planar elliptic restricted three-body problem 229

This report consists of two parts. Section 2 compares two methods of LCS computation
applied to the circular restricted three-body problem. The method deemed superior is used
in Sect. 3 to compute LCS in three different elliptic restricted three-body systems: a system
described by fabricated mass and orbital eccentricity parameters, the Earth–Moon–spacecraft
system, and the Sun–Mercury–spacecraft system.

For simplicity and ease of computation, we focus primarily on the planar restricted three-
body problem in this report, making only brief use of the spatial case out of necessity in
connection with the BepiColombo mission, discussed in Sect. 3.4. Unless otherwise speci-
fied, references to the circular and elliptic restricted three-body problems in this report are
implicitly references to the planar CR3BP and the planar ER3BP.

1.1 The circular and elliptic restricted three-body problems

This section studies the planar restricted three-body problem, starting with the case where
the two primaries are in circular orbit and then the case where the primaries are in elliptical
orbit about their center of mass.

1.1.1 The circular restricted three-body problem (CR3BP)

The circular restricted three-body problem (CR3BP) considers the motion of a test mass
m3 = 0 in the presence of the gravitational field of two primary masses m1 = 1 − µ and
m2 = µ in circular orbit about their center of mass. Throughout this paper, the test particle is
assumed to begin in the orbital plane of the two primary masses with its velocity component
normal to that plane equal to zero, so that its motion is constrained to the m1 − m2 orbi-
tal plane for all time. Without loss of generality, all units are normalized and positions are
defined relative to a rotating coordinate frame whose x-axis coincides with the line joining
m1 and m2 and whose origin coincides with the center of mass of m1 and m2, as shown in
Fig. 1. The equations of motion for the test particle are then (Szebehely 1967)

ẍ − 2 ẏ = ∂�

∂x
(1)

ÿ + 2ẋ = ∂�

∂y
, (2)

where

�(x, y) = x2 + y2

2
+ 1 − µ

√
(x + µ)2 + y2

+ µ
√

(x − 1 + µ)2 + y2
+ 1

2
µ(1 − µ) (3)

and (x, y) denotes the position of m3 in the rotating frame.
There are five equilibrium points (Lagrange points) Li , i =1, 2, 3, 4, 5, in the CR3BP

(Szebehely 1967), corresponding to critical points of the effective potential �. Three of these
points (L1, L2, and L3) are collinear with the masses m1 and m2, while the remaining two
(L4 and L5) lie at the vertices of the pair of equilateral triangles whose bases coincide with the
line segment joining m1 and m2 (see Fig. 2b). Let Lx

i and L y
i denote the x and y coordinates,

respectively, of i th Lagrange point.
It is straightforward to check through differentiation that

E(x, y, ẋ, ẏ) = 1

2
(ẋ2 + ẏ2) − �(x, y) (4)
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Fig. 1 Rotating coordinate
system in the circular restricted
three-body problem. All units are
nondimensionalized. The
coordinate frame rotates
counterclockwise with unit
angular frequency. In the case of
the elliptic restricted three-body
problem, the picture is the same,
but the frame rotates
nonuniformly and pulsates
isotropically in x and y to ensure
that the primary masses remain
fixed at the positions (−µ, 0) and
(1 − µ, 0).

Fig. 2 a Regions of allowed motion (white areas) in the circular restricted three-body problem with µ = 0.1,
E = −1.775. b Equilibrium points Li , i = 1, 2, 3, 4, 5 in the circular restricted three-body problem with
µ = 0.1

is a constant of motion for the CR3BP. We shall refer to this constant as the energy of the
system. Throughout this report, E(Li ) shall denote the energy of the i th Lagrange point, i.e.
E(Li ) = E(Lx

i , L y
i , 0, 0). Since E is constant in the CR3BP and (ẋ2 + ẏ2) is a nonnegative

quantity, it immediately follows that m3 is restricted to regions of the (x, y) plane where

− �(x, y) ≤ E . (5)

Moreover, a given particle in the CR3BP is constrained to a three-dimensional energy surface
M = {(x, y, ẋ, ẏ) | E(x, y, ẋ, ẏ) = const.} defined by its initial energy.
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Lagrangian coherent structures in the planar elliptic restricted three-body problem 231

Fig. 3 Elliptical orbits of the
primary masses m1 and m2 in the
ER3BP with respect to an inertial
barycentric frame for the case
e = 0.5, µ = 0.2

1.1.2 The elliptic restricted three-body problem (ER3BP)

A natural generalization of the CR3BP is the elliptic restricted three-body problem (ER3BP),
which asks for the motion of a test particle in the presence of two elliptically orbiting point
masses. In the ER3BP, we introduce the true anomaly f (t), the angle that the line segment
joining the rightmost focus of m2’s elliptical orbit to m2’s position at periapsis makes with
the line segment joining that focus to m2’s position at time t (see Fig. 3). Normalizing units
so that the pair of primary masses has unit angular momentum and the distance between the
two primaries at f = π

2 is unity, it follows from the general solution to the two-body problem
(Goldstein et al. 2002) that m1 and m2 trace out ellipses given parametrically by

(x̄m1 , ȳm1) =
( −µ

1 + e cos f
cos f,

−µ

1 + e cos f
sin f

)
(6)

(x̄m2 , ȳm2) =
(

1 − µ

1 + e cos f
cos f,

1 − µ

1 + e cos f
sin f

)
, (7)

where (x̄mi , ȳmi ), i =1,2 is the position of i th primary mass with respect to an inertial,
barycentric coordinate frame.

It can then be shown (Szebehely 1967) that if the true anomaly f is designated the indepen-
dent variable of the system, then the equations of motion for the elliptic restricted three-body
problem take the form

d2x

d f 2 − 2
dy

d f
= ∂�

∂x

/
(1 + e cos f ) (8)

d2 y

d f 2 + 2
dx

d f
= ∂�

∂y

/
(1 + e cos f ), (9)

where e is the eccentricity of m2’s elliptical orbit (which is identical to that of m1’s orbit),
and x and y are the coordinates of m3 in a nonuniformly rotating, isotropically pulsating,
barycentric coordinate frame in which m1 and m2 have fixed positions (−µ, 0) and (1−µ, 0),
respectively. We shall treat the variable f as the “time” in the ER3BP, but, to avoid ambiguity,
shall use primes to denote differentiation with respect to f and dots to denote differentiation
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Fig. 4 Projection of the stable (green) and unstable (red) manifold tubes in the CR3BP onto position space.
Image borrowed from Gómez et al. (2001)

with respect to t . Note that when e = 0, our choice of units give f = t so that Eqs. 8–9
reduce to the equations of motion (1–2) of the circular restricted three-body problem. Thus,
the CR3BP is the special case of the ER3BP in which the two primary masses have zero
orbital eccentricity.

1.2 Invariant manifolds

The presence of forbidden regions in the CR3BP permits the definition of three subsets of
the (x, y) plane when E(L2) < E < E(L3): the interior, m2, and exterior regions, bounded
approximately by the lines x = Lx

1, x = Lx
2 , and the boundary of the forbidden regions (see

Fig. 2a). A natural question to pose now is the following: what regulates the transport of
particles between the interior, m2, and exterior regions in the CR3BP?

Koon et al. (2000a), building off of the work of Conley (1968), provide the answer to
this question through analysis of the invariant manifolds of periodic orbits in the CR3BP.
By linearizing the equations of motion at the collinear Lagrange points, the authors show
that these equilibrium points have the stability type saddle × center . Consequently, there
exists a family of periodic orbits (called Lyapunov orbits) about Li for each i ∈ {1, 2, 3},
whose stable and unstable manifolds form cylindrical tubes (S1 × R). Moreover, within a
surface of constant energy, these tubes (as shown in Fig. 4) form codimension-1 separatrices
between orbits with different fates: transit orbits, which exit one region and enter an adjacent
region; and non-transit orbits, which remain entrapped in the region in which they began.
More precisely, a particle with energy E that is currently in a given region RA will enter
an adjacent region RB under the forward (respectively, backward) time flow if and only if
that particle is inside the stable (respectively, unstable) manifold tube emanating from the
unique periodic orbit of energy E associated with the Lagrange point that lies on the shared
boundary of regions RA and RB .

Computational methods for determining the CR3BP invariant manifolds are well-
developed (Parker and Chua 1989; Ross 2004). To summarize the procedure, one first
constructs a periodic orbit with a specified energy using differential correction. The evo-
lution of the periodic orbit’s state transition matrix is computed over one period, and local
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Lagrangian coherent structures in the planar elliptic restricted three-body problem 233

approximations of the stable and unstable manifolds of the periodic orbit are obtained from
the eigenvectors of that state transition matrix. A set of tracers in the directions of the stable
and unstable eigenspaces can then be advected under the full nonlinear equations of motion
to generate the invariant manifolds. The process can be curtailed by exploiting a symmetry
in the CR3BP equations of motion: the mapping (x, y, ẋ, ẏ, t) �→ (x,−y,−ẋ, ẏ,−t) is
a symmetry of Eqs. 1–2; as a result, the unstable manifold of a given Lyapunov orbit can
be found by negating the y and ẋ coordinates of every point on the corresponding stable
manifold.

1.3 Lagrangian coherent structures (LCS)

The CR3BP invariant manifolds studied in this report are associated with families of periodic
solutions of the time-independent equations of motion (1–2). In a non-autonomous dynamical
system like the ER3BP, the time-dependence of the flow precludes a direct application of the
definition of an invariant manifold to the system and its limit sets. Fortunately, in many non-
autonomous dynamical systems, LCS may be viewed as the time-dependent generalizations
of static invariant manifolds (Shadden et al. 2005).

For a continuous dynamical system with flow �, LCS are defined with respect to the sys-
tem’s finite-time Lyapunov exponent (FTLE) field, a scalar field which assigns to each point
x in the domain a measure σ(x) of the rate of divergence of trajectories with neighboring
initial conditions about that point:

σ T
t0 (x) = 1

|T | log

∥
∥
∥
∥
∥

d�
t0+T
t0 (x)

dx

∥
∥
∥
∥
∥

2

(10)

Here,

∣
∣
∣
∣

∣
∣
∣
∣

d�
t0+T
t0

(x)

dx

∣
∣
∣
∣

∣
∣
∣
∣
2

denotes spectral norm of the matrix
d�

t0+T
t0

(x)

dx , i.e. the square root of the

largest eigenvalue of

� =
(

d�
t0+T
t0 (x)

dx

)∗
d�

t0+T
t0 (x)

dx
. (11)

Separatrices can be associated with high FTLE values, since neighboring trajectories on
opposite sides of a separatrix tend to diverge most quickly. Hence, LCS are defined as ridges
(curves—or, more generally, codimension-1 surfaces in systems with arbitrary dimension—
in the domain whose images in the graph of the FTLE field satisfy certain conditions that
formalize intuitive notions of a ridge1) in the system’s FTLE field. These time-varying ridges
form barriers between the almost invariant sets of the domain and can be viewed as the
non-autonomous analogues of time-independent invariant manifolds.

To compute LCS in a dynamical system with an n-dimensional phase space, we advect a
regularly spaced, n-dimensional, rectilinear grid of tracers forward in time by a fixed length T
using numerical integration. (In this study, an adaptive-time stepping Runge–Kutta–Fehlberg
routine (RKF45) (Press et al. 1992) was used to integrate tracers.) The results of numerical
integration may then be used to compute FTLE values at each point in the rectilinear grid,

1 For two-dimensional scalar fields σ(x), ridges are defined as curves c(s) in the domain for which two con-

ditions are satisfied: At all points along the curve, (i) c′(s) and ∇σ(c(s)) are parallel, and (ii) 〈n̂, d2σ

dx2 n̂〉 =
min||u||=1 〈u, d2σ

dx2 u〉 < 0, where n̂ is the unit vector normal to the curve c(s). For further details, the reader
is referred to the work of Shadden et al. (2005) and to that of Lekien et al. (2007), where a generalization of
these conditions to higher dimensions is also given.
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using Eq. 10. Since the matrix
d�

t0+T
t0

(x)

dx of Eq. 10 consists of partial derivatives of the form
∂[�t0+T

t0
(x)]i

∂x j
, where xi and x j are components of the state vector x, we calculate these partial

derivatives via central differencing of neighboring tracers using the second-order approxi-
mation

∂
[
�

t0+T
t0 (x)

]

i

∂x j
≈

[
�

t0+T
t0 (x + �x j )

]

i
−

[
�

t0+T
t0 (x − �x j )

]

i

2�x j
. (12)

Here, �x j = (0, . . . , 0,�x j , 0, . . . , 0) denotes the initial separation between the appropri-
ate neighboring tracers in the rectilinear grid.2 Once computed, the scalar FTLE field may
then be plotted, revealing LCS as ridges.

For domains with dimension 2, a contour plot of the FTLE field provides an adequate
graphic medium for visualizing LCSs. For the figures displayed in Sect. 3 (where LCSs were
extracted from three-dimensional FTLE fields), ridges were extracted manually. To do so,
contour plots of two-dimensional cross sections of each three-dimensional FTLE field were
generated, and for each cross section, the ridge of interest was traced out manually with a
sequence of points. The accumulation of selected points was then plotted as an interpolated
surface.

The use of finite differencing (as opposed to integration of the system’s variational equa-
tions) for LCS computation is largely a pragmatic choice. Since a grid of tracers must be

advected to obtain the scalar FTLE field, obtaining the numerical value of
d�

t0+T
t0

(x)

dx at each
point on the grid becomes a simple matter of subtraction and division, circumventing the com-

putational costs of integrating extra differential equations for the components of
d�

t0+T
t0

(x)

dx .
Additionally, Shadden et al. (2005) point out that finite differencing may unveil LCS more
reliably than obtaining derivatives of the flow analytically, owing to the possibility that the
theoretical value of the FTLE at a point lying close to, but not precisely on, an LCS may
be quite small; finite differencing can often opportunely overapproximate the FTLE at such
points, provided one or more of its neighbors lies opposite the LCS.

Note that (10) permits the computation of a backward-time FTLE through the use of
a negative integration length T . A ridge in such a backward-time FTLE field (which we
distinguish from forward-time FTLE ridges with the names attracting LCS for the former,
repelling LCS for the latter) corresponds to the time-dependent analogue of an unstable
manifold. A symmetry in the ER3BP equations of motion, akin to the CR3BP symmetry
described previously, eliminates the need to compute backward-time FTLE fields: noting that
the cosine function is an even function, it is easy to check that the mapping (x, y, x ′, y′, f ) �→
(x,−y,−x ′, y′,− f ) is a symmetry of Eqs. 8–9; as a result, any attracting LCS in the ER3BP
can be found by negating the y and x ′ coordinates of every point on the corresponding repel-
ling LCS and viewing its evolution in reverse time. Moreover, Eqs. 8–9 are periodic with
period 2π . Thus, the LCS in the ER3BP need only be computed over the interval 0 ≤ f < 2π ;
an LCS at any other epoch f̃ can be identified with the LCS at the time f ∈ [0, 2π) congruent
to f̃ modulo 2π .

2 Initial separation distances are predetermined by one’s choice of grid resolution together with the bounds of
the domain under examination. In this study, grid resolutions of 250 × 250 in the variables (x, ẋ) were used
to generate Figs. 6 and 7; grid resolutions of 100 × 100 × 60 in the variables (x, x ′, E) were used to generate
Figs. 9, 11, 13 and 14; and grid resolutions of 250 × 250 and 100 × 100 in the variables (y, y′) were used to
generate Figs. 15 and 16, respectively. (Separation distances in the remaining unplotted variables were chosen
to lie at or below the average separation distance of the corresponding plotted variables.)
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Lagrangian coherent structures in the planar elliptic restricted three-body problem 235

On that note, it is worth mentioning that the periodicity of the ER3BP equations of motion
(8–9) means that one could, in principle, obtain the results presented in this report using
standard manifold globalization techniques. Indeed, consider the map �

f0+2π
f0

, where �

denotes the flow of Eqs. 8–9 and f0 ∈ [0, 2π) is a fixed true anomaly. This map defines a
discrete dynamical system on the Poincaré section U f0 = {(x, y, x ′, y′, f ) | f = f0} of the
ER3BP’s augmented phase space. Using the methods of Parker and Chua (1989), one could
extract invariant manifolds from U f0 for a series of initial epochs f0 and conceivably replicate
the LCS animations presented in this report. The reader should bear in mind, however, that
there are more general situations (e.g., the four-body problem in the case where the ratio of
the periods of the two smaller primary masses is irrational) in which LCS analysis applies
even though the aperiodicity of the flow eliminates the possibility of using the method just
described.

2 Computational methodology

A key obstacle encumbering the investigation of LCS in the elliptic restricted three-body
problem (ER3BP) is the dimension of the system under examination. In contrast to the
CR3BP, where the existence of a constant of motion restricts the motion of the test particle to
a three-dimensional energy surface within which there exist cylindrical invariant manifolds,
the ER3BP possesses no integrals of motion. Thus, any LCS in the ER3BP is formally a
three-dimensional surface contained in the ER3BP’s four-dimensional phase space. As an
extraction and visualization of such a structure would be difficult, we explore two means of
circumventing this obstacle.

2.1 Poincaré maps and the finite-iteration Lyapunov exponent

One such method utilizes Poincaré sections to reduce the dimension of the system by one.
Selecting a three-dimensional hyperplane U ⊂ R

4 and seeding a subset U0 ⊂ U with a
grid of tracers, we can advect these tracers under the flow until their orbits’ (directed) N th
intersections with the hyperplane are reached. It then becomes feasible to compute (in the
manner described in Sect. 1.3) a finite-iteration Lyapunov exponent (FILE)

σ N (x) = 1

|N | log

∥
∥
∥
∥

dPN (x)

dx

∥
∥
∥
∥ (13)

for each point x ∈ U0, where the function P : U → U is the one-sided Poincaré map
associated with the plane U and the flow � of Eqs. 8–9. We shall refer to this method as the
Poincaré map method, its associated field being an FILE field.

2.2 The finite-time Lyapunov exponent

Alternatively, it is possible to compute four-dimensional FTLE fields (in the manner described
in Sect. 1.3) and examine three-dimensional cross sections of these fields. We shall refer to
this method as the cross-sectional method, its associated field being an FTLE field.

2.3 A comparison using the circular restricted three-body problem (CR3BP) as a test bed

In order to gauge the performance of these two methods, we first apply them to a simpler,
lower dimensional system, namely the CR3BP equations of motion with a fixed energy E .
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Fig. 5 Intersection of the stable
(green) and unstable (red)
manifold tubes in the CR3BP
with the plane y = 0 (within a
surface of constant energy). Here
µ = 0.1 and
E = E(L1) + 0.03715. The
labels �

s,S
i and �

u,S
i denote the

i th intersections of the stable and
unstable manifolds, respectively,
of the L1 Lyapunov orbit with the
plane y = 0 in the interior region
within a surface of constant
energy. (The capital S in �

s,S
i and

�
u,S
i specifies that the

intersection lies in the interior, or
“Sun,” region.) Image borrowed
from Koon et al. (2000a)

Since the invariant manifolds of the CR3BP are examined in considerable detail by Koon et al.
(2000a), it helps to compare the outputs of the two methods with published data. Figure 5,
taken from Koon et al. (2000a), shows the intersection of the stable and unstable manifold
tubes of the Lyapunov orbit about L1 for a fixed energy just above E(L1). Throughout this
report, we adopt the notation of Koon et al. (2000a): W s

L1,p.o. and W u
L1,p.o. denote the stable

and unstable manifolds, respectively, of the L1 Lyapunov orbit, and �
s,S
i and �

u,S
i denote

the i th intersection of W s
L1,p.o. and W u

L1,p.o., respectively, with the plane y = 0 in the interior

region within a surface of constant energy. (The capital S in �
s,S
i and �

u,S
i specifies that the

intersection lies in the interior, or “Sun,” region.)
Figure 6a plots the CR3BP FTLE field along the plane y = 0 (within a surface of constant

energy) for an integration time T = 2, as computed using the cross-sectional method. As
expected, large FTLE values can be observed at the first intersection �

s,S
1 of the stable man-

ifold W s
L1,p.o. of the L1 Lyapunov orbit. Increasing the integration time T (Fig. 6b) unveils

the subsequent intersection �
s,S
2 of the same stable manifold.

For comparison, the FILE field for the first three iterations of the Poincaré map associated
with the plane y = 0 (within a surface of constant energy) are shown in Fig. 7. In analogy
with increasing integration time, increasing the iteration number N successively unveils the
higher order intersections �

s,S
1 , �

s,S
2 , and �

s,S
3 of W s

L1,p.o. with the plane y = 0.
Notice that the FILE field has a significant drawback: in addition to locating transport

barriers associated with stable manifolds of limit sets, the FILE field also exhibits ridges
where the Poincaré map is not differentiable due to a lack of transversality between orbits
and the plane of interest. Indeed, for initial points on the Poincaré section whose orbits
do not intersect the surface of section transversally upon their return, differentiability is not
guaranteed and the FILE loses its meaning. Unfortunately, for a given FILE field, these struc-
tures appear indistinguishably from genuine transport barriers and bear little or no influence
on the dynamics of the system. Furthermore, the Poincaré map P is in general only defined for
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Lagrangian coherent structures in the planar elliptic restricted three-body problem 237

Fig. 6 FTLE field contour plot (i.e., generated using a cross-sectional FTLE calculation) in the CR3BP (within
a surface of constant energy) at the plane y = 0 with integration time a T = 2 and b T = 5. Energy and
mass parameters are identical to those in Fig. 5. Observe that increasing integration time reveals the second
intersection �

s,S
2 of the stable manifold of the L1 Lyapunov orbit, as well as some additional curves of high

FTLE

Fig. 7 FILE field contour plot (i.e., generated using a Poincaré map calculation) in the CR3BP (within a
surface of constant energy) at the plane y = 0 for iterations a N = 1, b N = 2, and c N = 3. Again, energy
and mass parameters are identical to those in Fig. 5. Notice the superfluous FILE ridges caused by a lack of
transversality between orbits and the surface of section in, for instance, the lower right-hand corners of (a)
and (b). Unsurprisingly, larger iteration numbers N reveal the higher order intersections �

s,S
2 and �

s,S
3 of the

stable manifold of the L1 Lyapunov orbit

a subset of the surface of section U . For these reasons, we have adopted the cross-sectional
method as the standard for all subsequent computations.

3 Lagrangian coherent structures in the planar elliptic restricted three-body problem
(ER3BP)

The computational tools developed in the previous section make possible the presentation
of the main results of this study, LCS in the planar elliptic restricted three-body problem
(ER3BP). Recall that in the ER3BP, whose equations of motion are non-autonomous and
possess no integrals of motion, the notions of constant-energy surfaces lose their relevance,
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and hence we must examine the time-dependent analogues of W s
L1,p.o. and W u

L1,p.o. in the full
four-dimensional phase space, where the plane y = 0 is three-dimensional. An important
question to ask at this moment is the following: What will the intersection of W s

L1,p.o. with
plane y = 0 in the interior region look like? The answer to this question depends crucially
on our choice of coordinate system.

Let

E(x, y, x ′, y′) = 1

2
(x ′2 + y′2) − �

1 + e cos f
, (14)

where, in the notation mentioned previously, x ′ and y′ have been used to denote the quantities
dx
d f and dy

d f , respectively. Notice that when e = 0, (14) reduces to the expression for the energy
in the CR3BP given in Eq. 4. We shall refer to this quantity as the “energy” in the ER3BP,
with the hopes that this notation will give the reader a better sense of the correlation between
the quantities defined here and their CR3BP analogues. In actuality, (14) is the ER3BP’s
Hamiltonian.

Choosing a coordinate system (x, y, x ′, E) to parametrize phase space in the ER3BP (so
that the plane y = 0 is parametrized by x, x ′, and E) allows for a natural means of extend-
ing the qualitative results of LCS studies in the CR3BP. For fixed values of E at the plane
y = 0, x < 0, a ridge in the FTLE field on the (x, x ′, y = 0, E = const.) plane should appear
as a closed curve, corresponding to a perturbed version of �

s,S
1 (the perturbation arising from

the fact that the eccentricity e is nonzero). Since the amplitude of an L1 Lyapunov orbit in
the CR3BP is roughly proportional to the square root of its energy minus E(L1), we should
expect that this closed curve will shrink with decreasing E and that for some critical energy
the curve will contract to a point. Consequently, the intersection of the LCS with the plane
y = 0 might appear as a distorted paraboloid, provided we parametrize phase space with the
coordinates x, y, x ′, and E . See Fig. 8 for an illustration of this notion.

3.1 A test case

Figure 9 displays snapshots of the intersection of the plane y = 0 with the LCS correspond-
ing to the analogue of W s

L1,p.o. under a set of fabricated parameters (mass ratio µ = 0.1,
orbital eccentricity e = 0.04). The video http://www.its.caltech.edu/~egawlik/ER3BPLCS/
LCS-ER3BP.mov (files can be downloaded from our site) shows the full sequence of images
in animated format. The LCS was extracted from an FTLE field generated by advecting
tracers over an integration length T = 2.5, roughly 2

5 of the orbital period of the two primary
masses. As expected, the LCS forms a distorted paraboloid that pulsates with time. The key
property of this LCS is that, like W s

L1,p.o. of the CR3BP, this LCS separates orbits that enter
m2’s “sphere of influence” from orbits that do not.

To help visualize the role that this LCS plays in the dynamics of the ER3BP, Fig. 10
displays snapshots of the motion of a collection of tracers that have been colored based upon
their initial location relative to the LCS. The tracers were seeded at true anomaly f = π/2
over a 15×15×15 (x, x ′, E) grid on the plane y = 0 and advected forward in time. Blue trac-
ers began inside the LCS “bowl,” while red tracers began outside the LCS “bowl.” The video
http://www.its.caltech.edu/~egawlik/ER3BPLCS/Tracers.avi (files can be downloaded from
our site) shows the full sequence of images in animated format.

Notice that even in the absence of precise boundaries delineating the interior, m2, and
exterior regions of the ER3BP, a clear dichotomy exists among orbits in the vicinity of m1

headed toward the L1 equilibrium region: Orbits contained in the LCS analogue of W s
L1,p.o.

(the blue tracers of http://www.its.caltech.edu/~egawlik/ER3BPLCS/Tracers.avi) are tempo-
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Fig. 8 a Schematic illustration of the hypothesis that, in terms of the coordinates x, y, x ′, and E , the intersec-
tion of the plane y = 0 with the LCS corresponding to the analogue of W s

L1,p.o.
might appear as a distorted

paraboloid in the ER3BP. b A pair of FTLE field contour plots verifying the distorted paraboloid hypothesis.
The left plot displays slices of the FTLE field computed along the plane y = 0 in the CR3BP with mass ratio
µ = 0.1 (and, by definition, orbital eccentricity e = 0), while the right plot displays slices of the FTLE field
at the same location in the ER3BP with mass ratio µ = 0.1 and nonzero orbital eccentricity e = 0.02. Further
analysis of this phenomenon is given in Sect. 3.3

Fig. 9 Intersection of the plane y = 0 with the LCS corresponding to the time-dependent analogue of W s
L1,p.o.

in the ER3BP with mass ratio µ = 0.1, orbital eccentricity e = 0.04. See http://www.its.caltech.edu/~egawlik/
ER3BPLCS/LCS-ER3BP.mov (files can be downloaded from our site) to view the full sequence of images in
animated format
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Fig. 10 Snapshots of the motion of a collection of tracers colored based upon their initial location relative to
the LCS in Fig. 9. The tracers were seeded at true anomaly f = π/2 over a 15 × 15 × 15(x, x ′, E) grid on
the plane y = 0 and advected forward in time. Blue tracers began inside the LCS “bowl,” while red tracers
began outside the LCS “bowl.” See http://www.its.caltech.edu/~egawlik/ER3BPLCS/Tracers.avi (files can be
downloaded from our site) to view the full sequence of images in animated format

rarily captured at m2, while orbits exterior to the LCS analogue of W s
L1,p.o. (the red tracers of

http://www.its.caltech.edu/~egawlik/ER3BPLCS/Tracers.avi) remain entrapped in the inte-
rior region. In addition, numerical experiment reveals that tracers lying identically on the
LCS analogue of W s

L1,p.o. tend toward quasiperiodic orbits about the ER3BP’s L1 equilib-
rium point. Similar phenomena related to the asymptotic behavior of points comprising an
LCS are observed in the ensuing section on LCS in the Sun–Mercury system (see Sect. 3.4).
In succinct terms, the ER3BP LCS studied in this report fill the role of the CR3BP’s collection
of invariant manifolds emanating from the L1 and L2 equilibrium regions. The LCS partition
the ER3BP phase space, regulate the flow of particles between the (ill-defined) interior, m2,
and exterior regions of position space, and comprise trajectories with exceptional limiting
behavior.

The degree to which LCSs act as dynamical barriers in the ER3BP can be measured quanti-
tatively. It was earlier mentioned that under suitable conditions, a time-dependent dynamical
system’s LCS may be justifiably viewed as nearly invariant manifolds; that is, the LCSs
behave as nearly material surfaces which admit negligible flux under the system’s flow. This
can be verified for the LCS of Fig. 9 by computing the quantity

γ (x) =
〈
n̂,

d2σ

dx2 n̂
〉

(15)

along the LCS, which is a measure of the curvature of the ridge (recall that LCSs are ridges
in the system’s Finite Time Lyapunov Exponent Field σ(x)) in its normal direction expressed
in terms of the domain’s FTLE field σ(x) and the unit normal vector n̂ to the ridge at the
point x. γ gauges how well-defined the ridge is at the point x and can be shown to bear
an inverse relationship with the flux across the LCS (Lekien et al. 2007). Numerical dif-
ferentiation of the scalar field σ(x) reveals that for the LCS of Fig. 9, typical values of γ

along the LCS are on the order of 104, a number on the same order of magnitude as the
values reported by Lekien et al. (2007) for a sample three-dimensional dynamical system
with an LCS whose flux admittance is negligible. Similar ridge curvature values are found
for the LCSs in the subsequent sections of this report, indicating that the LCSs in the elliptic
restricted three-body problem may indeed be viewed as nearly invariant manifolds that act
as material barriers.
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Fig. 11 Intersection of the plane y = 0 with the LCS corresponding to the time-dependent analogue of
W s

L1,p.o.
in the Earth–Moon–spacecraft system (mass ratio µ ≈ 0.012, orbital eccentricity e ≈ 0.055). See

http://www.its.caltech.edu/~egawlik/ER3BPLCS/LCS-ER3BP-Earth-Moon.mov (files can be downloaded
from our site) to view the full sequence of images in animated format

3.2 LCS in the Earth–Moon system

The Earth–Moon–spacecraft system (mass ratio µ ≈ 0.012, orbital eccentricity e ≈ 0.055)
provides an excellent physical system for which ER3BP LCSs can be examined.
Figure 11 (along with an animated version in the video http://www.its.caltech.edu/~egawlik/
ER3BPLCS/LCS-ER3BP-Earth-Moon.mov (files can be downloaded from our site)) dis-
plays an LCS in the Earth–Moon–spacecraft ER3BP. To facilitate comparison with the results
presented in Sect. 3.1, we have computed the intersection of the plane y = 0 with the LCS
corresponding to the analogue of W s

L1,p.o. in the Earth–Moon–spacecraft ER3BP, this time
using an integration length T = 3.5. In this case, the LCS encloses a smaller fraction of
phase space than the LCS of Sect. 3.1, which is to be expected given the lower mass ratio µ

in the Earth–Moon system.
As an ex post facto motivation for analysis of LCS in this system, we note in passing

that past studies have demonstrated that invariant manifolds in the Earth–Moon–spacecraft
CR3BP can serve as useful building blocks for the design of low-fuel trajectories for Earth-
to-Moon missions. Koon et al. (2000b) have shown that linking a trajectory that shadows the
invariant manifolds of a Sun–Earth L2 Lyapunov orbit in sequence with a trajectory enclosed
by the stable manifold tube of an Earth–Moon L2 Lyapunov orbit can generate an Earth-
to-Moon trajectory that requires little fuel for mid-course maneuvers. In Fig. 12, we show
an example of such a trajectory in a Sun–Earth rotating coordinate frame. After departure
from a low Earth parking orbit, a trajectory like the one plotted can require as little as 34
m/s (plus an initial Earth-orbit departure �V ) to travel to the Moon and achieve ballistic
capture at the Moon (Koon et al. 2000b). Such trajectories, which bear a close connection
with so-called weak stability boundary (WSB) regions of the Sun–Earth–spacecraft CR3BP
(Garcia and Gómez 2007), can be shown to provide fuel savings for Earth-to-Moon trans-
fers of 10–110 m/s relative to a standard Hohmann transfer approach (Perozzi and Di Salvo
2008). The fuel savings of Fig. 12, of course, come at a cost: while a classic Hohmann trans-
fer from a low-Earth parking orbit to an orbit about Earth with radius matching that of the
Moon takes just 5 days to execute (Kemble 2006), the trajectory in Fig. 12 has a flight time
of roughly 6 months. Nevertheless, trajectories like that of Fig. 12 might be well-suited for
certain missions in which short flight times may be more safely sacrificed for fuel savings.

3.3 LCS dependence on the mass parameter µ and the orbital eccentricity e

Sections 3.1 and 3.2 and the figures therein suggest a dependence of ER3BP LCS on the
two dimensionless parameters which characterize the ER3BP: the orbital eccentricity e of
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Fig. 12 Fuel-efficient Earth-to-Moon trajectory juxtaposed with the Sun–Earth (red) and Earth–Moon (green)
invariant manifolds, in Sun–Earth rotating coordinates that have been normalized so that the Sun–Earth dis-
tance is unity. The central black disc denotes the Earth, while the thin black circle traces the Moon’s orbit. The
red tube is the unstable manifold of a Sun–Earth L2 Lyapunov orbit; the green tube is the stable manifold of
an Earth–Moon L2 Lyapunov orbit. After departure from a low Earth parking orbit, a trajectory like the one
plotted above can require as little as 34 m/s beyond initial Earth-orbit departure costs to travel to the Moon
and achieve temporary capture at the Moon (Koon et al. 2000b)

Fig. 13 Dependence of a Lagrangian coherent structure on the mass parameter µ. The LCS shown is the
intersection of the plane y = 0 with the LCS corresponding to the time-dependent analogue of W s

L1,p.o.
at

epoch f = π/2 in the elliptic restricted three-body problem with fixed orbital eccentricity e = 0.04

the primary masses and their mass ratio µ. In this section, we examine this dependence
systematically. Figures 13 and 14 illustrate the evolution of an LCS in the ER3BP under vari-
ations of e and µ, respectively. Once again, to facilitate comparison with Sects. 3.1–3.2, the
LCS shown in the both figures is the intersection of the plane y = 0 with the time-dependent
analogue of W s

L1,p.o. at epoch f = π/2, here computed using an integration length T = 2.5.
Fixing e and examining the evolution of the LCS with increasing µ, we see that the LCS

expands in girth and its base lowers in energy, enveloping a larger fraction of the ER3BP
phase space as µ grows. This dependence on the mass parameter is physically sensible and
reflects the fact that a larger primary mass m2 exerts a stronger gravitational force on the test
particle m3.
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Fig. 14 Dependence of a Lagrangian coherent structure on the orbital eccentricity e. The LCS shown is the
intersection of the plane y = 0 with the LCS corresponding to the time-dependent analogue of W s

L1,p.o.
at

epoch f = π/2 in the elliptic restricted three-body problem with fixed mass ratio µ = 0.1

For fixed µ (Fig. 14), LCS evolution with increasing eccentricity is characterized primar-
ily by vertical translation in the energy E . For this particular LCS, increasing the eccentricity
raises the minimum energy (given by the energy of the base of LCS “bowl”) required for
entrance into the m2 region. This dependence of the LCS on the eccentricity e agrees with
the physical intuition that a particle destined to make its next closest pass with m2 during
the interval π/2 < f < 3π/2 (which is the case for the virtually all points composing the
phase-space plane under consideration3) is less likely to escape the interior region if the
eccentricity of m2’s orbit (and hence its non-normalized distance from the origin during
the interval π/2 < f < 3π/2) is large.

By examining the evolution of the LCS with increasing eccentricity, we have implicitly
illustrated an instance of a general property of LCSs in the ER3BP: namely, LCSs of the
ER3BP are continuous deformations of their time-independent analogues in the correspond-
ing CR3BP system (obtained by setting e = 0). This corroborates the hypothesis of Fig. 8
and lends evidence to the notion that the role that LCSs play in the dynamics of the ER3BP
largely parallels that of the CR3BP invariant manifolds of Fig. 4.

3.4 Mercury and the BepiColombo mission

The planet Mercury embodies the necessity of the use of the elliptic restricted three-body
approximation over the circular restricted three-body approximation in the simulation of cer-
tain celestial systems. With a value slightly larger than 0.2, Mercury’s orbital eccentricity is
more than twice that of any other planet in the solar system (Yeomans 2007). It follows that
the design of a Mercury-bound space mission relies heavily on ER3BP dynamics. Indeed,
the European Space Agency’s (ESA) BepiColombo mission, a mission to Mercury sched-
uled to launch in 2013, intends to utilize solar perturbations to achieve Mercurial capture
of the spacecraft (Jehn et al. 2004). Naturally, one might expect such a trajectory to share
an intimate connection with LCS in the Sun–Mercury–spacecraft ER3BP. As the following
discussion reveals, this intuition is correct.

Figure 15 displays the FTLE field at a cross section of phase space in the spatial elliptic
restricted three-body problem (with Sun–Mercury–spacecraft parameters), juxtaposed with

3 Refer back to Fig. 10 and the accompanying animation http://www.its.caltech.edu/~egawlik/ER3BPLCS/
Tracers.avi (files can be downloaded from our site) for a confirmation of this observation.
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Fig. 15 Snapshot of the FTLE field at a cross section of phase space in the spatial elliptic restricted three-
body problem (with Sun–Mercury–spacecraft parameters), juxtaposed with the intersection of BepiColombo’s
trajectory with that cross section

the intersection of ESA’s BepiColombo trajectory4 with that cross section. Specifically, the
cross section shown is the plane x = 0.99, z = 0.0007, z′ =−0.0003, E =−1.7613 at epoch
f =3.9065 in normalized units, which is to the left of the Sun-Mercury L1 (See Fig. 17 for an
illustration). Note that we have worked with the spatial ER3BP (Szebehely 1967) rather than
the planar ER3BP for this computation to account for the nonplanarity of BepiColombo’s
orbit.5 The LCS seen in Fig. 15 is the time-dependent analogue of the stable manifold of
the L1 Lyapunov orbit in the circular restricted three-body problem, computed using an inte-
gration length T = 2.5. Notice the remarkable manner in which BepiColombo’s trajectory

4 Baseline trajectory for launch in 2012 (Jehn et al. 2004).
5 In the case of the spatial ER3BP, Eqs. 8–9 generalize to

x ′′ − 2y′ = ∂�̃

∂x

/
(1 + e cos f )

y′′ + 2x ′ = ∂�̃

∂y

/
(1 + e cos f )

z′′ + z = ∂�̃

∂z

/
(1 + e cos f ),

where

�̃(x, y, z) = x2 + y2 + z2

2
+ 1 − µ

√
(x + µ)2 + y2 + z2

+ µ
√

(x − 1 + µ)2 + y2 + z2
+ 1

2
µ(1 − µ) (16)

and (x, y, z) denotes the position of m3 with respect to the nonuniformly rotating, isotropically pulsating, bary-
centric coordinate frame in which m1 and m2 have fixed positions (−µ, 0, 0) and (1 − µ, 0, 0), respectively
(Szebehely 1967).
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Fig. 16 Magnified view of the
FTLE field shown in Fig. 15, this
time computed in a full ephemeris
model. Note the similarity of this
LCS to that of Fig. 15

y

y’
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Fig. 17 BepiColombo’s ballistic
arrival trajectory (baseline
trajectory for launch in 2012
(Jehn et al. 2004) in the ER3BP
coordinate frame, projected onto
the x–y plane. By exploiting
solar perturbations, the trajectory
nearly winds onto a quasiperiodic
orbit about the Sun–Mercury L1
Lagrange point, is ballistically
captured at Mercury, and is
subsequently presented with
three opportunities for recovery
maneuvers in the event of an orbit
insertion failure (Jehn et al.
2004). The vertical black line
segment represents the location of
the cross section used in Fig. 15
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straddles the LCS. This should come as no surprise, given that this particular LCS governs
transport between the interior (Sun) region and the m2 (Mercury) region.

To validate the use of the elliptic restricted three-body problem as a model for the simu-
lation of trajectories in the Sun-Mercury system, we have recomputed the LCS displayed in
Fig. 15 using a full ephemeris model based on Mercurial ephemeris data obtained from the
JPL HORIZONS Ephemeris System (Giorgini et al. 1996). The recomputed LCS, shown in
Fig. 16, is nearly indistinguishable from the LCS computed in the ER3BP model, verifying
the validity of the ER3BP approximation for this celestial system.

The advantages associated with an exploitation of dynamical structures like invariant man-
ifolds and LCS for space mission design are evidenced by the favorable properties of the
BepiColombo trajectory (see Fig. 17): In contrast to a classical hyperbolic approach trajec-
tory (Campagnola et al. 2003), the BepiColombo trajectory (baseline trajectory for launch in
2012 (Jehn et al. 2004)) avoids the prospect of a single-point failure during Mercury Orbit
Insertion (MOI). By utilizing solar perturbations, the BepiColombo trajectory attains weak
capture at the planet and is subsequently presented with three extra MOI opportunities (Jehn
et al. 2004). While the difference in total �V costs (the combined costs of interplanetary
and orbit insertion phases of the mission) between a classical approach and weak capture
approach are negligible (Campagnola et al. 2006), the additional recovery opportunities made
possible through exploitation of three-body dynamics are certainly advantageous.
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Fig. 18 FTLE field of Fig. 15 superposed with the projection of the x = 0.99 Poincaré cut of an ER3BP
L1 Lissajous orbit’s stable “pseudo-manifold.” The red points belong to a family of trajectories which, under
the forward time flow, wind onto a quasiperiodic orbit about the Sun–Mercury L1. Notice that the LCS and
the points lying on the “pseudo-manifold” nearly coincide, with a few discrepancies owing to the fact that we
have brazenly projected points in the augmented phase space onto a two-dimensional plane. In the full phase
space, there are nontrivial differences between the z, z′, E , and f coordinates of the “pseudo-manifold” points
plotted in this figure and the domain of this FTLE field

The analyses above indicate that LCS in the three-body problem could play a guiding
role for space mission design; LCSs often enclose regions of phase space whose composite
trajectories exhibit desirable characteristics—in this instance, eventual entrance into the m2

(Mercury) region. Using LCS to analyze the phase space structure for some mission design
problems, particularly those for which certain mission constraints such as short flight times
may be safely sacrificed, could offer a means of guiding the selection of initial guesses for
trajectory optimization problems.

Finally, we note that the notion that BepiColombo’s trajectory straddles an LCS of the
spatial elliptic restricted three-body problem correlates well with previous studies of the
BepiColombo mission. Campagnola and Lo (2007) have recognized that if one perturbs
certain ER3BP quasiperiodic orbits about the Sun-Mercury L1 in the direction of minimal
stretching and examines the perturbed orbits’ trajectories under the backward time flow (in a
manner analogous to the traditional method of globalizing stable manifolds in the CR3BP),
the resulting trajectories closely shadow the route of BepiColombo.

In light of these observations, it is worthwhile to compare the “pseudo-manifolds”
described by Campagnola and Lo (2007) with the LCS already computed. Using the
initial condition for a Sun-Mercury ER3BP L1 Lissajous orbit studied by Campagnola and
Lo (2007), we have computed the evolution of the orbit’s state transition matrix over one
revolution about L1 and used the standard time-independent manifold globalization
techniques (Parker and Chua 1989; Ross 2004) described in Sect. 1.2 to compute its stable
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“pseudo-manifold”—the family of trajectories asymptotic to the quasiperiodic orbit. Fig-
ure 18 displays the projection of the x = 0.99 Poincaré cut of this “manifold” onto the
y − y′ plane, superposed with the FTLE field of Fig. 15. Figure 18 should be interpreted with
caution; by virtue of the nature of the standard manifold globalization method, examining
the intersection of this “pseudo-manifold” with a plane in phase space that has codimension
greater than one is infeasible. Thus, in the full phase space, there are nontrivial differences
between the z, z′, E , and f coordinates of the “pseudo-manifold” points plotted in the figure
and the domain of the FTLE field, which is a two-dimensional (x = const., z = const., z′ =
const., E = const., f = const.) cross-section of the seven-dimensional (spatial) ER3BP
augmented phase space. Nonetheless, Fig. 18 provides qualitative confirmation of the well-
founded intuition that LCS are often the manifestations of phase space structures asymptotic
to limit sets.

This notion is best understood by noting the relationship between LCS of time-dependent
systems and invariant manifolds of their associated time-independent augmentations: For a
non-autonomous system q̇ = f(q, t), we can identify LCS at any given instant as the con-
stant-time cross sections of static invariant manifolds of the associated augmented system
˙̃q = f̃(q̃), where q̃ = (q, t) and f̃(q̃) = (f(q, t), 1). Consequently, we can expect tracers
lying on repelling LCSs to approach invariant structures of the augmented system under the
forward time flow. In our case, the limit sets of the augmented system correspond precisely
to the quasiperiodic orbits, periodic orbits, and fixed points of the ER3BP.

4 Conclusions and further study

The results presented in this report demonstrate the existence of periodically pulsating LCS in
the phase space of the elliptic restricted three-body problem which arise as the time-dependent
analogues of stable and unstable manifolds of periodic orbits in the circular restricted three-
body problem. The examination of cross sections of full-dimensional finite-time Lyapunov
exponent fields proves to be an effective method of computing the intersections of these struc-
tures with surfaces of section in the ER3BP phase space, whose high dimension precludes
the visualization of entire LCSs. As a concrete application, these results reveal the influence
of orbital eccentricity on segments of the Interplanetary Transport Network associated with
elliptically orbiting mass pairs.

Interestingly, LCS pulsation in the cases presented in Sects. 3.1–3.2 is characterized almost
entirely by sinusoidal translation in E . An analytical explanation of this observation seems a
worthy topic for further study. In addition, an investigation of the dual role that these struc-
tures play as both separatrices and as the invariant manifolds of quasiperiodic orbits deserves
consideration; an interesting, albeit unsurprising, phenomenon is the observation that any
tracer that lies on an ER3BP LCS eventually tends toward a quasiperiodic orbit.

This study has focused primarily on the planar elliptic restricted three-body problem in
the case of small to moderate eccentricity; as such, an examination of LCS in the spatial
ER3BP and a study of the effects of high eccentricity would make for a befitting complement
to this investigation.

From a computational perspective, ridge extraction from three-dimensional FTLE fields
presents a formidable challenge in a study such as this. The design of an automated ridge
extraction algorithm for arbitrary-dimensional scalar fields would constitute an important
advancement for the LCS community.

The use of a symplectic integrator might benefit this study, as the ER3BP is a Hamiltonian
system. It is well-known that in the context of the numerical simulation of mechanical sys-
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tems, structure-preserving integration algorithms such as variational integrators exhibit sev-
eral desirable properties that traditional integration schemes generally do not, including exact
momentum conservation, accurate energy behavior, and symplecticity (Marsden and West
2001). The extent to which such properties may influence the results of LCS computations
for mechanical systems like the three-body problem is an issue yet to be studied in detail.

Finally, the computation of LCS in conjunction with the use of optimal control algorithms
for space mission design constitutes an interesting prospect for further examination. LCS
computation provides a general method for computing separatices in celestial systems that
may or may not exhibit time dependence, offering a broader, less restrictive technique than
the traditional manifold globalization approach that relies on the precalculation of limit sets.
In turn, these separatrices may be used to guide the selection of initial guesses for some
trajectory optimization problems, particularly those for which the benefits of fuel savings
or recovery options outweigh the costs of lengthy transfer durations. The results reported in
Sect. 3.4 illustrate this proposition, demonstrating the close relationship between LCS in the
three-body problem and the Mercurial approach portion of ESA’s BepiColombo mission.
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