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Abstract

We show how to “concatenate” variational principles ovdiedent bases into one
over a single base, thereby providing a unified Lagrangieatttnent of interacting
systems. As an example we study a Klein—Gordon field intergetith a mesically
charged particle. We employ our method to give a novel gringipretic derivation of
the kinetic stress-energy-momentum tensor density qooreting to the particle.

1 Introduction and Setup

Let us recall the geometric setting of a classical variaigrinciple [3]: We are given a
fibrationY — X, with dimX = n+ 1, and we wish to extremize an action of the form

sW) = [ £(w)

where : X — Y is a section and : J'Y — A"1X is a specified Lagrangian denstty.
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1 For simplicity we consider only first order theories. We dfgwore technical issues and proceed formally.
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One commonly encounters several ($dysuch variational principles simultaneously,
for instance when one studies the Newtonian dynamics of ansve charged particles
(in a background electromagnetic field), or the interacbetween Dirac and Yang—Mills
fields. In the cases cited, the relevant fibrations have tme Yo— X for theit" variational
principle; the key point being that each fibration has thmebaseX. To combine these
variational principles into a single principle is a straighward matter: one builds the
fiber productY; xx --- xx Yk — X, and then on the first jet of this bundle one takes as
the Lagrangian density an expression of the farm+-- - - + £k + Lin: for some interaction
termsLint.

Itis less clear how to deal with variational principles witisparate bases, that is, fibra-
tionsY; — X; in which theX; are all different. A simple example is a nhucleon moving in a
dynamic Klein—Gordon field. (Here the configuration bundlethe nucleon iX x R — R,
whereX is 4-dimensional spacetime afitlis the material world line of the nucleon. The
fibration for the Klein—Gordon field i® x X — X, sections of which are scalar fields on
spacetime.) Even if the bases are identical, it may be ddsita distinguish them. This
is the case, for instance, in relativistic multiparticlestgms (cf. [1]), when one wants to
parametrize each particle’s trajectory by its own properetias opposed to a single “uni-
versal” time.

In this context of disparate bases, one standard way to @tdseas follows. Construct
an action functional using sectiogs : X; — Y; for theit" bundle by setting

K
S(Wi,...,Pk) = ZiA Li(jlwi)+/><lx...xxK Lint(j*W1, .., ). (1.1)

Then varying these fieldg;, one obtains the Euler-Lagrange equations for the problem.
See equation (2.1) for a specific example.

However, while producing the Euler—Lagrange equatioris,approach has the unsat-
isfactory feature of not yielding a field theory in the usuahse, in which the fields are
sections of a single bundle and which has a well-defined lragaa density. This or some
other formalism is needed if one wishes to tap into the mackiof multisymplectic ge-
ometry, multimomentum maps, stress-energy-momentumNI'$Eensors, and constraint
theory, etc.

To concatenatevariational principles with disparate bases in such a wag ascapture
a genuine field theory, we proceed as follows. To begin, coaisthe product bundlg x
< x Yk — Xg x -+ X Xk, which we denot& — X for short. In agreement with experience
we restrict attention tproduct sectionsf this bundle of the formp = (Wg, ..., k), where
eachy; is a section of; — X;. With Y = (Y1,..., k) such a section,

) = (M), Mk (%))

wherex = (xg,...,X). Denote byJlY the subbundle 08y consisting of all such jets;
equivalently,JtY = J1Y; x - x 1.

Given Lagrangian densities; on the jet bundleg?y;, it is simple enough to lift them
to maps, still denoted by;, on the concatenated jet bundiey by composing with projec-
tions:

W) — i (it (%))
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But how do we concatenate thesginto asingleLagrangian density? Even ignoring inter-
action terms, we cannot just add theas they take values in different spaces, WZHLX;
and so need not be forms of equal rank. The trick is to “suspiredz; : JY — AMFLX to
mapsJY — ANTKX, whereN = n; + - -- + ng, by inserting suitable tensor densities in the
L to “even out” their ranks in the target.

First, we pullz; back via the projectioiX — X; to an(n; 4+ 1)-form on X. Second, for
eachi choose scalar densitié of weight 1 onX; x >?. o+ x Xk. Now in z; = Ljd"t1x
the coefficient; transforms as a scalar density of weight D§nso the coefficient in

L= Lid" g A DM A AdT I A - A DT = LDy dN KX
will also transform as a scalar density of weight 10nnder the subgroup
Diff (X1) x --- x Diff (Xk) C Diff (X)

(which is sufficient for our purposes). The densitigsare to be chosen by hand, depending
on the precise structure of the system; see the exampleiarg83. Thus modified, we
may assemblé& + - -- + Lk into a map

LI — ANHKY

Interaction terms, which are typically defined over sevef#he base; (again, see the fol-
lowing examples) are treated similarly. Finally, it is ggf@aforward to deal with composite
situations in which some of the bases are identical and ®#mernot.

Ultimately, the specific choice of th®; will not matter as long as

/LigidN+KX:/ Lidni+1X
X X

for eachi, that is, the concatenated action reduces to the origin@racSpecifically, this
means that

20 =sw)
X

where the right hand side is given by (1.1h particular, the Euler—Lagrange equations
remain unaltered when the Lagrangianis used in place of the action functiondl.1).

Once we have a total Lagrangian density in hand (albeit plysaidistributional one),
we may proceed in the usual fashion. Thus we may compute thatieqs of motion
and various geometric objects, such as SEM tensors. Tacextngsical information from
these objects, however, it will normally be necessary tojgmt” them fromX to someX;
or products thereof; this projection is accomplished bggration over the remaining;.

Rather than continuing to try to describe the procedure ireggity, it is more instruc-
tive to illustrate it via a simple example. (It really is emsilone than said!)

In 82 we apply this method to a system consisting of a Kleird@o field interacting
with a mesically charged particle. (Think of a pion field nateting with a nucleon.) Beyond
illustrating concatenation, this example has interedagures which are worth elucidating.
In particular, we study the SEM tensor density of this systésicomputation, following
[5], is interesting in that it naturally produces the Minkski; or kinetic, SEM tensor for
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a moving particle as a matter of course. To our knowledge, $tM tensor has never
been derived via a Lagrangian from first principles; it hagagk been inserted into the
formalism in anad hocmanner. An important point therefore is that our method is no
merely a ‘tidy’ means of packaging variational principléss capable of providing, in an
entirely straightforward fashion, quantities which othisse cannot be obtained except in
makeshift ways.

Finally in 83 we briefly indicate some other contexts in whalr results should be
useful.

2 Motion of a Mesically Charged Particle in a Klein—Gordon
Field

Let X be an oriented spacetime with met& We consider a real Klein—Gordon field
¢: X — R of masaM interacting with a particle of massand mesic charge The particle’s
trajectory in spacetime (or “placement field")zsR — X. The base for the system is thus
X x R, the second factor being thought of as a time &xisd the configuration bund¥is
then

(RxX)x (XxR)—=XxR

with coordinateg @, X?) on the fiber andx",A) on the base. We set = X20z

Our presentation is based upon the excellent expositiorhap@r 8 of [1], to which
we refer the reader for further information. The action YXdt the system in this case is
usually written

5102) = [ 5(6"(X0u(X19u (3 ~ M7g00?) -Gl d'x
- [ ealz0) 8 (x-2A)dxah— [ mlzndh,  @1)
XxR R

where the dot denotes differentiation with respedt tmd||z|| = \/—Gap222°. Observe that
the bases for the free Klein—-Gordon term and the free partérin are different, and that
the interaction term in the middle lives on the product okthe

Before proceeding, there are two technical issues that wwebd resolved, stemming
from the presence of the two factors Xfin the configuration bundle. First, note that in
the leading term o8, G is regarded as living on the in the base, while in the last term
it evidently resides on th¥ in the fiber. It is necessary to know precisely whé&réves,
as this has an effect on the subsequent analysis: if on tlee theenG is treated as a field,
while if on the fiber it is simply thought of as a geometric altjeWe reconcile these two
interpretations by takin to be anchored to the base, and then pulling it back to thelfjper
means of the following constructior* Introduce yetainotherfactor of X in the fiber along
with diffeomorphisma : X — X, viewed as sections of x X — X, with corresponding
configuration and multivelocity variableg = X2on andn?®, = d(X%on) /ox¥, respectively.

2 Not necessarily proper time.
3 This is a variant of the Kuchaf method of parametrizing asikzl field theory; see [6] and [2] for details.
4 At the end of this section we will briefly examine what happéiisstead we ancho® to the fiber.
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(We can, and do, regard the two copiesXah the fiber as identical.) We use these auxiliary
nondynamic fields, theliffeomorphism fieldgor “diffields’ for short, to (i) identify the
copies ofX in the fiber with that in the base, and (ii) endow the new cop¥( @ the fiber
with the metricg = n,.G with components

Oab = GvauaKvm

where(kHy) = (n3,) L. All this is summarized in the following figure.

R X

Fibers, R x X x X .
metric, g

Klein-Gordon field, ¢ diffeomorphism field, n  particle trajectory, z

Base, X x R

metric, G

The general set up for the introduction of diffeomorphisnidfie

Second, the delta functiadf(x — z(\)) must be modified, as it compares elemeqits
the base with elemenigA) in the fiber. As just indicated we can use the diffields fields to
remedy this problem as well: we need only wiféx—n~*(z(A))) instead. Itis sometimes
convenient to replace

8 (x—n"1(zN))) = 8(n(x) — 2(\)) (detn.) (22)

using the properties of delta functions (cf. the Appendixheren, is the Jacobian of
n. From this we see thal*(x—n~1(z(A))) (i) is a scalar density oX (again, see the
Appendix), and i{) depends upon the spacetime derivatives) oéven though this is not
obvious at first glance. The reason we do not insist on a fixeuqtiication of the basX
with the fiberX, and instead allow a variable identification by means of tiffestils, is to
allow some gauge freedom in the fields; see also footnoted\bel

Remark.Analogous fields), called “covariance fields,”, are introduced in [6] and [t
there they have a different purpose, namely, to make a fieloryhon a given background
generally covariant and in doing so, they are introducediyaamicfields. O

In addition to the diffieldsy, we introduce a (positive-definite) metri€c on R as a
nondynamic field. We suppose théis chosen so tha& has metric volume 1.
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With these fixes we may now concatenate the three action teversthe composite
baseX x R asS(g,z) = [Ld*dA, with the Lagrangian

LOE A, 0.0, 2, 20,0, Gpo, K) = %(GW(P.M(P,V - Mz@z)\/——G\/K
— (m+£9)(|2|3*(n —2)(detn.). (2.3)

Notice that the interaction term itself needs no essentaifitation, as the corresponding
term in (2.1) is already an integral ov&rx R, but informs our choice of scalar density
in the free particle term, vizd*(x—n~*(z(A))), when we suspend the latter ¥ox R.
We have also written this delta function in the form (2.2) takm it clear that. is defined
pointwise.

Remark.The choice of scalar densi® = /K in the Klein—-Gordon term is hardly unique;
all we require is thaffp ® dA = 1. For instance, we could instead ta&@\) for © with no
essential difference. O

As evident from (2.3), the modified configuration bundle letato be
Y' =Y xx X% xx Lor(X) xg Riem(R),

where we abbreviate the bundfex X — X by X2, Lor(X) is the bundle whose sections are
Lorentz metrics oiX and, similarly, RieniR) is the bundle whose sections are Riemannian
metrics onR. However, in our approactp and z are variational, whilen, G andK are
nondynamic fields. As per the above, we now regard

2] =/~ Gukbak s,

Remark.Occasionally, as in [9], one encounters what one might calhtovariant concate-
nations.” In the current example, this amounts to writing tdrms in the action as integrals
overX alone and is effectively accomplished by imposing the cioaté condition® = A.
As this procedure is not covariant, it can lead to probleng§.[1 O

We compute the Euler-Lagrange equations. Varying witheesm ¢ and employing
(2.2), we obtain

—M?@(x)/—G(x) /K (A) —g[|2(V)[|8* (x—n 1 (z(N)))
—au(equ\/——e>(x) VK =0.

Integrating with respect td, using the fact that v@l(R) = 1, and rearranging, this reduces
to the Klein—Gordon equation
OO0+ M2e= —p (2.4)

whereld denotes th&-covariant derivative and
p( =£(~0)F [ 20)]3" (x—n"*(z(A))) o

is the source density.
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Similarly, varying with respect taand employing (2.2) yield

2 [(mee00) 120018 (x— 1~ 2tn)) |
Gan(Z(N)) 2 (N)
[z
Carrying out the differentiation and then integrating oXesome manipulations give
oty ) S

= —ekMagu(n~H(2)) 120 |

ca dON:
+ (m+ee(nLz(n)) <9b , (2(2?‘)_2)0\)(‘2‘\)2"@» |

+ a%\ [(m+ (X)) (x— ﬂl(Z(A)))} =0.

dA

(2.5)

To give insight into these equations, note that in the speaie wher{X,G) is Minkowski
spacetimerq = ldy, andA is taken to be proper time along the particle’s world linesth
equations simplify in a global Lorentz frame to

d .
5 | (M+-£0(z0) 2| = —£a(zV)).
This is the mesic analogue of the Lorentz force law in elelyinamics.

NeitherK, theG,y, nor then? have field equations, since they are not variational. Thus
one is free to assign them whatever values one wishes ing8di}2.5). Often, however,
one has specific values &fandn in mind, e.g., the given spacetime metric dand Idg
forn.

Turning now to the SEM tensor, let DiffX) x Diff ;(R) (that is, the group of diffeo-
morphisms that are the identity outside a compact set) ath@modified configuration
bundleY’ according to

(ox f)-(x,\,@zn,G,K) = (o(x), f(A),9zn,0.G, f.K).

(We assume that all diffeomorphisms are positively orignt&he Lagrangian densi@ =
Ld*xdA is then visibly equivariant with respect to the inducedactonJY’, that is?

£((0x1)-j{@zn,GK) = (o x f).L(j'(®zn,GK)).

We may thus use equation (3.12) in [5] to compute thlirBensionalSEM tensor den-

sity
g (T TH
T4y T44

5 Even though the pointwise action of Di¥) on the fiber of the“diffeomorphism bundl&X x X — X is
taken to be trivial, its action osectionghereof is not:o-n = noo~1. Thus the identification of the factor of
X in the base with that in the fiber can fluctuate, which is onénefreasons we allow to be variable in the
first place.
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of the interacting system (wheré¢ = A).6 Integrating over\ and raising an index, we
project out thespacetimeSEM tensor density:

T / TWAA = Y 1 (m+ eg)O", 2.6)
R
where 1
= — (266"~ GG™)pugp + GVMAF ) V=G
is the canonical SEM tensor density of the (free) Klein—®aréield and
2N2(\N)
1zl

is theMinkowskitensor density.i@" is then thekinetic SEM tensor density). As well, we
computeT 4, = 0 = 7"4. Finally, we find that when integrated ov¥r 74, is effectively
the Klein—Gordon action:

Th = % </x (G”"q;u(p,v - Mchz)\/zd“x> VK.

oW (x) = K“aK"b/R 3*(x—n~1(z(N))) dA

Remark. The kinetic SEM tensor density is a familiar object in mi@wgic continuum
mechanics, cf. Chapter 8 of [1] and 833 of [9]. Minkowski [Xd]ginally introduced it

in flat-spacetime electrodynamics in order to recover theicoity equationz® , =0 in
view of the fact thatTky,, # 0 when currents are present. In the continuum limit of a
noninteracting clutch of particle®" goes over to the SEM tensor density for a perfect
fluid as in 889.1-2 of [1]. It is interesting that in this limthe infinite time integrals in the
kinetic SEM tensor density disappear and one is left withcalltensor density.

To our knowledge, ours is the first genuiderivationof the Minkowski tensor density
from first principles in a variational context, once againstrating the power of multi-
symplectic geometry in classical field theory and in patéicuthe usefulness of having a
concatenated theory for which one can make use of concegitsastthe SEM tensor.

As we have defined it, the Minkowski tensor density dependsdbpe diffields as well
as the particle placement field. However, note that wipealdy, © reduces to the more
familiar expression

@b (x) — /R % 54(x—2(\)) dA. 0

Remark.Suppose we focus solely on the particle dynamics so thattigir{al) configura-
tion bundle isX x R — R. The corresponding Lagrangian densitgn||z(A)|| dA is Diffo(R)-
covariant, and so we may compute the corresponding S&iar density as in Example

a, Interlude 11 of [4]. We obtairn€ = —E, the energy of the particle, which vanishes as the
Lagrangian is time reparametrization-invariant. (Thiseiiected by the vanishing af 4,

6 Using the product metriG & K on X x R, one could also computg via the Hilbert formula (4.2) in [5].
See also [10].
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in the 5-dimensional context when there is no Klein—-Gordetdf) Thus only when the
spacetimeX is part of the base of the variational principle do we enceuttte kinetic SEM
tensor density; it does not appear in standard particlerdigsaper se.

To reiterate, even in the absence of other fields, our teaknjgelds yet another (5-
dimensional!) treatment of the relativistic free partitdtat has the advantage of automati-
cally incorporating the Minkowski tensor. O

Remark.Note that the terns@@" in (2.6) arises from the interaction @fvith the mesically
charged particle. This term has no analogue in the eleatiandics of particles; there we
get simply

T =TE, + meW.

Charged strings behave similarly, as we show in 83A (cf. #ong3.1)). This can be
traced to the fact that the electromagnetic field is a covewataile the Klein—Gordon field
is a scalar. O

The SEM tensor densitf is symmetric. It is also divergence-free, as can be seen
from general principles (cf. Proposition 5 in [5]). One magrify this directly, via a long
calculation.

We end with a discussion of an alternate treatment of thiesys

Suppose we consider the physical metric as a geometrictapgecthe fiber as opposed
to a field on spacetime. Then we would deftee- n*g with component$,, = napnb\,gab.
Proceeding as in the above, the Lagrangian density would be

E(XH7)\7(p7(p.uvzb7.Zb;na>naH7K)
1
=5 (KuaKngab(Qu(P.v - MZ(PZ) v—g(detn,) VK
— (m+e9)[12] 8%(n — 2(detn.)

where\/—G = \/—g(detn.) and||Z| = \/—Jan(2)22.

Computing the SEM tensor density in this formulation, weagitr *, = 0 and the other
components as before. That the spacetime components vsauistually a consequence of
the generalized Hilbert formula (3.13) in [5], since the dgmamic fieldsn andK do not
transform under DiffX). (In the original formulation, the nondynamic met@con X does
transform under the spacetime diffeomorphism group wighrésult that (2.6) is nonzero.)
The difference between this SEM tensor density and the guevbne stems fromi)(the
spacetime metric no longer being regarded as a field, sottltannot contribute to the
energy, momentum, and stress content of the system,jiianidg subtly different manners
in which the diffields appear in the two formulations.

That one can encounter several SEM tensor densities fos#imee’ system may seem
surprising, but is unavoidable and can also be regardedfasedit “packaging” of the same
information. What the SEM tensor density turns out to be ddpeipon what the fields are,
whether they are dynamic, and precisely how they appeaeibhdgrangian. And even the
sizeof the SEM tensor density depends upon how the system is fateal! For instance,
for something as simple as a relativistic free particle, w&a bave a &k 1 SEM tensor
density (which vanishes identically)—as noted in a presimmmark, or a %5 SEM tensor
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density (which does or doesn’t, depending on where the sipseenetric is anchored). And
in the latter case, the:b5 object reduces to thexd4 Minkowski tensor density! Thus how
the system is formulated plays a substantial role insofdrossvarious quantities, and in
particular the SEM tensor density, are to be understood.

3 Further Examples and Outlook

To conclude we briefly mention some other systems for which@zhniques should prove
helpful. We begin by upping the dimension of the matter froto 2, that is, we replace the
particle by a string. For variety, we also replace the mega&raction by an electromagnetic
one.

Charged Strings. We closely follow the exposition in §2. LéiX,G) and (W = R x
B,H = —Hgr @ Hg) be 4- and 2-dimensional Lorentzian spacetimes, respsctivée con-
sider a string worldsheet i, this being a mag: W — X. We use coordinateft, \* =
(r,o)) as coordinates oK x W. The configuration bundlé is correspondingly

AIX (X x W) xx Lor(X) xw Lor(W) — X x W,

Assume that the string carries a charge dernsit — R and interacts with a dynamic
electromagnetic field described by a potential 1-féimn X. We also take the metrid on
W to be dynamic; thus we adopt the Polyakov approach as in f@.attion for this system
is

SAZH) = —%/ F ()R () /—G() d*
X
A(x)p(o )%—zu(r 0)3*(x—z(1,0)) /Hg(o) d*dtdo
XxW
G (Z

2/ HAB(A) Gy (2(A)) 2 )5/ —H (N d2

whereT is the tension.

As in the case of the meson, we see thtdkes values iX, which is the base for the
electromagnetic field. So we need to introduce diffields derbe As well, we take the
spacetime metric to reside on the factorofn the base. Finally, IeK be a nondynamic
Riemanniammetric onW with total volume 1. The modified configuration bundle for the
concatenated variational principle is then

Y xx X? xw RiemW) — X x W
and the Lagrangian reads

E(XH,T, 07A117A117V7 Za7 Za7Aa HAB; na7 na\)a GHV’ KAB)

1
= —ZG““G"BFWFGB\/—G\/K

07
+ Auktap a—é“(n —7)(detn..) vVHs
T

EHABGW kMoK a2 8% (N — 2)(detn.)v/—H.
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Now build the product metri&G & K on X x W. Using the Hilbert formula and then
integrating as before, we compute the 6-dimensional SEMotedensity as follows: the
spacetime components are

T =gk, + ToW (3.1)
where 1
is the free electromagnetic SEM tensor density, and
oW = K“aK"b/ HABZA \ 2 5 8% (x—n"Y(z(0))) vV—-Hd%0
w

is the analogue of the Minkowski tensor density for stringghe ‘extra’ 7HA and 74
components are zero and, after integrating o¢gihe 748 subblock reduces to

TAB _ _% (/ GHG PRy Fapy/— G d4x> KAB VK.
X

Continua. Another intriguing example that we intend to pursue in fatuvorks is a
charged elastic body, fluid, or plasma, in which one conedé=na continuum with electro-
magnetism on a given background metric spacetime. Suchi¢kseawill likely have signifi-
cant differences with the particle and string examplesgmesl above. Amongst these dif-
ferences, we expect that, unlike mesically or electricaligrged particles, continua should
have well-defined initial value problems (see also the disicun of this point in [1]). Evi-
dence for this can be found in works such as [8] and [12].

One other interesting aspect of a charged elastic body i®Htogving. If B is the body
manifold, then its motion in spacetime is determined by a maR x B — X. The main
difference from our previous two examples is that rathen tie delta functions®(n(x) —
z(\)) we must now use characteristic functior® ~*(z(R x B))). We expect that examples
such as this will be key players in the future developmenhefgoint of view given in this
paper.

Appendix

Let M be a manifold with coordinates= (x!,...,x™). Here we prove that the delta function
0™M(x— xp) transforms as a scalar density of weight 1.
Letn: M — M be a diffeomorphism anfl € C*(X). On the one hand,

(fon)(x) = /X(fon)(X)CSm(X—xo)dmx.

On the other hand, by the change of variables theoremymtm (x),
fnoa) = [ 10)8"y-n(x)d"

=/ £(n00) 8" ~n0x0) P00l

whereJ is the Jacobian determinant Qf Since f is arbitrary the desired result follows
upon comparing these two formulee.
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