
THE MOTION OF SOLID BODIES IN POTENTIAL FLOW WITH CIRCULATION:
A GEOMETRIC OUTLOOK

Joris Vankerschaver∗†
Control and Dynamical Systems
California Institute of Technology

Pasadena, California 91125, MC 107-81

Dept of Math. Physics and Astronomy
Ghent University, B-9000 Ghent, Belgium

Email: jv@caltech.edu

Eva Kanso
Aerospace and Mechanical Engineering

University of Southern California
Los Angeles, California 90089

Email: kanso@usc.edu

Jerrold E. Marsden
Control and Dynamical Systems,
California Institute of Technology

Pasadena, California 91125, MC 107-81
Email: marsden@cds.caltech.edu

ABSTRACT
The motion of a circular body in 2D potential flow is stud-

ied using symplectic reduction. The equations of motion are
obtained starting from a kinetic-energy type system on a space
of embeddings and reducing by the particle relabelling symme-
try group and the special Euclidian group. In the process, we
give a geometric interpretation for the Kutta-Joukowski lift force
in terms of the curvature of a connection on the original phase
space.

INTRODUCTION
It has been known since the pioneering work of Kirchhoff,

Stokes, and Lamb that the motion of a rigid body in a potential

flow has a very succinct description with the ambient fluid man-

ifesting itself only through the appearance of added masses and

added moments of inertia.

If the circulation around the body is non-zero, or if isolated

point vortices are present in the fluid, additional effects have to

be taken into account. In the former case, the body experiences

an additional lift force, proportional to its velocity and the cir-

culation. The resulting dynamics was first studied by Chaplygin

and Lamb (see [1] and the references therein). In the case of

point vortices, these effects are sufficiently subtle for the equa-

tions of motion of the system to have been derived only recently

(see [2]).

The Kirchhoff equations for a rigid body in a potential flow

were studied from a geometric point of view in [3, 4]. In this

paper, we show that this formalism can be extended to the case

where the circulation around the body is not necessarily zero.

∗Address all correspondence to this author.
†Permanent address: Department of Mathematical Physics and Astronomy,

Ghent University, Krijgslaan 281, B-9000 Ghent, Belgium.

The motion of a rigid body in a perfect fluid, even with circula-

tion, can be viewed as a prime example of geometric reduction
theory (see [5,6]). From this point of view, the body-fluid system

first is defined as a dynamical system on an infinite-dimensional

configuration space Q, consisting of two parts: one accounting

for the position of the body, and the other consisting of maps tak-

ing the fluid labels to their respective positions in material space

at a certain instant.

The degrees of freedom of the system on Q can then be re-

duced to a finite number by realizing that two distinct symmetry

groups act on Q, and dividing out by these group actions. First,

there is the group of volume preserving diffeomorphisms, which

acts on the label space of the fluid and simply permutes the labels

of the fluid particles. Secondly, the whole system (consisting of

solid and fluid) is invariant under global translations and rota-

tions. Dividing out by these symmetry groups naturally leads to

the Kirchhoff equations with an additional lift force proportional

to the circulation (equation 25 below).

We limit ourselves to the case of a rigid body moving in a

potential flow with circulation but no external vorticity, as this

case is not overly complicated but already exhibits many of the

interesting features present in geometric reduction theory. A sig-

nificant feature of our analysis is that the lift force experienced

by the body turns out to be nothing but the velocity vector of the

body contracted with a certain curvature tensor (see equation 20).

In this way, we provide an alternative geometric description of

what is known in the classical literature on fluid dynamics as the

Kutta-Joukowski theorem.

The layout of the paper is as follows. After describing the
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problem setting and recalling some well-known facts from po-

tential flow theory and rigid body dynamics, we describe the ge-

ometric approach to perfect fluid dynamics. We then apply this

theory to the case at hand, i.e. the dynamics of a rigid circular

body in a potential flow with circulation. The bulk of the paper is

devoted to reducing the dynamics with respect to the symmetry

groups described above. In the process, we use a certain connec-

tion on the unreduced phase space and calculate its curvature. In

the final sections, the equations of motion are derived and we dis-

cuss the physical significance of this curvature. The paper ends

with an outlook on possible generalizations of this approach.

PROBLEM SETTING
We consider a rigid body of cylindrical shape moving in an

inviscid, incompressible fluid. The body – considered to be uni-

form and neutrally-buoyant (the body weight is balanced by the

force of buoyancy) – may be represented by a disc in R
2 and for

the sake of convenience we assume that the fluid fills the comple-

ment of the body in R
2. This assumption can easily be relaxed,

for example to the case where the fluid moves in a bounded con-

tainer, or on a two-dimensional surface different from R
2 (such

as the 2-sphere). The reference configuration of the fluid will be

denoted by F0, and that of the body by B0. The space taken by the

fluid at a generic time t will be denoted by F . Note however that

as time progresses, the position of the body changes and hence

so does its complement F .

Rigid body kinematics. Introduce an orthonormal inertial

frame {e1,2,3} where {e1,e2} span the plane of motion and e3 is

the unit normal to this plane. The configuration of the submerged

rigid body can then be described by a rotation β about e3 and a

translation r = xoe1 +yoe2 of a point O (often chosen to coincide

with the mass center) in the {e1,e2} directions (see figure ). The

angular and translational velocities expressed relative to the iner-

tial frame are of the form β̇e3 and v = vx e1 +vy e2 where vx = ẋo,

vy = ẏo (the dot denotes derivative with respect to time t). It is

convenient for the following development to introduce a moving

frame {b1,2,3} attached to the body. The point transformation

from the body to the inertial frame can be represented as

x = RX+ r, R =
(

cosβ −sinβ
sinβ cosβ

)
, (1)

where x = xe1 + ye2 and X = X b1 +Y b2, while vectors trans-

form as v = RV. The angular and translational velocities ex-

pressed in the body frame take the form Ω = Ωb3 (where

Ω = β̇) and V = Vxb1 +Vyb2 (where Vx = ẋo cosβ + ẏo sinβ and

Vy = −ẋo sinβ + ẏo cosβ). Note that the orientation and position

(β,xo,yo) form an element of SE(2), the group of rigid body

motions in R
2. The velocity in the body-frame ξ = (Ω,V1,V2)T ,

where ()T denotes the transpose operation, is an element of the

vector space se(2) which is the space of infinitesimal rotations

and translations in R
2 and is referred to as the Lie algebra of

β

x

(x0, y0)

X
y

Y

Figure 1. Orientation of the rigid body.

SE(2).

Fluid velocity. The fluid velocity u can be written using the

Helmholtz-Hodge decomposition as follows

u = ∇Φ + uv, (2)

where uv is a divergence-free vector field and can be written as

uv = ∇×Ψ + uΓ. The vector potential Ψ satisfies ΔΨ = −ω
subject to the boundary conditions (∇×Ψ) · n = 0 on ∂B and

∇×Ψ = 0 at infinity. Here, ω = ∇× uv is the vorticity in the

fluid domain, which implies that Ψ is zero in the absence of vor-

ticity. For planar flows, the vector potential Ψ = ψe3, where ψ is

referred to as the stream function.

The harmonic vector field uΓ is non-zero only when there is

a net circulatory flow around the body; it satisfies ∇ ·uΓ = 0 and

∇×uΓ = 0 (i.e., ΔuΓ = 0) and the boundary conditions uΓ ·n = 0

on ∂B and uΓ = 0 at infinity. Note that, in three dimensional

flows, one does not need the harmonic vector field uΓ.1 For the

planar problem considered here, the effect of having a net circu-

lation Γ around the body is equivalent to placing a point vortex

of strength Γ at the center of mass of the body such that

uΓ = ∇× (ψΓ e3), ψΓ =
Γ
4π

log(X2 +Y 2), (3)

where ψΓ is expressed in body coordinates (X ,Y ).
The potential function Φ is harmonic, that is, it is the so-

lution to Laplace’s equation ΔΦ = 0, subject to impermeable

boundary conditions on ∂B (∇Φ · n = normal velocity of the

boundary) and the velocity is required to vanish at infinity.

Namely, one has

∇2Φ = 0 and
∂Φ
∂n

∣∣∣∣
∂B

= (Ω×X+V) ·n. (4)

1In three dimensions, any closed curve in the exterior of a bounded body is

contractible, so the harmonic vector field uΓ may be set to zero. This result is

due to Poincaré Lemma which can be alternatively stated as follows: a closed

one-form on a (sub)-manifold with trivial first cohomology is globally exact.
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Physically, Φ(X ,Y ) represents the irrotational motion of the fluid

generated by moving the body. By linearity of Laplace’s equa-

tion, one can write, following Kirchhoff (see [7]),

Φ = ΩΦΩ +VxΦx +VyΦy, (5)

where ΦΩ,Φx,Φy are called velocity potentials and are solutions

to Laplace’s equation subject to the boundary conditions on ∂B

∂ΦΩ

∂n
= X×n ·b3 ,

∂Φx

∂n
= n ·b1 ,

∂Φy

∂n
= n ·b2 (6)

In the case of a cylindrical body, these elementary potentials take

the following form in a coordinate system fixed to the body (see

[7]):

ΦΩ = 0, Φx = − Y
X2 +Y 2

, and Φy = − X
X2 +Y 2

. (7)

Kirchhoff equations. The equations governing the motion of

the body in potential flow, that is, in the absence of external vor-

ticity and circulation (uv = 0), are known as Kirchhoff equations

and take the form:

Π̇ = PxVy −PyVx,

Ṗx = −PyΩ, Ṗy = PxΩ.
(8)

Here, Π denotes the angular momentum of the solid-fluid sys-

tem while (Px,Py) denotes the linear momenta of the system ex-

pressed in the body frame. They are given in terms of the velocity

in body frame by

Π = IΩ, Px = (mb +mx)Vx, and Py = (mb +my)Vy,

where mb and I are the mass of the cylinder and its moment of

inertia along the axis, respectively. The quantities mx and my are

the added masses of the cylinder in the x and y direction; for

a circular cylinder, mx = my = πρF , with ρF the mass density

of the fluid. Note that this implies that for a circular cylinder,

Π̇ = 0.

One of the main objectives of this paper is to use the meth-

ods of geometric mechanics to derive the equations governing the

motion of the body in potential flow and with non-zero circula-

tion. The general case of a body of arbitrary geometry interacting

with external vorticity will be addressed in a future publication.

GEOMETRIC FORMULATION
The Configuration Space. The configuration space Q for the

fluid-rigid body system consists of pairs (ϕ,g), where ϕ ∈
Emb(F0,R

2) is an embedding of F0 in R
2, and g is an element of

SE(2) such that the following conditions are fulfilled:

(i) ϕ approaches the identity at infinity;

(ii) ϕ represents an incompressible fluid: ϕ∗η = η0 (η is the

Euclidian volume form on R
2 and η0 is its restriction to F0);

(iii) ϕ(∂F0) = g(∂B0) as sets, where g is interpreted as an em-

bedding of B0 into R
2.

Condition (ii) simply means that the Jacobian of ϕ is unity,

whereas condition (iii) is a rewriting of the slip boundary con-

dition in (4). For future reference, we also introduce the group

of volume-preserving diffeomorphisms of F0, denoted by Diffvol,

and consisting of diffeomorphisms φ : F0 → F0 such that φ∗η0 =
η0.

Let (ϕ,g) be an element of Q. Any tangent vector to Q can

be represented as a pair (ϕ, ϕ̇;g, ġ), where (g, ġ) is an element of

TgSE(2) and ϕ̇ is a map from F0 to T F such that ϕ̇(x) ∈ Tϕ(x)F .

The vector field ϕ̇ represents the Lagrangian velocity field of the

fluid. The Eulerian velocity field u is then defined as u = ϕ̇◦ϕ−1.

Note that u is a vector field on F , in contrast to ϕ̇ (which is a

vector field along the map ϕ).

Geometric Fluid Mechanics. Following [9, 10], we introduce

the vorticity field as an exact two-form on F0:

Definition 1. The vorticity field μ of u is defined as μ =
d(ϕ∗u�).

From a geometric point of view, the vorticity takes values in the

space Ω1(F0)/dΩ0(F0) of one-forms up exact forms. This space

is isomorphic to dΩ1(F0)×R× ·· · ×R, where the number of

factors of R is equal to the rank of the first homology group of

F0 (in our case, the rank is one). This isomorphism is explicitly

given by (see [9])

[α] �→ (dα,Γ), where Γ =
Z

C
α, (9)

and C is a closed contour encircling the rigid body exactly once.

Physically speaking, dα represents the external vorticity of the

fluid, while Γ is the circulation around the rigid body.

Particle relabeling Symmetry. In the absence of external vor-

ticity, the action of the particle relabelling group Diffvol on the

fluid does not change the circulation around the rigid body. This

is a consequence of Kelvin’s theorem, but can easily be proved

directly.

Let (ϕt ,gt) be a curve in Q describing the motion of the

solid-fluid system, and consider an arbitrary element φ of Diffvol.

The transformed motion is then given by (ϕ′
t ,gt), where ϕ′

t =
ϕt ◦φ, and the difference in circulation between the original and

the transformed motion is given by

Γ′ −Γ =
Z

φ(C )
u′ dl−

Z
C

udl =
Z

A
∇×udA (10)
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where C is a curve encircling the body, A is the region bounded

by C and φ(C ) and u′ is the transformed Eulerian velocity given

by

u′ = (ϕ̇◦φ)◦ (ϕ◦φ)−1 = ϕ̇◦ϕ−1 = u. (11)

If the external vorticity is zero, the right-hand side of (10) van-

ishes and hence Γ′ is equal to Γ.

Mathematically speaking, the vorticity μ can be interpreted

as an element of the dual of the Lie algebra of Diffvol (see [9,10]).

The fact that arbitrary diffeomorphism do not change the circula-

tion, as we have just shown, then translates to the following key

theorem.

Theorem 2. Let μ = d(ϕ∗u�
V ) be the vorticity representing a

given amount of circulation Γ. Then the isotropy subgroup
(Diffvol)μ of diffeomorphisms leaving μ invariant coincides with
the whole of Diffvol.

The group of rigid motions. We recall some basic facts about

Lie groups and algebras in the context of the special Euclidian

group SE(2).2 The group SE(2) can be parametrized by pairs

(R,r) as done in (1), where R ∈ SO(2) describes the orientation

of the body, while r ∈R
2 fixes the location of the center of mass.

The group law in SE(2) is given by

(R1,r1) · (R2,r2) = (R1R2,R1r2 + r1).

An element (R,r) of SE(2) can alternatively be written as the

following 3-by-3 matrix:

(R,r) �→
(

R r
0 1

)
.

The composition operation is then simply given by the multipli-

cation of the corresponding matrices. For more information on

this group and its relevance to mechanics, see [6, 8].

The Lie algebra of SE(2) is denoted by se(2). Its elements

are matrices of the form

(
A b
0 0

)
,

where A is an antisymmetric matrix and b ∈ R
2. Note that

se(2) is isomorphic to R
3 by means of the following mapping:

(A,b) �→ (Ω,b), where Ω is the non-zero lower-left entry in the

antisymmetric matrix A.

The dual of se(2) is denoted by se(2)∗. The duality pairing

between se(2) and se(2)∗ is given by (a multiple of) the Killing

2This section can be safely skipped by readers familiar with Lie groups.

form. Under this correspondence se(2)∗ can be identified with

R
3 and the duality pairing is then just the Euclidian inner product

on R
3.

Below, we will need to use a left-invariant basis for one-

forms on SE(2). This basis is constructed as follows. We first

define the following basis of se(2):

eΩ =

⎛
⎝0 −1 0

1 0 0

0 0 0

⎞
⎠ , ex =

⎛
⎝0 0 1

0 0 0

0 0 0

⎞
⎠ , ey =

⎛
⎝0 0 0

0 0 1

0 0 0

⎞
⎠ ,

and let {e∗Ω,e∗x ,e∗y} be the corresponding dual basis of se(2)∗.

Denote by θ the left-invariant Maurer-Cartan form on SE(2),
given by θg(vg) = T Lg−1(vg). This is an se(2)-valued one-form;

its components, given by

θx = 〈e∗x ,θ〉 , θy =
〈
e∗y ,θ

〉
, and θΩ = 〈e∗Ω,θ〉 (12)

form a left-invariant basis of one-forms on SE(2). Explicitly,

the left invariant forms defined in (12) are locally given by the

following expressions:

⎧⎨
⎩

θΩ = dβ
θx = cosβdx0 + sinβdy0

θy = −sinβdx0 + cosβdy0,

where {x0,y0,β} are coordinates on SE(2).

THE MECHANICAL CONNECTION
The configuration space Q of a rigid body moving in a fluid

consists of pairs (ϕ,g), where ϕ ∈ Emb(F0,M) and g ∈ SE(2).
The manifold Q is fibered over SE(2) by mapping (ϕ,g) to g,

but more is true: this projection makes Q into the total space of

a principal fibre bundle over SE(2). The structure group of this

principal fiber bundle is the group Diffvol of volume-preserving

diffeomorphisms of F0.

Indeed, recall that this group acts on the right on Emb(F0,M)
(and hence also on Q) by putting ϕ ·φ = ϕ ◦ φ. If we define the

projection π : Q → SE(2) by π(ϕ,g) = g, then it is clear that the

orbits of Diffvol in Q coincide with the fibers of π.

Definition of the mechanical connection
As shown above, the configuration space Q is the total

space of a principal fiber bundle over SE(2). Furthermore, Q
is equipped with a principal fiber bundle connection, defined as

a Diffvol-equivariant one-form A : T Q → Xvol given by

A(ϕ,g)(ϕ̇, ġ) = ϕ∗uv,

where uv is the divergence-free part of the Helmholtz-Hodge de-

composition (see [11]) of the Eulerian velocity field.
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It can be shown that this connection is the mechanical con-
nection associated to the kinetic energy of the fluid-rigid body

system.

Curvature of the mechanical connection
In the subsequent analysis, we will need the curvature of the

mechanical connection, paired with the circulation (3) in the ap-

propriate sense. Before dealing with this specific case, let us first

review some of the general theory of connections on a principal

fibre bundle.

The curvature of a principal fiber bundle connection A is

the two-form B on Q defined as follows: for uq,vq ∈ TqQ,

B(uq,vq) = dA(h(uq),h(vq)), where the map h projects the tan-

gent vectors uq, vq onto their horizontal parts.

It can be seen from the above formula that B is a two-form

taking values in g. By pairing B with an element μ of g∗, we

obtain a regular form on Q. Generally, this form is only invari-

ant with respect to Gμ, but keeping theorem 2 in mind, we may

assume for now that Gμ = G. In this case, the paired form 〈μ,B〉
drops to a form on Q/G given by the following formula:

Bμ(ġ, ḣ) =
〈
μ,B((ġ)H

q ,(ḣ)H
q )

〉
,

where the superscript ‘H’ denotes the horizontal lift of an ele-

ment of T (Q/G) to T Q.

For the solid-fluid system, G is Diffvol, the relevant connec-

tion is the mechanical connection, and Bμ is defined on SE(2).
In the case we are considering here, μ is given by dϕ∗u�

V , with

uV as in (3).

Montgomery [12] offers the following general formula for

Bμ:

Bμ(ġ1, ġ2) =
Z

F
(∇×uV ) · (∇Φ1 ×∇Φ2)dx

−
Z

∂F
uV · (n× (∇Φ1 ×∇Φ2))dl, (13)

where Φ1 and Φ2 are the solutions of the Neumann problem (4)

associated to ġ1 and ġ2, respectively, and uV is the velocity field

given by (3). It should be noted that Montgomery’s formula is

valid for arbitrary vorticity fields, and is not limited to the case

of circulation only.

Explicit calculation of the curvature
Once the solution of the Neumann problem (4) for arbitrary

boundary conditions is known, the curvature can be calculated

explicitly.

Proposition 3. The μ-component of the curvature is a left
SE(2)-invariant 2-form on SE(2) given by

Bμ = Γθx ∧θy, (14)

where Γ is the circulation around the body.

Proof: The velocity potential (5) is left SE(2)-invariant, in the

sense that the solutions of (4) for (g, ġ) and (hg,hġ) coincide (for

an arbitrary element h of SE(2)), and the same holds for Bμ. As

shown in (7), the velocity potential associated to an infinitesimal

rotation is identically zero and it follows therefore that Bμ is pro-

portional to θx ∧θy. In the remainder of this proof, we determine

the constant of proportionality by calculating Bμ evaluated on ex
and ey.

The vector product of ∇Φx and ∇Φy is given by

∇Φx ×∇Φy =
1

(X2 +Y 2)2
k,

where k is the unit vector perpendicular to the plane of motion.

The first term in (13) is always zero as the integration is

over the fluid domain, while the support of the vorticity function

∇×uV , where uV is given by (3), is contained in the body.

The second term can be rewritten as follows:

−
Z

∂F
uV · (n× (∇Φ1 ×∇Φ2))dl

= −
Z

∂F
uV · (n×k)dl =

Z
∂F

uV · tdl = Γ,

where n and t are the normal and the tangent vector field to the

boundary, respectively. �
The expression for Bμ can therefore be simplified to

Bμ = Γdx0 ∧dy0. (15)

REDUCTION: THE DIFFEOMORPHISM GROUP
The group Diffvol of volume-preserving diffeomorphisms of

F0 acts on Q, and hence on T ∗Q by the cotangent lifted action.

Below, we show that this action leaves the kinetic energy invari-

ant. Furthermore, the reduced phase space has a very simple

form: it is the cotangent bundle to SE(2), but with the canoni-

cal symplectic form shifted by a certain magnetic two-form Bμ
proportional to the circulation. This two-form manifests itself

through the classical Kutta-Joukowski lift force on the rigid body

(see [13]).

The reduced Hamiltonian
For the sake of completeness, we review in this section some

of the theory of rigid bodies moving in a potential flow, in par-

ticular the introduction of added masses and moments of inertia.

For more information, see [7, 13].

The kinetic energy for the solid-fluid system on Q is given

by T = Tfluid +Tbody, where Tfluid is the kinetic energy of the fluid

5 Copyright © 2008 by ASME



in spatial representation:

Tfluid =
1

2

Z
F
‖u‖2 dx, (16)

and Tbody is the kinetic energy of the body given by

Tbody(g, ġ) =
1

2
(IΩ2 +mV2),

which may be rewritten as

Tbody =
1

2
ξT

Mbξ, Mb =

⎛
⎝ I 0 0

0 mb 0

0 0 mb

⎞
⎠

Recall from (11) that the Eulerian velocity u is invariant under

the right action of Diffvol: as a result, so is the kinetic energy (16)

of the fluid. It follows that Tfluid drops to a function on T SE(2),
given explicitly by

Tfluid =
ρF
2

Z
F
‖∇Φ‖2 dx =

1

2
ξT

M f ξ,

where M f is the matrix of added masses and moments of inertia
induced by the fluid:

M f = πρF

(
0 0

0 I

)
,

where I is the 2-by-2 identity matrix. For more details about this

derivation, see [3, 7]. In case of a body of arbitrary shape, M f
generally has a more complicated form.

The kinetic energy of the body-fluid system takes the fol-

lowing convenient form:

T =
1

2
ξT

Mξ, where M = M f +Mb.

This is a quadratic form on se(2) and hence, by left-invariant ex-

tension, also on T SE(2). It follows that T induces a left-invariant

metric on SE(2), explicitly given by 〈(g, ġ1),(g, ġ2)〉 = ξT
1 Mξ2,

where ξi = g−1ġi, i = 1,2. Note that M is again a diagonal ma-

trix with entries I, mb + mx, and mb + mx. For notational sake,

we put m := mb +mx.

Using this metric to identify T SE(2) and T ∗SE(2), the ki-

netic energy T induces a Hamiltonian H on T ∗SE(2) given by

H(g,αg) =
(
Π Px Py

)
M

⎛
⎝Π

Px
Py

⎞
⎠ (17)

where
(
Π Px Py

)
is the element of se(2)∗ obtained by left trans-

lating αg ∈ T ∗
g SE(2) to the identity. It follows at once that H is

left SE(2)-invariant.

The reduced phase space
Using symplectic reduction (see [5] and the references

therein), this symmetry can be divided out, yielding a system

with a phase space of lower dimension. Generally, this reduced

phase space is of the form J−1(μ)/Gμ, where J is the momentum
map associated to the symmetry.

In the case of Diffvol acting on the solid-fluid system, the

momentum map is simply the vorticity of the system (see [9]),

but it is not necessary to know the explicit form of the momentum

map in order to proceed with symplectic reduction. If, as in this

case, the unreduced phase space is a cotangent bundle and the

isotropy group Gμ of a fixed element μ is the whole of G, then

the reduced phase space is another cotangent bundle but with a

non-canonical symplectic structure, as described in the following

theorem.

Theorem 4 (See [5], theorem 2.2.3). Assume μ is a regular
value of J. Then there is a symplectic diffeomorphism between
J−1(μ)/G and T ∗(Q/G), the latter with symplectic form ΩB , de-
fined as

ΩB = Ωcan −Bμ, (18)

where Bμ is the magnetic two-form described below.

The magnetic two-form Bμ in this description is a form on

T ∗(Q/G), given by Bμ = π∗
Q/GBμ, where πQ/G : T ∗(Q/G) →

Q/G is the cotangent bundle projection. This is essentially a

consequence of theorem 2.1.13 in [5]. The reason behind this

particular terminology will become clear in a moment.

It should be noted that the explicit expression for Bμ as the

μ-component of the curvature B is a direct consequence of the

assumption that the isotropy group Gμ is the whole of G. In

general, additional terms arise in the expression for Bμ; see [5]

for more information. From now on, we will no longer make any

notational distinction between Bμ and Bμ.

Putting the results of this and the previous section together,

we have the following theorem.

Theorem 5. The motion of a rigid cylinder in a potential flow
with circulation Γ is a Hamiltonian system on SE(2), with
Hamiltonian H given by (17) and shifted symplectic structure
ΩB given by (18).
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Explicitly, the trajectories described by a rigid body mov-

ing in a potential flow with circulation are given by the integral

curves of the vector field XH , satisfying

iXH ΩB = dH. (19)

The lift force on the rigid body At this stage, the physical

relevance of Bμ can be made more explicit by rewriting equation

(19) as iXH Ωcan = dH + iXH Bμ.

This is a canonical Hamiltonian system under the influence

of a gyroscopic force iXH Bμ. In inertial coordinates, this force is

given by

iXH Bμ = Γv× e3, (20)

where v is the translational velocity of the rigid body. Hence, the

curvature Bμ induces a force proportional to the circulation and

at right angles to the velocity of the rigid body. This is nothing

but the classical Kutta-Joukowski lift force (see [13]) on a rigid

body with circulation.

The effect of this force will be made more clear below once

we divide out the rigid-body symmetry to obtain the final equa-

tions of motion (25). For now, note that this situation is very

reminiscent of the geometric description of a charged particle in

a magnetic field (see [6, 8]), where the magnetic field can either

be brought in by modifying the symplectic structure to include

the magnetic field, or alternatively by adding the Lorentz force

as a gyroscopic force to the right-hand side of the Hamiltonian

equations.

REDUCTION: THE GROUP SE(2)
The reduced Hamiltonian (17) as well as the shifted sym-

plectic structure (18) are both invariant under the left action of

SE(2) on itself. This is a consequence of the fact that the solid-

fluid system is invariant under global translations and rotations

of the rigid body and the fluid simultaneously.

This residual symmetry allows us to reduce the original sys-

tem on T ∗SE(2) even further, down to a system on the dual Lie

algebra se(2)∗. This would be a straightforward application of

Lie-Poisson reduction (see [6]), if it weren’t for the magnetic

term in the symplectic structure.

In particular, the symplectic structure on T ∗SE(2) induces a

Poisson structure on se(2)∗. This is demonstrated in [5], where

the authors develop a reduction theory for this kind of systems.

We quote from that reference:

Theorem 6 (Theorem 7.2.1 in [5]). The Poisson reduced
space for the left cotangent lifted action of G on (T ∗G,Ω−π∗

GBμ)
is g∗ with Poisson bracket given by

{ f ,g}B(μ) = −
〈

μ,

[
δ f
δμ

,
δg
δμ

]〉
−Bμ(e)

(
δ f
δμ

,
δg
δμ

)
(21)

for f ,g ∈C∞(g∗).

The theorem in [5] is proved for right actions, whereas the

action of SE(2) here is from the left. However, the same proof

continues to hold, mutatis mutandis.

Notice that the first term in (21) is the Lie-Poisson bracket

on se(2)∗, given by

{F,G}se(2)∗ = (∇F)T Λ∇G, where Λ =

⎛
⎝ 0 −Py Px

Py 0 0

−Px 0 0

⎞
⎠
(22)

and F(Π,Px,Py) and G(Π,Px,Py) are arbitrary functions on

se(2)∗.

The second term in (21) is due to the magnetic two-form.

The entire Poisson bracket is then given by

{F,G}B = {F,G}se(2)∗ −Γ
(

∂F
∂Px

∂G
∂Py

− ∂F
∂Py

∂G
∂Px

)
. (23)

The equations of motion
The Hamiltonian H in (17) is explicitly SE(2)-invariant and

induces the following Hamiltonian function on se(2)∗:

H(Π,Px,Py) =
1

2

(
Π2

I
+

P2
x

m
+

P2
y

m

)
,

where (I,m,m) are the diagonal elements of the matrix M. It

follows from this and (23) that the equations of motion for the

rigid body are given by

⎧⎨
⎩

Π̇ = 0

Ṗx = −ΠPy/I−ΓPy/m
Ṗy = ΠPx/I+ΓPx/m,

(24)

where Π = IΩ, Px = mVx, and Py = mVy. These equations were

first derived by Chaplygin and Lamb, and were the focus (among

other things) of recent work by Borisov and Mamaev [1], and

Kanso and Oskouei [14].

EXAMPLES
The equations of motion (24) can be solved explicitly. Since

Π̇ = 0, β is a constant. Without loss of generality, we may hence

take β = 0. From this, it follows that the linear momentum in

inertial frame, with components (px, py), equals the momentum

(Px,Py) in the body frame.

If the body has an initial velocity U in the positive x-

direction at t = 0, then its center of mass traces out the following

trajectory: x = U
Γ sinΓt and y = U

Γ (cosΓt − 1), which is a circle

with center (0, U
Γ ) and radius U

Γ . As Γ goes to zero, the path
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of the rigid body becomes a straight line. This is similar to the

behavior of a charged particle in a magnetic field, with now the

circulation Γ playing the role of the magnetic field strength B.

A more interesting case is obtained when the rigid body is

dragged along with a constant velocity U along the x-axis. To

this end, we add to (24) an external force whose components in

the body frame are denoted by (Fx,Fy). The equations of motion

for the rigid body subject to circulation and to this force then

become

⎧⎨
⎩

Π̇ = 0

Ṗx = −ΠPy/mΩ −ΓPy/m+Fx
Ṗy = ΠPx/mΩ +ΓPx/m+Fy.

(25)

Adding external forces to a system like (24) is relatively

straightforward and proceeds in the same way as (for example)

for the rigid body; see [6] for more details.

For the same reasons as above, we may set β = 0. By

choosing the applied force such that Fx = ΓPy/m, we ensure that

Ṗx = 0, or x = Ut. The remaining equation of motion can then be

integrated to give y = ΓU
2m t2, i.e. the system traces out a parabola.

Again, when Γ goes to zero, this parabola turns into a straight

line. Moreover, in that case the force needed to keep Px constant

vanishes.

CONCLUSIONS AND OUTLOOK
In this paper we provided a geometric underpinning for the

dynamics of a rigid body in a flow with nonzero circulation. We

showed that the equations of motion can be obtained through suc-

cessive reductions, and in the process we obtained a geometric

interpretation for the lift force on the body in terms of connec-

tions and curvatures.

The geometric concepts that we used are not limited to this

specific case, and can conceivably be extended to cover more

general situations. From a geometric point of view, there is no

reason to restrict ourselves to a planar flow or to a body of cir-

cular shape: the same concepts and methods could reasonably

be extended to the dynamics of fully three-dimensional, non-

symmetric bodies.

Another possible direction in which this method could be

generalised deals with the specification of external vorticity. One

specific case which is of special interest to us is the case where

point vortices are present in the flow. In this way, we hope to shed

more light on recent work of Shashikanth et al. [2] and Borisov et
al. [15] on the dynamics of a circular disc interacting with point

vortices. A detailed analysis of this system will be the subject of

a forthcoming paper.
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