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a b s t r a c t

We consider a class of spatially discrete wave equations that describe the motion of a system of linearly
coupled oscillators perturbed by a nonlinear potential. We show that the dynamical behavior of this
system cannot be understood by considering the slowest modes only: there is an ‘‘inverse cascade’’ in
which the effects of changes in small scales are felt by the largest scales and the mean-field closure does
not work. Despite this, a one and a half degree of freedom model is derived that includes the influence
of the small-scale dynamics and predicts global conformational changes accurately. Thus, we provide a
reduced model for a system in which there is no separation of scales. We analyze a specific coupled-
oscillator system that models global conformation change in biomolecules, introduced in [I. Mezić, On
the dynamics of molecular conformation, Proc. Natl. Acad. Sci. 103 (20) (2006) 7542–7547]. In this model,
the conformational states are stable to random perturbations, yet global conformation change can be
quickly and robustly induced by the action of a targeted control. We study the efficiency of small-scale
perturbations on conformational change and show that ‘‘zipper’’ traveling wave perturbations provide an
efficient means for inducing such change. A visualizationmethod for the transport barriers in the reduced
model yields insight into the mechanism by which the conformation change occurs.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Averaging over fast variables is a widely used method to
obtain coarse equations of motion in mechanical systems with
many degrees of freedom [1]. For example, averaging methods
have been successfully used to find accurate coarse models in
celestial mechanics and in oscillating electrical circuits. In this
paper, however, we study a system of nonlinearly perturbed
coupled oscillators that exhibits resonances on all scales and
consequently does not admit analysis using standard averaging
techniques. Furthermore, the full system, as will be demonstrated
using a simple bio-mechanical example, has interesting dynamics
that includes spontaneous and coherent changes in global
conformation, and reduction of the system using straightforward
truncation methods fails to capture the crucial influence of the
fine-scale dynamics that induces this conformation change.
The class of nonlinear systems of coupled oscillators that

we study are close to a coupled chain of linear harmonic
oscillators. Such near-integrable systems have been studied
in [2] where transition to equipartition of energy and dynamical
properties related to integrable instability theory of partial
differential equations were investigated [3]. Here we discuss the
representation of dynamics of the full oscillator system as a 1 12
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degree of freedom oscillator that provides a good represention of
certain aspects of the full dynamics such as coherent switching
between equilibria described in a biomechanical example of [4]
that builds on the models for DNA dynamics described in [5].
We begin by presenting an approximation to the full coupled

oscillator system that allows for the derivation of a single coarse
equation that retains essential contributions from the higher
order components. Moreover, the resulting single degree of
freedom system faithfully captures the statistics of the interesting
conformation change behavior observed in the full system.
The approximation involves, in essence, replacing higher order
components in the perturbed problemwith corresponding analytic
trajectories for the nearby linear system.
For the bio-mechanical example system, we also investigate

robust actuation of conformation change and demonstrate that
low-powered traveling wave perturbations provide an efficient
means for achieving near optimal conformation change. A method
for visualizing transport structures will be introduced and applied
to the dynamics describing the coarse variables, and consequently
lend insight into the transport mechanisms that allow for the
global conformation change to occur.

2. Coarse variables and models

Consider the following system of ordinary differential equa-
tions:

θ̈ (t)+ D · θ(t) = εF(θ(t), t) (1)

http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
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with initial conditions

θ(0) = a θ̇ (0) = b

where a, b, and θ(t) are vectors in RN (θ̇ and θ̈ denote the first
and second derivative of the components of θ with respect to the
independent variable t respectively), F : RN × R → RN is a
nonlinear time-dependent mapping, ε > 0 is a small parameter
that controls the size of the nonlinear perturbation, and D :
RN → RN is a linear mapping that has the tri-diagonal matrix
representation

D =



2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0

. . .
. . .

. . .
. . .

. . .

0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2


.

The smoothness conditions we require are that F(θ, t) is continu-
ous in t and Lipschitz-continuous in θ . Equation (1) and the initial
conditions can be written in component form using subscripts to
denote the indices as

θ̈k = θk+1 − 2θk + θk−1 + εFk(θ, t)
θk(0) = ak θ̇k(0) = bk

k = 1, . . . ,N

where θ0 = θN defines the periodic boundary condition.
Such a system arises naturally from a spatial discretization of

a nonlinearly perturbed wave equation with periodic boundary
conditions

utt(x, t) = uxx(x, t)+ εG(x, u(x, t), t)

where u : R × R → R is the amplitude of the wave in time
and space (subscripts denote partial differentiation), and the real-
valued function G represents the perturbation. In this context, the
Dmatrix in Eq. (1) is simply a centered finite differencing operator
that approximates the second partial derivative of uwith respect to
the spatial variable x, and F is obtained by evaluatingG at uniformly
discrete spatial positions xk so that Fk(θ, t) := G(xk, θ, t), θk(t) :=
u(xk, t), and x0 = xN .
Equivalently, Eq. (1) can be viewed as the dynamical system

describing a linear chain of N oscillators in which each oscillator
is subject to a weak nonlinear potential and coupled to nearest
neighbors through a harmonic potential; a specific example of such
an oscillator chain related to the mechanics of biomolecules will
be provided later. E. Fermi, J. Pasta, S. Ulam, and M. Tsingou used
a similar chain of coupled oscillators as an example system in
their pioneering numerical study of nonlinear dynamics that has
since become famously knownas the Fermi–Pasta–Ulam–Tsingou1
(FPUT) problem [7]. The initial purpose of their study was to
develop a theory of thermalization in systems with nonlinear
dynamics. However, their investigation yielded unexpected results
– energy initially placed in one mode did not become equally
partitioned among all the modes after some time. Rather, they
observed recurrences where the energy initially redistributed
among someof themodes but then returned to the initial condition
in which all the energy is again found in a single mode. Analyses
of the FPUT problem fill a large body of literature including, for
instance, the discovery of soliton and chaotic breather solutions,

1 Historically, this problem has been referred to as the Fermi–Pasta–Ulam
(FPU) problem, however, recently the contribution of Mary Tsingou to the
implementation of the numerical routines has been more widely appreciated,
motivating the addition of her name. The recent article in [6] provides a discussion
of the relevant history.
and have yielded insight into the interplay between chaos and
integrability in nonlinear systems (see Ref. [8] for a survey of
results related to the FPUT problem on the fiftieth anniversary of
the introduction of the problem). The approach to the problem
addressed in this paper differs from traditional FPUT problem
analyses in that, motivated by the biomolecular applications to
DNA, we are interested in issues such as reduction to coarse
variables and activation of global large-scale conformation change
through the application of small local controls that are not typically
associated with the FPUT problem.
We study the system of ordinary differential equations

describedbyEq. (1)whenN is large andhence the systemhasmany
degrees of freedom. Rather than determine precisely the dynamics
of each degree of freedom, we are interested in describing the
dynamics of only a single coarse variable. The first question to
be addressed here is the following: how do we extract from the
large N degree of freedom system an evolution equation for a
single coarse variable that describes a property of interest. For the
purposes of the current study, our goal is to determine a single
evolution equation for the dynamics of the average amplitude
while faithfully retaining salient dynamical features of the full
system. As will be shown later, the dynamics of the coarse variable
will need to include the influence of the fine scales in order to
reproduce the coarse evolution correctly. We begin by first gaining
insight from the unperturbed case.

2.1. The unperturbed case

When ε = 0, the system in Eq. (1) becomes:

θ̈ (t)+ D · θ(t) = 0 (2)

with initial conditions

θ(0) = a θ̇ (0) = b.

This is a simple linear system whose solution is easily obtained
analytically. The solution is provided here in detail, as it includes
many building blocks required for the less tractable case when the
nonlinear perturbation is included.
We begin by introducing a change of coordinates that

diagonalizes the couplingmatrixD. Let P be anN×N matrixwhose
columns contain the complete set of orthonormal eigenvectors of
the real symmetric matrix D:

Pkw :=

√
2
N



k
=
[1
...N
]

1
√
2

cos 2πkwN
(−1)k
√
2

sin 2πkwN

w=0 w=
[
1 ... N2 −1

]
w= N2 w=

[
N
2 +1 ...N−1

]

 .

(Here we have taken N to be even, for simplicity, although the case
for odd N merely has the middle column corresponding tow = N

2
removed and the column numbering altered accordingly.)
Next, we define new coordinates by the linear transformation

θ̂ := P ′θ (3)

where P ′ denotes the transpose of P . Notice that

θ̂0 :=
1
√
N

N∑
k=1

θk (4)

is (except for a constant factor of
√
N) the average amplitude. In

these coordinates, the symmetric linear operator D is diagonal,
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yieldingN uncoupled second order ODEs. In component form, they
are written as

¨̂
θ0 = 0 (5a)
¨̂
θw + α

2
w θ̂w = 0 w = 1, . . . ,N − 1 (5b)

where α2w := 2
(
1− cos 2πwN

)
, and the initial conditions become

θ̂ (0) = P ′a =: â ˙̂
θ(0) = P ′b =: b̂.

Here we can immediately conclude that the evolution of the
average amplitude in the unperturbed case is given by the single
scalar equation

θ̂0(t) = â0 + b̂0 t.

Straightforward solution of the higher order components yields the
analytic evolution equations

θ̂w(t) = âw cosαwt +
b̂w
αw
sinαwt w = 1, . . . ,N − 1. (6)

We readily observe that the system has N integrals of motion,
{Iw}N−1w=0, defined by

˙̂
θ0(t) = (b̂0) =:

√
2I0

θ̂w(t)2 +

(
˙̂
θw(t)
αw

)2
=
(
âw
)2
+

(
b̂w
αw

)2
=: 2Iw

w = 1, . . . ,N − 1.

The first integral is simply a statement of the conservation of total
(or average) momentum. The higher order modes evolve on circles
of constant radii

√
2Iw with an angular frequency of αw . With

these insights, we may write the system in completely integrable
Hamiltonian formusing action angle coordinates (I, φ)where I and
φ are both vectors of length N whose components Iw and φw are
denoted with subscripts:

H0(I0, . . . , IN−1) =
N−1∑
w=1

αwIw (7)

so that the Hamiltonian vector field becomes

İw = −
∂H0

∂φw
(I0, . . . , IN−1) = 0

φ̇w =
∂H0

∂ Iw
(I0, . . . , IN−1) = αw w = 0, . . . ,N − 1.

Before proceeding to an analysis of the perturbed case, we first
observe here some of the important properties of the unperturbed
system.

Remark. The Hamiltonian H0 is degenerate.

The Hamiltonian H0 is linear in the components of I; hence

det
(
∂2H0

∂ Ii∂ Ij
(I0, . . . , IN−1)

)
= 0 i, j = 0, . . . ,N − 1, (8)

and the frequency map I → α(I) is not a diffeomorphism. This
degeneracy of the Hamiltonian implies that the system does not
satisfy the assumptions of classical KAM theorems, and hence
straightforward KAM theory cannot be applied [9]. For the FPUT
system, a version of the KAM theorem has been proven in [10];
however, in this paper we do not need or use a KAM result.

Remark. The frequency vector α is resonant.
Since the first element of the frequency vector α is 0, any κ ∈
ZN \ {0} of the form κ = [z 0 . . . 0]′ for any z ∈ Z \ {0} yields
κ · α = 0. The irrational structure of the eigenvalues in the higher
modes leads to the conclusion that the resonant frequency vector
α is of multiplicity 1. Furthermore, since z is any element inZ\{0},
we can conclude the following:

Remark. The frequency vector α has resonances at all orders.

A standard approach to achieve reduction of order in a
dynamical system is to perform averaging over the fast angular
coordinates. However, for the system of interest, the resonances,
or more specifically the zero eigenvalue corresponding to α0 =
0 in the equation for the average amplitude, precludes such a
treatment. Standard statements of averaging theorems require all
the components of the frequency vector α to be strictly greater
than 0 (see the statement of the Averaging Theorem in [11], for
example, or the discussion in chapter 8 of [1] regarding passage
through resonance and the absence of theory to treat the fully
resonant case). Hence, the oscillator system represents a special case
to which routine averaging methods cannot be applied.
Moreover, in our attempt to obtain a single closed equation for

the evolution of the average variable, straightforward averaging or
truncation approaches are ineffective for an evenmore subtle—yet
crucial—reason. Averaging over the the higher order components
(laying the resonance issues aside) yields a single degree of
freedom and hence integrable system. As such, the reduced
equation fails to capture important details in the dynamics arising
from the inherent non-integrability, and in particular the intricate
influence of the higher order components on the average mode.
A thorough review of averaging methods is not within the
scope or purpose of this paper. However, an important point
to be made is that a central feature of the proposed method
is that it incorporates in an approximate yet effective way the
influence of the higher order modes, and consequently more
accurately captures nontrivial dynamics associated with the full
non-integrable system. A partial averaging approach, as pursued
in [12], is, however, capable of predicting aspects of the behavior,
such as the energy of activation required for conformational
change in biomechanical models described below.

2.2. Perturbed case

We use the same definitions and process used in the
unperturbed case for the perturbed case. We begin by making the
same linear change of coordinates using thematrix of eigenvectors
P so that the transformed equations of motion become:

¨̂
θ0 = ε Pk0Fk(P θ̂ ) (9a)
¨̂
θw + α

2
w θ̂w = ε PkwFk(P θ̂ ), w = 1, . . . ,N − 1, (9b)

where we sum over k from 1 to N on the right hand side.
As expected, the coordinate transformation diagonalizes the

nearest neighbor coupling term but the nonlinear forcing term
remains globally coupled. At this stage, no approximations have
been made and Eqs. (9a) and (9b) recover the full solution exactly.
For nonzero ε, the system is no longer integrable and the solutions
that were previously observed to evolve on circles of fixed radii are
perturbed.
At this point we must consider how to break the coupling

between the zeroth order equation for the average amplitude
and the higher order modes in order to obtain a closed equation
for the average amplitude. As previously mentioned, the system
is not amenable to averaging methods because of the zero
eigenvalue in the frequency vector. Rather, we introduce an
approximation by replacing Eq. (9b)with the analytical solutions of
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the unperturbed linear system, as defined in Eq. (6). This approach
effectively removes the need to integrate the higher order modes
by replacing their evolution with the explicit analytic solution of
the nearby integrable system. In so doing, we obtain the improved
approximation, θ̄0, of the exact solution θ̂0, whose dynamics are
prescribed by

¨̄θ0 =
ε
√
N

N∑
k=1

Fk(P θ̄ ) (10)

where in the right hand side P is a constantmatrix, and θ̄ is a vector
whose first component is the scalar dependent variable θ̄0 and
whose remaining components are elementary functions of time
and the initial conditions of the full system provided analytically
by Eq. (6).

Remark. The solution trajectories of Eq. (10) are within O(ε) of
the solution trajectories of the original full system described in
Eq. (9a) for times O(1).

This result is shown by applying a standard error analysis
technique: substituting a formal expansion of the solution, using
the Lipschitz continuity of F , and then applying the Gronwall
lemma as is done in the proof of Theorem 9.1 in [13] for example.
The approach proposed here for obtaining a closed equation

for the average amplitude includes the influence of higher order
modes by incorporating explicit time-dependence in the perturb-
ing term, and hence leads to a one and a half degree of freedom
system. The coordinate transformation and subsequent approxi-
mation yields a single non-autonomous ordinary differential equa-
tion that includes approximate dynamics for the higher order
scales and whose solution approximates the dynamics of the
average angle of the system. In effect, the information contained
in the higher order modes persists in the lower order description
via the initial conditions.
The method just described is now applied to a simple coupled-

oscillatormodel for biomolecules, where retention of the influence
of the higher modes in the dynamics is essential for accurately
recovering nontrivial dynamics of conformation change.

3. Conformation change in biomolecules

Biomolecules undergo rapid and global conformation change
as a crucial part of their function. Many statistical mechanical
models have been proposed in which these conformation changes
are the result of increased thermal fluctuations [14,5,15–18],
or an external agent that provides an overwhelming force [19,
20]. Presently, we are interested in investigating whether this
conformation change phenomenon can be induced simply by
utilizing the natural dynamics inherent in the system. In [4] a
simple model was presented in which the intrinsic design of
the dynamics ensures the robustness of conformational states to
random perturbations, yet global conformation change can be
robustly induced by the action of a low-energy local control. At the
heart of this dynamical behavior is the exchange of energy between
smaller and larger scales. The approximation technique presented
in the first section allows passage to a low-dimensional model that
effectively captures this behavior.

3.1. The model

We consider a class of biopolymers that can be modeled as
a long circular chain of identical pendula attached to a rigid
backbone. Each pendulum has one rotational degree of freedom
in the plane orthogonal to the backbone. The motion of the
pendula is governed by two interactions: each pendulum interacts
Fig. 1. The biomolecule is modelled as a chain of pendula that rotate about the
axis of a fixed backbone. The pendula interact with nearest neighbors along the
backbone through harmonic torsional coupling, and with pendula on the opposing
strand through a Morse potential.

with its nearest neighbors through a harmonic potential that
models torsional coupling through the backbone; and secondly,
each pendulum moves in a Morse potential that models the
weaker hydrogen bonding interaction between pendulum pairs on
a complementary chain. We immobilize one of the strands and
consider only the motion of the pendula on the opposing strand,
as depicted in Fig. 1.
Using the pendulummass,m, for the mass scale; the pendulum

length, h, for the length scale; and the nearest neighbor coupling
strength, S, for the energy scale; the non-dimensional Lagrangian
that describes the motion of N coupled pendula is given by

L(θ, θ̇) =
N∑
k=1

[
1
2
θ̇2k −

1
2
(θk − θk−1)

2
− ε

(
e−a[1−cos θk−x0] − 1

)2]
where a, x0, and ε are the Morse potential decay coefficient, the
Morse potential equilibrium distance, and the Morse potential
amplitude, respectively. The angular displacement of the kth
pendulum is denoted θk. The argument of the Morse potential is
the distance between complementary base pairs projected onto
the vertical. The time, t , has been scaled by the induced non-
dimensional time, τ =

√
S/(mh2) t .

Lagrange’s equations of motion yield

θ̈k − θk+1 + 2θk − θk−1 = 2εa
(
e−a[1−cos θk−x0] − 1

)
× e−a[1−cos θk−x0] sin θk

for k = 1, . . . ,N . These equations can also be written in the form
introduced in Eq. (1): θ̈ + D · θ = εF(θ) where D is the constant
tridiagonal N × N matrix that describes the nearest neighbor
coupling, and F is the nonlinear vector-valued forcing term due to
the Morse potential.
Numerical integration of the full system of equations was

performed for a chain of N = 200 pendula using a fourth
order symplectic integrator with excellent energy preservation
properties [21]. The parameter values were chosen to best
represent typical values for biomolecules. The nondimensional
scales are determined using parameter valuesm = 300 AMU, h =
1 nm, and S = 42 eV, that collectively induce a model time unit of
0.272 ps. In nondimensional units the Morse potential parameters
are a = 7, x0 = 0.3, and ε = 1/1400. For these parameter
values, the nonlinear Morse potential term represents a small
perturbation to the linear nearest neighbor coupling interaction.
A typical integration time over which we perform simulations is
300 units.
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Fig. 2. Figure (a) shows sample phase space trajectories of a single pendulum in the Morse potential when no coupling is present. The homoclinic trajectory is emphasized.
The locations of the equilibrium points are marked with red dots. Trajectories inside the homoclinic trajectory associated with the equilibrium point at (π, 0) are always
oscillating, while those outside the homoclinic trajectory are always flipping. Figure (b) shows a single trajectory of the fully-coupled model projected onto the average
variable phase space, and indicates a flipping event from one conformational state to the other. The trajectory resembles the phase portrait for a single pendulummoving in
the Morse potential. However, the harmonic nearest neighbor coupling provides resonant kicks that allow the trajectory to escape from one energy basin and then become
trapped by the other.
3.2. Properties of the model

The shape of the Morse potential induces two stable equilibria
corresponding to global energy minima, achieved when all the
pendula have identical angular displacements (thus nullifying
the nearest neighbor coupling) and are positioned at the Morse
potential equilibrium distance, x0, from their complementary
pendula. For small energies, typicalmotions involve uncoordinated
oscillations of the pendula near these stable equilibria. It was
observed in [4] that a local perturbation can cause the pendula
to undergo a coherent global change of conformation from one
energy basin to the other. By definition, we say that a global
conformation change has occurred when the average angle of the
pendula passes through π radians. This motion is referred to in
the rest of this paper as ‘‘flipping’’. A convenient way to represent
this flipping behavior is to project the trajectory of the system
onto the average variables Θ := 1

N

∑N
k=1 θk and Θ̇ as shown in

Fig. 2(b). In this projection we see that the pendula at first oscillate
about an energy minimum in one conformational state and then
undergo conformational change to the other energy basin where
they continue to oscillate.

3.3. The reduced order model

As noted above, the average angle variables provide a good
coarse description of the flipping process and begs the derivation
of a single closed equation for the average variable. There is,
however, no separation of time scales in this system so that simple
truncation to a lowordermodel does not retain sufficient dynamics
to incorporate spontaneous flipping events. Indeed, any method
that yields an autonomous single degree of freedom system for
the coarse variable, cannot possibly capture the flipping event.
Furthermore, as we previously noted, routine averaging methods
are not applicable, since intrinsic resonances induce coupling on
all scales.
The approach presented in the first section is now applied to

this pendulum chain to obtain a low order model that retains the
essential influence of the higher order scales on the global flipping
behavior. With no Morse potential (ε = 0), the remaining linear
system has an explicit solution in which the average velocity ˙̂θ0
is constant, and the remaining coordinate pairs (θ̂w,

˙̂
θw) (after

scaling ˙̂θw by its corresponding frequency αw) evolve on circles
of fixed radii. For small nonzero ε, this integrable solution is
perturbed as shown in Fig. 3. Certainly, deviations from the
linear solution are evident in the lower modes, whereas the
trajectories of the higher order components remain close to the
integrable circular solutions of the unperturbed case. Numerical
experiments reveal that as epsilon is increased, the higher order
components in a typical flipping trajectory remain close to the
unperturbed solution until epsilon has increased by a factor of
10. As epsilon increases further, the higher order components still
exhibit oscillatory behavior, but the stronger nonlinear coupling
causes large deviations from the trajectories along fixed radii and
the circular solutions disintegrate.
The 1 12 degree of freedom reduced system obtained using the

approximation in Eq. (10) retains sufficient dynamics of the higher
order modes in the time-dependent terms to capture statistics
of the the flipping event remarkably well. The distributions of
numerically computed flipping times for 5000 random initial
conditions for the 1 12 degree of freedom reduced system and the
full 200 degree of freedom system are compared in Fig. 4. The
histograms in Figs. 4(a), (b), (c) are computed using values of
epsilon equal to 1/1400, 5/1400, and 10/1400 respectively. When
epsilon is equal to 1/1400 (the value provided by the biomolecule
model), the reduced model captures the shape of the flipping time
distribution remarkably well and the mean relative error in the
predicted flipping time is less than five percent. As expected, the
relative error in the flipping time prediction increases as epsilon
is increased. The quasi-periodic forcing introduced in the right
hand side of Eq. (10) by the solution for the linear system provides
the perturbation required to induce global flipping from a local
perturbation, and can be thought of as a time-dependent control.
The rigorous error estimate obtained in Section 2.2 stated that

trajectories of the reduced model are within O(ε) of the true
solution for timesO(1). The application of this error estimate to the
biomolecule model merits the following two observations. First,
the portion of a trajectory duringwhich the pendulum experiences
the Morse potential (which is responsible for inducing flipping
motion) is very brief; the interaction occurs on a time-scale that
isO(1) rather than themuch longerO(1/ε) time-scale, so that the
estimate has validity, as evidenced numerically, for the prediction
of flipping times. Second, the error estimate was obtained for an
arbitrary forcing function F(θ(t), t). In the biomolecule model,
the exponential decay of the Morse potential with distance
implies that when the pendula escape the immediate vicinity of
the opposing pendula, the Morse potential and the consequent
perturbation are effectively zero and the linear solution becomes
nearly exact. Hence, the error estimate is conservative in that
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Fig. 3. The evolution of a few of the θ̂w and
˙̂
θw variables is shown here. The average mode (w = 0) indicates that flipping occurs as in Fig. 2(b) while the remaining modes

simply oscillate with small deviations from the unperturbed (ε = 0) integrable solution.
it utilizes only the fact that epsilon is small, and not the fact
peculiar to the biomolecule model that in a large region of phase
space, the forcing term is also small. For these reasons, the
numerically observed time-scale overwhich the reducedmodel for
the biomolecule chain remains accurate is greatly increased over
the rigorous estimate.

3.4. Efficient actuation of conformation change

The foregoing analysis indicates that the process of conforma-
tion change can be well-modelled by a low-dimensional model
with a single degree of freedom. Next, we investigate the possi-
bility of inducing this interesting flipping behavior using a low-
powered local control.
Consider a pendulum chain in the stable equilibrium position.

The minimum possible energy of a perturbation that induces
flipping can be computed analytically and is

Emin = Nε
(
e−a[2−x0] − 1

)2
≈ 0.143

and corresponds to each pendulum being kicked with the same
initial velocity. With this lower energy limit for reference, we have
investigated the robustness of the zipped state by numerically
measuring the flipping time as a function of energy for random and
structured perturbations. The results shown in Fig. 5 indicate that
the tendency for flipping is strongly influenced by the structure of
the initial perturbation and confirm the results found in [4].
Higher mode numbers refer to sinusoidal perturbations of

higher harmonic frequencies. We also include the energy required
to induce flipping with random perturbations (labeled ‘‘noise’’)
as well as perturbations consisting of the displacement of a
single pendulum (labeled ‘‘kick’’). First, we notice that the
equilibriumstate is robust to very energetic randomperturbations;
energies in excess of 6.0 are required to robustly induce flipping.
Second, flipping can be robustly induced by low-energy structured
perturbations that comprise low frequency modes. In fact, the
lower limit of the magnitude of such perturbation (the asymptote
Emodemin that the curves in Fig. 5 tend towhen energy is decreased) can
be predicted by a partial averaging approach, as pursued in [12]
The magenta stars in Fig. 5 refer to the following structured

perturbation. Inspired by the unzipping action of polymerase
and helicase proteins in DNA, we simulate the action of a
hammer that moves along the strand with constant velocity and
imparts a small kick to each pendulum as it passes. Despite
its very low power requirement and localized interaction, this
structured perturbation efficiently and robustly induces global
flipping motion by exciting the zeroth order collective mode.
The action of the zipper comprises 31 small kicks (energy =
0.0245) providing a total energy of 0.75 to the pendulum chain.
In contrast, the strand remains closed for random kicks that are
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Fig. 4. The histograms provided here compare the distribution of flipping times predicted by the 1 12 degree of freedom reduced model (shown in solid black) with the
distribution of flipping times predicted by the full 200 degree of freedom system (shown in black outline) for different values of epsilon. The histograms are computed
using 5000 random initial conditions. The plot in (a) was computed using a value of epsilon equal to 1/1400 consistent with the biomolecule model, while (b) and (c)
were computed using values of epsilon that are larger by a factor of 5 and 10 respectively. In (a) we see that the reduced model captures the distribution of flipping times
remarkably well with a relative error of 4.8%. As expected, the relative error increases for larger values of epsilon.
Fig. 5. The time required for the chain to flip is plotted here as a function of
the energy for various types of initial conditions. Green circles indicate initial
conditions in which a single pendulum is displaced from the equilibrium position.
Red dots indicate random initial conditions with Gaussian distribution about the
equilibrium. If flipping was not observed for this perturbation, a marker was placed
at the 400 time mark at the top of the figure. The blue series in triangles and
squares correspond to initial perturbations consisting of sinusoidal displacements,
with frequency indicated by the mode number. Magenta stars represent efficient
‘‘zippers’’ imparting 31 small kicks of varying strength, as explained in the text.
The amount of energy required to robustly induce flipping depends strongly on the
frequency content of the initial condition. Less energy is requiredwhen the energy is
placed in the low ordermodes. Random initial conditionsmust have energies above
6.0 to induce flipping whereas zippers require much less energy (0.75) to robustly
induce flipping.
two orders of magnitude larger than the individual kicks provided
by the hammer. Hence, the pendulum chain has the interesting
property that the conformation is robust against noise, yet allows
for robust actuation of global conformation change through a small
structured local control.
The fastest phonons in the pendulum dynamics move along

the strand at a rate that is very near 1.0 pendulum per time unit.
By increasing the speed with which the zipper moves down the
chain well beyond this phonon speed, the total energy required
to induce flipping can be made arbitrarily close to the theoretical
minimum limit of 0.14. This observation follows from the fact that,
as the zipper moves faster, the time between kicks to subsequent
pendula decreases, and hence the perturbation approximates ever
more closely the optimal perturbation of kicking each pendulum
at the same instant. Thus, extremely (unrealistically) fast zippers
can in effect provide the optimal global perturbation. On the other
hand, by exploiting resonances in the dynamics, even slow-moving
(more realistic) zippers are able to induce flipping with very
low power consumption and only local interaction. The zippers
referred to in Fig. 5 move at a rate of only 0.4 pendula per time
unit, well below the natural phonon velocity.
The zipper not only induces flipping more efficiently than

the other perturbations considered, but also does so robustly
when noise is added to the system. Fig. 6 shows the energy
required to induce rapid flipping (flipping occurs in less than
400 time units) when the system is simulated at constant
temperature using a Brünger–Brooks-Karplus Langevin integrator
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Fig. 6. When the system is simulated at constant temperature the zipper robustly
and efficiently induces flipping. The energy required to induce flipping in less than
400 time units is shown for 120 simulations over a range of temperatures. The inset
shows a sample trajectory induced by the zipper when the temperature is 310 K
and the zipper is activated after 2000 time units.

with damping coefficient of 5 ns−1 [22]. For temperatures above
380 K, flipping occurs before 10,000 time units without the action
of any external perturbation. Notably, the zipper perturbation is
able to robustly induce very fast flipping over a wide range of
temperatures. Moreover, if the chain is at a low temperature and
rigidly locked in a stable conformational state, conformational
change can nevertheless be quickly induced.
These observations in the simple chain of oscillators model

yield insight into how biomolecule conformations can be robust
to energetic stochastic perturbations (so that DNA, for example,
does not spontaneously divide over a wide temperature range)
and yet, with the right ‘‘trigger’’, it can divide reliably and quickly
with a low energy wave-like perturbation. We believe that this
is a fundamental dynamical mechanism that biological systems
use to utilize natural dynamics in order to robustly perform rapid
and reliable conformation changes that are not accidentally caused
by random perturbations and do not require the application of
overwhelming force.

3.5. Visualizing transport in the reduced model

A single pendulum oscillating freely in the Morse potential is
a one degree of freedom system whose phase portrait is shown in
Fig. 2(a). The shape of the trajectories in the full coupled-pendulum
system when projected onto the average variables, as shown in
Fig. 2(b), resemble the trajectories of the single pendulum system,
except for the important difference that the single pendulum is an
integrable system inwhich no spontaneous coherent flipping event
can occur; the pendulum trajectory is either inside the homoclinic
trajectory and never flips, or is outside the homoclinic trajectory
and flips repeatedly. Therefore, the homoclinic trajectory in the
single pendulum case defines a boundary of the conformation
basin, and we say that a spontaneous flipping event in the full
pendulum chain occurswhen a trajectory in the average projection
starts inside the region defined by the homoclinic trajectory,
escapes it, and crosses into the other half plane by passing through
the angle π .
These definitions afford us a precise manner in which to

visualize transport from one conformation basin to the other.
The visualization method uses a measure of separation of nearby
trajectories to find the boundaries of the regions in the flow that
will undergo conformation change. Very simply, the visualization
process involves four steps:
Fig. 7. Curves that govern transport in the flow of the reduced model for the
parameter values provided in 3.1 are visualized here using themethod described in
the text. Blue curves separate regions that will undergo conformation change from
those that will not when trajectories are integrated forward in time. Conversely,
red curves separate regions that will undergo conformation change from those that
will not when trajectories are integrated backward in time. Together, the curves
reveal the familiar structure of a perturbed homoclinic tangle. This visualization is
computed for the case when the perturbation is created by adding energy to the
first mode only. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

(1) Construct a uniformgrid of initial conditions in the phase space
of the average angle in the reduced model.

(2) Record whether each initial condition lies inside or outside a
conformation basin, as delineated by the homoclinic trajectory
for the single pendulum.

(3) (a) Advect each initial condition forward from time t0 to time
t0+T and recordwhether the integrated position lies inside
or outside a conformation basin.

(b) Mark with blue each initial condition in the grid that has
a neighboring initial condition that started in the same
region but ended in a different region, and hence has
separated from its neighbor.

(4) (a) Advect each initial condition backward from time t0 to time
t0−T and recordwhether the integrated position lies inside
or outside a conformation basin.

(b) Mark with red each initial condition in the grid that has a
neighbor position that started in the same region but ended
in a different region after backward integration.

These four steps can be repeated for different initial times t0,
producing an animation of the time-dependent manifolds of
separation. The rationale for this procedure is motivated by
the well-established method for extracting Lagrangian Coherent
Structures (LCS) in flows with arbitrary time dependence using
Finite Time Lyapunov Exponents (FTLE) [23,24]. In that context,
the FTLE is used as a measure of separation, and the LCS are
defined as curves on which the separation is maximal. The
FTLE-LCS method has proven effective in revealing the transport
structures and mechanisms in a wide range of flows including
oceanic, atmospheric, biological, and laboratory flows [25–27]. In
the present study, since we are specifically interested in transport
from one pre-defined set to another, we define separation using
the boundary of these sets rather than the usual Euclidean distance
metric as is typically done in the LCS literature.
Before an initial condition in the reduced phase space of the

average angle can be advected, it must first be lifted to the full
2N-dimensional phase space. The initial condition in the reduced
space determines θ̂0 and

˙̂
θ0 exactly; however, the higher order

components are free to be chosen arbitrarily and hence the lifting
procedure is not unique. Presently, we compare the transport
structures present when lower order modes are activated with
the transport structures obtained when higher order modes are
activated, in order to make connections with the activation
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Fig. 8. The action of lobe dynamics associatedwith the perturbed homoclinic trajectory in Fig. 7 is easily observed by visualizing the time-dependentmanifolds that separate
trajectories that flip from those that do not flip. The intersections of the manifolds define lobes that are either entrained or detrained from the conformation basin. In these
snapshots, the trajectories visualized in red have recently flipped and are captured in the conformation basin. Conversely, the blue trajectories beginwithin the conformation
basin and then escape and undergo flipping. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
energies recorded in Fig. 3. After lifting to the full space, the
initial condition is then integrated using either the full system of
equations or the reduced model.
Sample results obtained from this visualization procedure,

using the reduced order model, are shown in Fig. 7 and reveal
manifolds in the flow that govern transport. For clarity of this initial
presentation, the initial condition used in the visualization process
was lifted to the full space by adding energy to only the first mode,
yielding a periodic time-dependence in the reduced model. The
intersection of the blue and red boundary curves define lobes that
mediate transport in the flow. Indeed, the manifolds reveal that
transport occurs via the well-known mechanism of lobe dynamics
that attends a perturbed homoclinic trajectory and the resultant
homoclinic tangle that was first described in the classical work of
Poincaré in geometric dynamics [28]. It should be noted that the
visualization procedure, as outlined above, allows us to visualize
lobe dynamics in aperiodic flows with arbitrary time-dependence
(or quasi-periodic flows as in the case of the reduced biomolecule
model) whereas the work of Poincaré was restricted to systems
with periodic time-dependence [32,33].
In Fig. 8, snapshots of the trajectories inside two of the lobe

regions taken for different values of t0 have been suitably colored
to indicate explicitly the action of lobe dynamics. We observe
that trajectories colored red are captured in the conformation
basin, while those colored blue escape from the conformation
basin andundergo flipping. Regions inwhich lobes overlap indicate
trajectories that undergo complex itineraries — for example,
drifters in an overlapping region may first be captured in the
conformation basin and then subsequently escape. Increasing
the integration time T reveals more and more intersections and
corresponding families of possible itineraries precisely, as shown
by Smale in the Horseshoe map description of the homoclinic
tangle [29].
Straightforward linear analysis of the full system reveals that
the equilibrium point at (π, 0) has 2N eigenvalues:

λ
p
± := ±

√
2 cos

(
2πp
N

)
− 2+ εµ p = 0, . . . ,N − 1 (11)

where the real number µ is defined by

µ := 2a
(
1− e−a(2−x0)

)
e−a(2−x0). (12)

The reasonable assumption that the Morse potential equilibrium
distance x0 is less than twice the pendulum length guarantees that
µ is positive.
When epsilon is identically zero, one pair of eigenvalues lies at

the origin, while all the remaining eigenvalues fall along the imag-
inary axis in complex conjugate pairs. For small non-zero epsilon,
the zero eigenvalues are perturbed off the origin along the real axis,
yielding a symmetric pair of real eigenvalues. Precisely when

0 ≤ ε <
2− 2 cos

( 2π
N

)
µ

(13)

the set of eigenvalues contains only one real pair and the equilib-
rium point is a rank 1 saddle (i.e. the linear stability of the equi-
librium point is of the type saddle × center1 × · · · × centerN−1).
Transport in systems with rank 1 saddles has been well-studied
with regard to low-dimensional applications in celestialmechanics
and molecular dynamics. The results of Koon et al. [30] show that
transport in systems with rank 1 saddles is governed by tubes de-
fined by the invariant manifolds of the periodic orbit: trajectories
inside the tube defined by the stable manifold, for example, will
cross the saddle and be transported inside the tube from one re-
gion to another. For the parameters given for the coupled oscillator
system in Section 3.1, the inequality in condition (13) is satisfied
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(a) Mode 10, reduced. (b) Mode 15, reduced.

(c) Mode 40, reduced. (d) Mode 10, full.

(e) Mode 15, full. (f) Mode 40, full.

Fig. 9. As described in more detail in the text, transport structures in the phase space of the average variables for the biomolecule are compared here for both the full and
the reduced models. A review of the plots leads to the following observations: (1) For perturbations in mode 10, the reduced model predicts incorrect amplitudes for the
lobe structures, yet the overall geometry and topology of the flipping region is well captured. (2) For perturbations in higher order modes, the transport structures in the
reduced model are visually indistinguishable from those of the full model. (3) Perturbations consisting of lower order modes are more efficient at inducing flipping motion.
(4) The zipped conformation of the chain is robust against high frequency perturbations. (5) The zipper induces flipping efficiently while using only a localized perturbation.
whenever N is less than 24,000 and hence for N = 200 the equi-
libriumpoint associatedwith all the pendula in the flipped position
at π radians is indeed a rank 1 saddle. The visualization procedure
thus yields the interesting insight that transport via tubes in the full
many degree of freedom system corresponds to lobe dynamics in the
projection onto the coarse average coordinates in the reduced model.
This interesting observation is currently being pursued further by
the authors and collaborators as amethod for understanding trans-
port in a wide range of molecular systems, such as the atomic clus-
ter described in [31], for example.
We now proceed to use this method for visualizing transport
structures to study the effect of the frequency content of
perturbations on flipping. Fig. 9 compares the transport structures
obtained when the perturbing energy is initially placed in a range
of modes and the resulting initial conditions are then advected
using both the reduced and full models. In each of these plots,
the amount of energy placed into the perturbing mode is 0.75
energy units — an amount equal in size to the energy required
by the zipper presented in Section 3.4 to cause a trajectory at the
equilibrium point to flip. Blue curves represent the boundary of
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the flipping region and are determined by integrating the initial
conditions forward in time. Recall that this blue curve is not a
trajectory, but rather a surface that separates trajectories that will
flip from those that will not. Moreover, the region enclosed by
the blue curve contains initial conditions that will not flip. The
gray curve is the homoclinic trajectory for the single pendulum in
the Morse potential that defines the basin from which a flipping
trajectory must escape. Also, for reference, the black ‘‘sawtooth’’
trajectory of the zipper is shown, indicating the manner in which
the zipper causes an initial condition at the equilibrium point
(represented by a red dot) to flip. Since the equilibrium point
in each of the plots falls inside the blue separatrix, none of the
perturbations (except for the zipper) are able to induce flipping
of trajectories starting at the equilibrium point at this particular
energy level.
A study of the plots in Fig. 9 yields several observations that, in

many ways, serve as a summary of the chief results of this paper.
These observations are listed here:

• Qualitatively, the 1 1/2 degree of freedom model captures the
transport structures in the projected phase space remarkably
well. For the case when the initial energy is placed in a lower
order mode, the reduced model does not provide the correct
amplitude of the lobes, yet the frequency of the lobes and the
overall proportions of the area delineated by the separatrix are
very similar. For higher order modes, all the relevant features
are captured correctly and the differences between the reduced
model and full model become visually indistinguishable. A
single degree of freedom model obtained through averaging or
truncation methods fails to capture flipping entirely. The time-
dependence in the reduced model encodes the effect of the
initial conditions of the full system so as to include the effect
of higher order modes in inducing flipping.
• Perturbations consisting of higher ordermodes are less efficient
at inducing flipping, since the lobe structures are much smaller
and the region inside the blue separatrix that represents
trajectories that do not undergo flipping is enlarged. For the
case when the perturbing energy is placed in mode 40, for
example, we see that no flipping is induced whatsoever. This
observation serves as a visual representation of the fact that
the conformation basin is impervious to noisy perturbations
with high frequency content, as has been previously observed
in Section 3.4. The biomolecule chain is robust to noisy
perturbations.
• The zipper is an efficient and robust method for inducing
conformation change that utilizes only localized perturbations.
Certainly, perturbations with low frequency content are
efficient at unzipping the chain. However, these perturbations
have global structure. Hence, conformation change in the
biomolecule chain can be robustly induced via a low-energy
localized structured perturbation.

4. Conclusions

We have introduced a strategy for deriving an approximate
reduced equation for the evolution of a coarse variable in a
high degree of freedom system, in a way that carefully includes
the influence of fine-scale dynamics, and have applied it to a
simplified model for biomolecules. It has been shown that the
basicmechanismof global conformation change can be understood
using a single degree of freedomdynamical system, that is acted on
by an explicitly computable ‘‘subgrid’’ time-dependent forcing that
represents the effect of the higher order modes on the main mode.
We have also demonstrated that conformations are robust to large
random perturbations, yet conformation change can be robustly
induced by the application of a small local structured perturbation.
Visualization of transport in the coarse variables of the reduced
model indicates that one channel through which conformation
change occurs for a large class of perturbations, is the process of
lobe dynamics associatedwith the perturbed homoclinic trajectory
of a rank 1 saddle.
In future work, it is expected that the approach here will

naturally merge with the methodology in [31] which shows that
conformation changes of atomic clusters is captured by coarse
variables defined by the radii of gyration, with input from the small
scale variables similar to what is observed in the model studied
here. The angle which is the coarse variable in the problem studied
in the present paper corresponds to the angle of the frame defined
by the radii of gyration.
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