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Abstract

We show how to “concatenate” variational principles over different bases into one
over a single base, thereby providing a unified Lagrangian treatment of interacting
systems. As an example we study a Klein–Gordon field interacting with a mesically
charged particle. We employ our method to give a novel group-theoretic derivation of
the kinetic stress-energy-momentum tensor density corresponding to the particle.

1 Introduction and Setup

Let us recall the geometric setting of a classical variational principle [3]: We are given a
fibrationY → X, with dimX = n+1, and we wish to extremize an action of the form

S(ψ) =

∫

X
L ( j1ψ)

whereψ : X →Y is a section andL : J1Y → Λn+1X is a specified Lagrangian density.1

∗E-mail address: mcastri@mat.ucm.es
†E-mail address: gotay@math.hawaii.edu
‡E-mail address: marsden@cds.caltech.edu
1 For simplicity we consider only first order theories. We alsoignore technical issues and proceed formally.
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One commonly encounters several (sayK) such variational principles simultaneously,
for instance when one studies the Newtonian dynamics of a swarm of charged particles
(in a background electromagnetic field), or the interactionbetween Dirac and Yang–Mills
fields. In the cases cited, the relevant fibrations have the form Yi → X for the ith variational
principle; the key point being that each fibration has thesamebaseX. To combine these
variational principles into a single principle is a straightforward matter: one builds the
fiber productY1 ×X · · · ×X YK → X, and then on the first jet of this bundle one takes as
the Lagrangian density an expression of the formL1 + · · ·+LK +L int for some interaction
termsL int.

It is less clear how to deal with variational principles withdisparate bases, that is, fibra-
tionsYi → Xi in which theXi are all different. A simple example is a nucleon moving in a
dynamic Klein–Gordon field. (Here the configuration bundle for the nucleon isX×R→R,
whereX is 4-dimensional spacetime andR is the material world line of the nucleon. The
fibration for the Klein–Gordon field isR×X → X, sections of which are scalar fields on
spacetime.) Even if the bases are identical, it may be desirable to distinguish them. This
is the case, for instance, in relativistic multiparticle systems (cf. [1]), when one wants to
parametrize each particle’s trajectory by its own proper time, as opposed to a single “uni-
versal” time.

In this context of disparate bases, one standard way to proceed is as follows. Construct
an action functional using sectionsψi : Xi →Yi for the ith bundle by setting

S(ψi , . . . ,ψK) =
K

∑
i=1

∫

Xi

L i( j1ψi)+

∫

X1×···×XK

L int( j1ψ1, . . . , j1ψK). (1.1)

Then varying these fieldsψi , one obtains the Euler–Lagrange equations for the problem.
See equation (2.1) for a specific example.

However, while producing the Euler–Lagrange equations, this approach has the unsat-
isfactory feature of not yielding a field theory in the usual sense, in which the fields are
sections of a single bundle and which has a well-defined Lagrangian density. This or some
other formalism is needed if one wishes to tap into the machinery of multisymplectic ge-
ometry, multimomentum maps, stress-energy-momentum (“SEM”) tensors, and constraint
theory, etc.

To concatenatevariational principles with disparate bases in such a way asto recapture
a genuine field theory, we proceed as follows. To begin, construct the product bundleY1×
·· ·×YK → X1×·· ·×XK, which we denoteY → X for short. In agreement with experience
we restrict attention toproduct sectionsof this bundle of the formψ = (ψ1, . . . ,ψK), where
eachψi is a section ofYi → Xi. With ψ = (ψ1, . . . ,ψK) such a section,

j1ψ(x) =
(

j1ψ1(x1), . . . , j1ψK(xK)
)

wherex = (x1, . . . ,xK). Denote byJ̄1Y the subbundle ofJ1Y consisting of all such jets;
equivalently,J̄1Y = J1Y1×·· ·×J1YK .

Given Lagrangian densitiesL i on the jet bundlesJ1Yi , it is simple enough to lift them
to maps, still denoted byL i, on the concatenated jet bundlēJ1Y by composing with projec-
tions:

j1ψ(x) 7→ L i
(

j1ψi(xi)
)
.
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But how do we concatenate theseL i into asingleLagrangian density? Even ignoring inter-
action terms, we cannot just add theL i as they take values in different spaces, viz.Λni+1Xi

and so need not be forms of equal rank. The trick is to “suspend” the L i : J̄1Y → Λni+1Xi to
mapsJ̄1Y → ΛN+KX, whereN = n1 + · · ·+nK , by inserting suitable tensor densities in the
L i to “even out” their ranks in the target.

First, we pullL i back via the projectionX → Xi to an(ni +1)-form onX. Second, for
eachi choose scalar densitiesDi of weight 1 onX1×·· · X̂i · · ·×XK. Now in L i = Lidni+1xi

the coefficientLi transforms as a scalar density of weight 1 onXi, so the coefficient in

L̄ i := Li d
ni+1xi ∧Di d

n1+1x1∧ ·· ·∧ d̂ni+1xi ∧ ·· ·∧dnK+1xK = ±Li Di d
N+Kx

will also transform as a scalar density of weight 1 onX under the subgroup

Diff (X1)×·· ·×Diff (XK) ⊂ Diff (X)

(which is sufficient for our purposes). The densitiesDi are to be chosen by hand, depending
on the precise structure of the system; see the examples in §§2 and 3. Thus modified, we
may assemblēL1 + · · ·+ L̄K into a map

L̄ : J̄1Y → ΛN+KX.

Interaction terms, which are typically defined over severalof the basesXi (again, see the fol-
lowing examples) are treated similarly. Finally, it is straightforward to deal with composite
situations in which some of the bases are identical and others are not.

Ultimately, the specific choice of theDi will not matter as long as
∫

X
Li Di d

N+Kx =
∫

Xi

Li d
ni+1x

for eachi, that is, the concatenated action reduces to the original action. Specifically, this
means that ∫

X
L̄ ( j1ψ) = S(ψ)

where the right hand side is given by (1.1).In particular, the Euler–Lagrange equations
remain unaltered when the Lagrangian̄L is used in place of the action functional(1.1).

Once we have a total Lagrangian density in hand (albeit possibly a distributional one),
we may proceed in the usual fashion. Thus we may compute the equations of motion
and various geometric objects, such as SEM tensors. To extract physical information from
these objects, however, it will normally be necessary to “project” them fromX to someXi

or products thereof; this projection is accomplished by integration over the remainingXj .
Rather than continuing to try to describe the procedure in generality, it is more instruc-

tive to illustrate it via a simple example. (It really is easier done than said!)
In §2 we apply this method to a system consisting of a Klein–Gordon field interacting

with a mesically charged particle. (Think of a pion field interacting with a nucleon.) Beyond
illustrating concatenation, this example has interestingfeatures which are worth elucidating.
In particular, we study the SEM tensor density of this system. Its computation, following
[5], is interesting in that it naturally produces the Minkowski, or kinetic, SEM tensor for
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a moving particle as a matter of course. To our knowledge, this SEM tensor has never
been derived via a Lagrangian from first principles; it has always been inserted into the
formalism in anad hocmanner. An important point therefore is that our method is not
merely a ‘tidy’ means of packaging variational principles;it is capable of providing, in an
entirely straightforward fashion, quantities which otherwise cannot be obtained except in
makeshift ways.

Finally in §3 we briefly indicate some other contexts in whichour results should be
useful.

2 Motion of a Mesically Charged Particle in a Klein–Gordon
Field

Let X be an oriented spacetime with metricG. We consider a real Klein–Gordon field
φ : X →R of massM interacting with a particle of massmand mesic chargeε. The particle’s
trajectory in spacetime (or “placement field”) isz : R → X. The base for the system is thus
X×R, the second factor being thought of as a time axis,2 and the configuration bundleY is
then

(R×X)× (X×R) → X×R

with coordinates(φ,Xa) on the fiber and(xµ,λ) on the base. We setza = Xa◦z.
Our presentation is based upon the excellent exposition in Chapter 8 of [1], to which

we refer the reader for further information. The action (1.1) for the system in this case is
usually written

S(φ,z) =

∫

X

1
2

(
Gµν(x)φ,µ(x)φ,ν(x)−M2φ(x)2

)√
−G(x)d4x

−
∫

X×R

εφ(x)‖ż(λ)‖δ4(x−z(λ))d4xdλ−
∫

R

m‖ż(λ)‖dλ, (2.1)

where the dot denotes differentiation with respect toλ and‖ż‖=
√

−Gabżażb. Observe that
the bases for the free Klein–Gordon term and the free particle term are different, and that
the interaction term in the middle lives on the product of these.

Before proceeding, there are two technical issues that needto be resolved, stemming
from the presence of the two factors ofX in the configuration bundle. First, note that in
the leading term ofS, G is regarded as living on theX in the base, while in the last term
it evidently resides on theX in the fiber. It is necessary to know precisely whereG lives,
as this has an effect on the subsequent analysis: if on the base, thenG is treated as a field,
while if on the fiber it is simply thought of as a geometric object. We reconcile these two
interpretations by takingG to be anchored to the base, and then pulling it back to the fiberby
means of the following construction.3,4 Introduce yetanotherfactor ofX in the fiber along
with diffeomorphismsη : X → X, viewed as sections ofX ×X → X, with corresponding
configuration and multivelocity variablesηa = Xa◦η andηa

µ = ∂(Xa◦η)/∂xµ, respectively.

2 Not necessarily proper time.
3 This is a variant of the Kuchař method of parametrizing a classical field theory; see [6] and [2] for details.
4 At the end of this section we will briefly examine what happensif instead we anchorG to the fiber.
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(We can, and do, regard the two copies ofX in the fiber as identical.) We use these auxiliary
nondynamic fields, thediffeomorphism fields(or “diffields” for short, to (i) identify the
copies ofX in the fiber with that in the base, and (ii) endow the new copy ofX in the fiber
with the metricg = η∗G with components

gab = Gµνκµ
aκν

b,

where(κµ
a) = (ηa

µ)
−1. All this is summarized in the following figure.

The general set up for the introduction of diffeomorphism fields.

Second, the delta functionδ4(x−z(λ)) must be modified, as it compares elementsx in
the base with elementsz(λ) in the fiber. As just indicated we can use the diffields fields to
remedy this problem as well: we need only writeδ4

(
x−η−1(z(λ))

)
instead. It is sometimes

convenient to replace

δ4(x−η−1(z(λ))
)

= δ4(η(x)−z(λ))(detη∗) (2.2)

using the properties of delta functions (cf. the Appendix),whereη∗ is the Jacobian of
η. From this we see thatδ4

(
x−η−1(z(λ))

)
(i) is a scalar density onX (again, see the

Appendix), and (ii ) depends upon the spacetime derivatives ofη, even though this is not
obvious at first glance. The reason we do not insist on a fixed identification of the baseX
with the fiberX, and instead allow a variable identification by means of the diffields, is to
allow some gauge freedom in the fields; see also footnote 8 below.

Remark.Analogous fieldsη, called “covariance fields,”, are introduced in [6] and [2],but
there they have a different purpose, namely, to make a field theory on a given background
generally covariant and in doing so, they are introduced asdynamicfields.

In addition to the diffieldsη, we introduce a (positive-definite) metricK on R as a
nondynamic field. We suppose thatK is chosen so thatR has metric volume 1.
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With these fixes we may now concatenate the three action termsover the composite
baseX×R asS(φ,z) =

∫
L̄d4xdλ, with the Lagrangian

L̄(xµ,λ,φ,φ,µ,z
b, żb;ηa,ηa

µ,Gρσ,K) =
1
2

(
Gµνφ,µφ,ν −M2φ2

)√
−G

√
K

−
(
m+ εφ

)
‖ż‖δ4(η−z)(detη∗). (2.3)

Notice that the interaction term itself needs no essential modification, as the corresponding
term in (2.1) is already an integral overX ×R, but informs our choice of scalar density
in the free particle term, viz.δ4

(
x−η−1(z(λ))

)
, when we suspend the latter toX ×R.

We have also written this delta function in the form (2.2) to make it clear that̄L is defined
pointwise.

Remark.The choice of scalar densityD =
√

K in the Klein–Gordon term is hardly unique;
all we require is that

∫
R

Ddλ = 1. For instance, we could instead takeδ(λ) for D with no
essential difference.

As evident from (2.3), the modified configuration bundle is taken to be

Y′ = Y×X X2×X Lor(X)×R Riem(R),

where we abbreviate the bundleX×X → X by X2, Lor(X) is the bundle whose sections are
Lorentz metrics onX and, similarly, Riem(R) is the bundle whose sections are Riemannian
metrics onR. However, in our approachφ and z are variational, whileη, G and K are
nondynamic fields. As per the above, we now regard

‖ż‖ =
√

−Gµνκµ
aκν

bżażb.

Remark.Occasionally, as in [9], one encounters what one might call “noncovariant concate-
nations.” In the current example, this amounts to writing the terms in the action as integrals
overX alone and is effectively accomplished by imposing the coordinate conditionx0 = λ.
As this procedure is not covariant, it can lead to problems [10].

We compute the Euler–Lagrange equations. Varying with respect toφ and employing
(2.2), we obtain

−M2φ(x)
√

−G(x)
√

K(λ)− ε‖ż(λ)‖δ4(x−η−1(z(λ))
)

−∂µ

(
Gµνφ,ν

√
−G

)
(x)

√
K(λ) = 0.

Integrating with respect toλ, using the fact that volK(R) = 1, and rearranging, this reduces
to the Klein–Gordon equation

∇µ∇µφ+M2φ = −ρ (2.4)

where∇ denotes theG-covariant derivative and

ρ(x) = ε(−G)−
1
2

∫

R

‖ż(λ)‖δ4(x−η−1(z(λ))
)

dλ

is the source density.
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Similarly, varying with respect tozand employing (2.2) yield

∂
∂za

[(
m+ εφ(x)

)
‖ż(λ)‖δ4(x−η−1(z(λ))

)]

+
∂

∂λ

[(
m+ εφ(x)

) gab(z(λ))żb(λ)

‖ż(λ)‖
(
x−η−1(z(λ))

)]
= 0.

Carrying out the differentiation and then integrating overX, some manipulations give

d
dλ

[
(
m+ εφ

(
η−1(z(λ))

))gab(z(λ))żb(λ)

‖ż(λ)‖

]

= −εκµ
aφ,µ

(
η−1(z(λ))

)
‖ż(λ)‖

+
(
m+ εφ

(
η−1(z(λ))

))(
gbc,a(z(λ))żb(λ)żc(λ)

2‖ż(λ)‖

)
. (2.5)

To give insight into these equations, note that in the special case when(X,G) is Minkowski
spacetime,η = IdX, andλ is taken to be proper time along the particle’s world line, these
equations simplify in a global Lorentz frame to

d
dλ

[(
m+ εφ(z(λ))

)
ża(λ)

]
= −εφ,a(z(λ)).

This is the mesic analogue of the Lorentz force law in electrodynamics.
NeitherK, theGµν, nor theηa have field equations, since they are not variational. Thus

one is free to assign them whatever values one wishes in (2.4)and (2.5). Often, however,
one has specific values ofG andη in mind, e.g., the given spacetime metric forG and IdX

for η.
Turning now to the SEM tensor, let Diffc(X)×Diff c(R) (that is, the group of diffeo-

morphisms that are the identity outside a compact set) act onthe modified configuration
bundleY′ according to

(σ× f ) · (x,λ,φ,z;η,G,K) =
(
σ(x), f (λ),φ,z;η,σ∗G, f∗K

)
.

(We assume that all diffeomorphisms are positively oriented.) The Lagrangian densitȳL =
L̄d4xdλ is then visibly equivariant with respect to the induced action onJ̄1Y′, that is,5

L̄
(
(σ× f ) · j1(φ,z;η,G,K

)
= (σ× f )∗L̄

(
j1(φ,z;η,G,K)

)
.

We may thus use equation (3.12) in [5] to compute the 5-dimensionalSEM tensor den-
sity

T =

(
T µ

ν T
4

ν
T µ

4 T
4

4

)

5 Even though the pointwise action of Diff(X) on the fiber of the“diffeomorphism bundle”X ×X → X is
taken to be trivial, its action onsectionsthereof is not:σ ·η = η◦σ−1. Thus the identification of the factor of
X in the base with that in the fiber can fluctuate, which is one of the reasons we allowη to be variable in the
first place.
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of the interacting system (wherex4 = λ).6 Integrating overλ and raising an index, we
project out thespacetimeSEM tensor density:

T
µν =

∫

R

T
µνdλ = t

µν +(m+ εφ)Θµν, (2.6)

where

t
µν = −1

2

(
(2GµαGνβ −GµνGαβ)φ,αφ,β +GµνM2φ2

)√
−G

is the canonical SEM tensor density of the (free) Klein–Gordon field and

Θµν(x) = κµ
aκν

b

∫

R

ża(λ)żb(λ)

‖ż(λ)‖ δ4(x−η−1(z(λ))
)

dλ

is theMinkowskitensor density. (mΘµν is then thekineticSEM tensor density). As well, we
computeT 4

ν = 0 = T µ
4. Finally, we find that when integrated overX, T 4

4 is effectively
the Klein–Gordon action:

T
4

4 =
1
2

(∫

X

(
Gµνφ,µφ,ν −M2φ2

)√
−Gd4x

)√
K.

Remark. The kinetic SEM tensor density is a familiar object in microscopic continuum
mechanics, cf. Chapter 8 of [1] and §33 of [9]. Minkowski [11]originally introduced it
in flat-spacetime electrodynamics in order to recover the continuity equationTµν

,ν = 0 in
view of the fact thatTµν

EM,ν 6= 0 when currents are present. In the continuum limit of a
noninteracting clutch of particles,Θµν goes over to the SEM tensor density for a perfect
fluid as in §§9.1-2 of [1]. It is interesting that in this limit, the infinite time integrals in the
kinetic SEM tensor density disappear and one is left with a local tensor density.

To our knowledge, ours is the first genuinederivationof the Minkowski tensor density
from first principles in a variational context, once again illustrating the power of multi-
symplectic geometry in classical field theory and in particular, the usefulness of having a
concatenated theory for which one can make use of concepts such as the SEM tensor.

As we have defined it, the Minkowski tensor density depends upon the diffields as well
as the particle placement field. However, note that whenη = IdX, Θ reduces to the more
familiar expression

Θab(x) =

∫

R

ża(λ)żb(λ)

‖ż(λ)‖ δ4(x−z(λ))dλ.

Remark.Suppose we focus solely on the particle dynamics so that the (original) configura-
tion bundle isX×R→R. The corresponding Lagrangian density−m‖ż(λ)‖dλ is Diffc(R)-
covariant, and so we may compute the corresponding SEMscalar density as in Example
a, Interlude II of [4]. We obtainT = −E, the energy of the particle, which vanishes as the
Lagrangian is time reparametrization-invariant. (This isreflected by the vanishing ofT 4

4

6 Using the product metricG⊕K onX×R, one could also computeT via the Hilbert formula (4.2) in [5].
See also [10].
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in the 5-dimensional context when there is no Klein–Gordon field.) Thus only when the
spacetimeX is part of the base of the variational principle do we encounter the kinetic SEM
tensor density; it does not appear in standard particle dynamics per se.

To reiterate, even in the absence of other fields, our technique yields yet another (5-
dimensional!) treatment of the relativistic free particlethat has the advantage of automati-
cally incorporating the Minkowski tensor.

Remark.Note that the termεφΘµν in (2.6) arises from the interaction ofφ with the mesically
charged particle. This term has no analogue in the electrodynamics of particles; there we
get simply

T
µν = T

µν
EM +mΘµν.

Charged strings behave similarly, as we show in §3A (cf. equation (3.1)). This can be
traced to the fact that the electromagnetic field is a covector, while the Klein–Gordon field
is a scalar.

The SEM tensor densityT is symmetric. It is also divergence-free, as can be seen
from general principles (cf. Proposition 5 in [5]). One may verify this directly, via a long
calculation.

We end with a discussion of an alternate treatment of this system.
Suppose we consider the physical metric as a geometric object g on the fiber as opposed

to a field on spacetime. Then we would defineG= η∗g with componentsGµν = ηa
µηb

νgab.
Proceeding as in the above, the Lagrangian density would be

L̄(xµ,λ,φ,φ,µ,z
b, żb;ηa,ηa

µ,K)

=
1
2

(
κµ

aκν
bgabφ,µφ,ν −M2φ2

)√−g(detη∗)
√

K

−
(
m+ εφ

)
‖ż‖δ4(η−z)(detη∗)

where
√
−G =

√−g(detη∗) and‖ż‖ =
√

−gab(z)żażb.
Computing the SEM tensor density in this formulation, we obtainT µ

ν ≡ 0 and the other
components as before. That the spacetime components vanishis actually a consequence of
the generalized Hilbert formula (3.13) in [5], since the nondynamic fieldsη andK do not
transform under Diff(X). (In the original formulation, the nondynamic metricG on X does
transform under the spacetime diffeomorphism group with the result that (2.6) is nonzero.)
The difference between this SEM tensor density and the previous one stems from: (i) the
spacetime metric no longer being regarded as a field, so that it cannot contribute to the
energy, momentum, and stress content of the system, and (ii ) the subtly different manners
in which the diffields appear in the two formulations.

That one can encounter several SEM tensor densities for the ‘same’ system may seem
surprising, but is unavoidable and can also be regarded as different “packaging” of the same
information. What the SEM tensor density turns out to be depends upon what the fields are,
whether they are dynamic, and precisely how they appear in the Lagrangian. And even the
sizeof the SEM tensor density depends upon how the system is formulated! For instance,
for something as simple as a relativistic free particle, we can have a 1× 1 SEM tensor
density (which vanishes identically)—as noted in a previous remark, or a 5×5 SEM tensor



126 Marko Castrillón López, Mark J. Gotay and Jerrold E. Marsden

density (which does or doesn’t, depending on where the spacetime metric is anchored). And
in the latter case, the 5×5 object reduces to the 4×4 Minkowski tensor density! Thus how
the system is formulated plays a substantial role insofar ashow various quantities, and in
particular the SEM tensor density, are to be understood.

3 Further Examples and Outlook

To conclude we briefly mention some other systems for which our techniques should prove
helpful. We begin by upping the dimension of the matter from 1to 2, that is, we replace the
particle by a string. For variety, we also replace the mesic interaction by an electromagnetic
one.

Charged Strings. We closely follow the exposition in §2. Let(X,G) and (W = R×
B,H = −HR ⊕HB) be 4- and 2-dimensional Lorentzian spacetimes, respectively. We con-
sider a string worldsheet inX, this being a mapz : W → X. We use coordinates

(
xµ,λA =

(τ,σ)
)

as coordinates onX×W. The configuration bundleY is correspondingly

Λ1X×W (X×W)×X Lor(X)×W Lor(W) → X×W.

Assume that the string carries a charge densityρ : B→ R and interacts with a dynamic
electromagnetic field described by a potential 1-formA onX. We also take the metricH on
W to be dynamic; thus we adopt the Polyakov approach as in [7]. The action for this system
is

S(A,z,H) = −1
4

∫

X
Fµν(x)Fµν(x)

√
−G(x)d4x

+

∫

X×W
Aµ(x)ρ(σ)

∂zµ

∂τ
(τ,σ)δ4(x−z(τ,σ))

√
HB(σ)d4xdτdσ

− T
2

∫

W
HAB(λ)Gµν(z(λ))zµ(λ),Azν(λ),B

√
−H(λ)d2λ

whereT is the tension.
As in the case of the meson, we see thatz takes values inX, which is the base for the

electromagnetic field. So we need to introduce diffields as before. As well, we take the
spacetime metric to reside on the factor ofX in the base. Finally, letK be a nondynamic
Riemannianmetric onW with total volume 1. The modified configuration bundle for the
concatenated variational principle is then

Y×X X2×W Riem(W) → X×W

and the Lagrangian reads

L̄(xµ,τ,σ,Aµ,Aµ,ν,z
a,za

,A,HAB;ηa,ηa
ν,G

µν,KAB)

= −1
4

GµαGνβFµνFαβ
√
−G

√
K

+Aµκµ
aρ

∂za

∂τ
δ4(η−z)(detη∗)

√
HB

− T
2

HABGµν κµ
aκν

bza
,Azb

,B δ4(η−z)(detη∗)
√
−H.



Concatenating Variational Principles 127

Now build the product metricG⊕K on X ×W. Using the Hilbert formula and then
integrating as before, we compute the 6-dimensional SEM tensor density as follows: the
spacetime components are

T
µν = T

µν
EM +TΘµν (3.1)

where

T
µν
EM = −

(
1
4

GµνFαβFαβ +GνβFαµFβα

)√
−G

is the free electromagnetic SEM tensor density, and

Θµν = κµ
aκν

b

∫

W
HABza

,Azb
,B δ4(x−η−1(z(σ))

)√
−H d2σ

is the analogue of the Minkowski tensor density for strings.The ‘extra’ T µA and T Aµ

components are zero and, after integrating overX, theT AB subblock reduces to

T
AB = −1

4

(∫

X
GµαGνβFµνFαβ

√
−Gd4x

)
KAB

√
K.

Continua. Another intriguing example that we intend to pursue in future works is a
charged elastic body, fluid, or plasma, in which one concatenates a continuum with electro-
magnetism on a given background metric spacetime. Such theories will likely have signifi-
cant differences with the particle and string examples presented above. Amongst these dif-
ferences, we expect that, unlike mesically or electricallycharged particles, continua should
have well-defined initial value problems (see also the discussion of this point in [1]). Evi-
dence for this can be found in works such as [8] and [12].

One other interesting aspect of a charged elastic body is thefollowing. If B is the body
manifold, then its motion in spacetime is determined by a mapz : R×B→ X. The main
difference from our previous two examples is that rather than the delta functionsδ4(η(x)−
z(λ)) we must now use characteristic functionsχ

(
η−1(z(R×B))

)
. We expect that examples

such as this will be key players in the future development of the point of view given in this
paper.

Appendix

Let M be a manifold with coordinatesx= (x1, . . . ,xm). Here we prove that the delta function
δm(x−x0) transforms as a scalar density of weight 1.

Let η : M → M be a diffeomorphism andf ∈C∞(X). On the one hand,

( f ◦η)(x0) =

∫

X
( f ◦η)(x)δm(x−x0)dmx.

On the other hand, by the change of variables theorem withy = η(x),

f (η(x0)) =

∫

X
f (y)δm(y−η(x0))dmy

=
∫

X
f (η(x))δm(η(x)−η(x0)) |J(x)|dmx.

whereJ is the Jacobian determinant ofη. Since f is arbitrary the desired result follows
upon comparing these two formulæ.
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