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1 Abstract

This paper presents a methodology for generating locally optimal control policies
for mechanical systems that undergo collisions at point contacts. Principles of
nonsmooth mechanics for rigid bodies are used in both continuous and discrete
time, and provide impact models for a variety of collision behaviors. The discrete
Euler-Lagrange (DEL) equations that follow from the discrete time analyses
yield variational integration schemes for the different impact models. These DEL
equations play a pivotal role in the method of Discrete Mechanics and Optimal
Control (DMOC), which generates locally optimal control policies as the solution
to equality constrained nonlinear optimization problems. The DMOC method is
demonstrated on a 4-link planar walking robot model, generating locally optimal
periodic walking gaits.

2 Introduction

The problem of optimal control generation for mechanical systems undergoing colli-
sions is challenging due to the complex and nonsmooth nature of impact dynamics.
While in reality these dynamics are dependent upon material deformation and elas-
ticity, a common approach is to adopt a rigid body assumption when modelling
the impact dynamics [15] [3]. In [5] methods from nonsmooth variational calculus
are used to describe elastic impacts for rigid bodies, and a discrete time analysis
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is done to provide a symplectic-momentum integration scheme. The method of
Discrete Mechanics and Optimal Control (DMOC) [6] utilizes structured integra-
tors, such as the aforementioned, in a numerical scheme to solve optimal control
problems. Combining and extending these ideas, this paper has two objectives: to
define variational integrators for a variety of collision models, and to demonstrate
the usage of those integrators in the DMOC method.

Variational integration algorithms are generated through discrete variational
principles rather than discretized equations of motion. The resulting integrators
have been shown to have remarkable structure preserving properties, such as ap-
propriately conserving discrete momenta and a discrete symplectic form. Due to
these desirable properties, variational integrator theory remains a topic of interest
with ongoing research to provide extensions to a variety of mechanical systems. For
example, previous works have developed variational integrators for systems with
forcing and constraints [12] [10] [13] , systems on Lie groups [1], and systems with
collisions [5]. In this work we treat the case of systems with collisions, but incor-
porating non-conservative impact forces into the variational principles such that
varying post collision behaviors may result (i.e. bouncing or sticking). In some
cases, particularly those in which contacts are established or released, the integra-
tors presented utilize two variational principles in sequence in order to handle the
changing dimension of the system’s constraint distribution.

With a variational integration scheme for non-conservative impacts, we make
use of the underlying discrete Euler-Lagrange (DEL) equations in the DMOC method.
This extension from a particular variational integrator to DMOC is a natural one,
as seen in previous DMOC works [6] [11] [9] [8]. DMOC generates locally optimal
control policies as the solution to an equality-constrained nonlinear optimization
problem, with the DEL equations serving as constraints. The optimization problem
is essentially a standard optimal control problem recast in discrete time, and in this
form it can be solved with sequential quadratic programming (SQP) methods.

The structure of this paper is as follows. Section 3 reviews principles of dis-
crete mechanics and variational integration for free systems and holonomically con-
strained systems. Section 4 extends the material in Section 3 to provide variational
collision algorithms for systems with impacts and varying contacts. Section 5 re-
views the DMOC method of generating optimal controls and presents results for
the case example of a 4-link planar walking robot model.

3 Discrete Mechanics

The central idea in discrete mechanics theory is the derivation of discrete time
equations of motion for mechanical systems through discrete variational principles.
This is in contrast to the common approach of obtaining discrete time equations of
motion with a direct discretization of differential equations (using finite differences,
quadrature rules, etc.). Here we review the key details in the theory surrounding
free systems and holonomically constrained systems. More in depth derivations can
be found in [12].



3.1 Free Systems

Given a mechanical system with a configuration space, @, and a regular Lagrangian,
L : TQ — R, the system’s equations of motion can be derived from Hamilton’s
principle. This principle states that

T
5 / Lq(t). 4(t)) dt = 0, (1)

for all variations dq(t) with d¢(0) = d¢(T)) = 0. In order to discretize this vari-
ational principle, the state space T'Q is replaced by @ x @ and a discrete path
qq : {0,h,2h,...,Nh =T} — @, with N € N and h € RT, is defined such that
gr = qa(kh) is considered an approximation to g(kh). Based on this discretiza-
tion, the action integral in Hamilton’s principle is approximated on each time slice
[kh, (k + 1)h] with the introduction of a discrete Lagrangian, Lg : Q x @Q — R, such
that

(k4+1)h

La(qr, qr+1) = /kh L(q(t),q(t)) dt.

Typically this approximation is made with simple quadrature rules, such as the

midpoint rule. Summing these approximations over the discrete path allows for the
definition of a discrete Hamilton’s principle

N-1

J Z La(qr, qrv1) = 0, (2)

k=0

for all variations {dqx }2_, with dgo = dgx = 0. This is equivalent to the system of
discrete Euler-Lagrange (DEL) equations

DyLa(qk—1,9%) + D1La(qk, qet1) =0, (3)

for all k € {1,...,N — 1}, where the notation D; indicates differentiation with
respect to the i*" argument. When used as a variational integrator, (3) implicitly
defines a map from (gr—1,qx) to (qx, qr+1)-

3.2 Systems with Holonomic Constraints

The above derivation can be extended to systems subject to time-independent
holonomic constraints. That is, consider that one is given a constraint function,
g : @ — R™, for which 0 is a regular value, such that system configurations are to
be restricted to the constraint submanifold R = g~!(0). One method to obtain the
equations of motion for such a system would be to apply Hamilton’s principle to
paths in R. However, the Lagrange multiplier theorem provides that the following
variational principle for paths (¢(t), A(t)) in @ x R™ yields equivalent results:

5/0 [L(q,9) —g(q)- A]dt =0, (4)



where A : R — R™ denotes a path of m Lagrange multiplers. In order to discretize
this variational principle, in addition to the steps carried out above one must in-
troduce a discrete path of Lagrange multipliers, Ay : {0, h,2h,...,Nh =T} — R™,
such that Ay = A\g(kh) is considered an approximation to A(kh). Then a discrete
constraint function, gq : @ — R, must be introduced such that the appended terms
in the action integral can be approximated as

(k+1)h

1
94 (Qe+1) - Mes1 ~ / g(q) - \dt.

L p
z Y z
2gd (qr) - Ak + 5 .

This expression, which differs slightly from that in [12], is taken from [10] where
the particulars of its form are discussed. Now the discrete version of the variational
principle above is

N

— 1 1
0 [La (a1, qrs1) — igd(Qk) Ak — §gd(Qk+1) Akg1] =0,
k=0

[y

for all variations {dgx, 0A, }o_, with dgo = dgn = 0. This is equivalent to the system
of constrained discrete Euler-Lagrange equations

Do La(qr—1,qxk) + D1La(qk, ge+1) — Galqr)™ - Ax =0, (5)

along with ¢g(gx+1) = 0, where G4(qr) = Dga(qr) denotes the Jacobian of gg4.

4 Variational Collision Algorithms

Using the fundamentals presented in the previous section, we now discuss algo-
rithms for mechanical systems encountering collisions. In the variational approach
to modeling collisions we follow the theory in [5].

4.1 Elastic Collisions

A main result in [5] is an algorithm for perfectly elastic impacts. The derivation
of that algorithm begins with a mechanical system with () and L as above, and
some submanifold with boundary, C' C @, defining admissible configurations. The
boundary of C, denoted OC, defines the set of contact configurations.! With the
contact configurations defined, the same Hamilton’s principle (1) is used, but with
a more complex path space which allows for nonsmooth trajectories in ¢(¢) and
reparameterizations of time. For a precise definition of this path space, and the
apparent advantages of its usage, the reader is referred to [5]. On a time interval
[0, 7] in which it is assumed the system encounters only one collision, the continuous

INote that this definition of the set contact configurations implies that it is of codimension
1 relative to the set admissible configurations. This is in agreement with a point contact as-
sumption. Cases of higher codimension, such as the case when multiple contacts are established
simultaneously, are excluded from consideration.



time variational principle (1) on the nonsmooth path space yields that the extended
Euler-Lagrange equations hold everywhere away from impact. That is,

d (oL\ 0L

dt<8q.>_aq—0, (6)
dp_g (7)
e 7

in [O,f) U (f, T], where F = (g—gq — L) is the system’s total energy and ¢ denotes
the impact time. At impact, the principle yields the transition equations

=0, (9)

for any dq € T,30C. This implies conservation of momentum tangent to the
contact surface and conservation of energy through the impact. The transition
equations provide no information about the system’s momentum normal to the
contact surface, as the nonsmooth path space does not permit variations in that
direction.

In order to obtain a description of the dynamics above in discrete time, we
again use a discrete variational principle. As taking variations with respect to the
collision time is essential in deriving the continuous time dynamics above, we must
ensure that our discrete time arguments incorporate such variations. In order to do
this, we first assume knowledge of the time step [ih, (i + 1)h] in which the system
will encounter an impact at a time ¢ in a configuration §. We parameterize the
impact time in that step as f = (i + a)h using o € [0,1]. Also, in the remainder
of our derivations we consider the discrete Lagrangian to be a function of both
configuration and time. That is, Ly : R X @ X R x @ — R provides the same
approximation as previously discussed

41
La(tr, e tes1, qret) %/t L(q(t),4(t)) dt,

k
where we have introduced the notation ¢ = kh. In the arguments that follow,
we assume that L, is readily adaptable to time slices that are not of length h,
in particular [t;,] preceding the collision and [f,#;,1] following the collision. For
brevity, we will begin using the notation g = (t,qx) and ¢ = (£, q), however it
is important to keep in mind that L, is a function of four arguments. Now, the
discrete Hamilton’s principle takes a form slightly different from that of (2), as

i—1 N—-1
5[ > La(@k, Gr1) + La(@i @) + La(@ G1) + D, Laldr, Qk+1>:| =0, (10)
k=0 k=it1

for all variations da, 0G, {dqx}o_, with dgo = dgn = 0. Taking variations implies
that the DEL equations hold away from impact

Dy Lg(Gr-1,Gx) + D2La(Gr, Gr+1) = 0, (11)



for all k # i — 1,4,4 + 1. Also, the principle describes more complex conditions
surrounding the impact

DyLa(Gi-1,G) + D2La(Gi, q) = 0,
" (DaLa(@i, @) + D2La(G,@i41)) =0,

DsLa(@i,q) + D1La(q, Gis1) = 0,
DyLi(q,Gi+1) + D2La(Git1, Giv2) = 0,

where ¢* : T*Q — T*0C is the cotangent lift of the embedding ¢ : 0C — Q.
Omne should notice that equations (13) and (14) represent, in discrete time, the
conservation of momentum and energy specified by (8) and (9).

When using the above equations as a variational collision integration algo-
rithm, one would initially iterate solving (11) as an implicit map from (gi_1,gx) to
(qk, qr+1)- This is continued until coming across g1 ¢ C. Discarding that inad-
missible configuration, one solves (12) along with the condition § € OC for (£, §).
This is followed by solving (13) and (14) to determine ¢;11. Lastly, (15) is solved
for g;t2, after which one can proceed in using (11) as prior.

4.2 Lossful Collisions

In this section we extend the results of [5] above, in order to model lossful impacts
which may perform work on and reduce the total energy of a given mechanical
system. This is carried out by defining a contact force field, f°* € T*(R x 9C), in
order to incorporate virtual work done by the impact into the variational principle
(1). The force field has a “time component”, denoted ff°™ € T*R, that may not
have an intuitive physical meaning at first. Further developments and discussion
will clarify this point. With this forcing, the system’s dynamics are now derived
from a Lagrange-d’Alembert principle of the form

T
5 / Lq(t), d(t)) dt + <" - 65 = 0. (16)
0

The implications of this variational principle leave equations (6) and (7) unchanged,
but yield modified transition equations of the form

8[/ E+ con
afq.%ﬁQ‘i‘fq -0g =0, (17)
i+
B| —fi" =0, (18)

where again dq € Tq(g)(?C' . These equations capture the standard jump conditions
for inelastic impacts with friction. In (17), f5°", the portion of f™ in T9C,
determines the change in momentum tangent to dC due to friction. In (18), fro"
defines the energy dissipated through the impact. Jointly, these equations implicitly

define the momentum change normal to 0C.



In discrete time we must redefine the contact force as f<°™ € T*([0,1] x 9C).
Using this form we can construct a discrete Lagrange-d’Alembert principle of the
form

i—1 N-1
3 3 Ll )+ La D+ Lali g+ S Ll )] 50, 0.
k=0 k=i+1
(19)
The implications of this variational principle leave equations (11), (12), and (15)
unchanged, but (17) and (18) have additional terms such that

i (D4Ld((jiv @)+ D2La(q, Giv1) + chon) =0, (20)
- - 1
D3La(Gi,q) + D1La(q, Giv1) + Effon =0, (21)

where in this case ff°" € T*([0,1]). Just as (13) and (14) served as the discrete
time analogy of (8) and (9) in the case of elastic impacts, here we see (20) and (21)
are analogous to (17) and (18) in the case of lossful impacts.

4.3 Plastic Collisions

The previous theory regarding lossful impacts naturally leads one to consider plastic
impacts. That is, what happens in the case in which an impact removes enough en-
ergy from the system that it remains on the contact manifold? The work presented
in [2] aids in answering this question by contrasting elastic and plastic impacts in
a geometric framework. This is done by characterizing collisions in terms of dis-
tributions on T'Q) to which the system must belong before and after impact. The
previous two sections handled cases in which the pre-impact distribution, D, as
well as the post-impact distribution, DT, were T'C. This section handles the case in
which a given system is initially free and then is subject to a holonomic constraint
after impact, meaning D~ # D*. As previously, we consider constraints described
by a constraint function? g, and now also have the conditions for the corresponding
constraint submanifold R that R € dC and DT = TR. As in the elastic case,
D~ = TC and thus the pre-impact equations on [0, ) keep the form of (6) and (7).
The transition equations maintain the form of (17) and (18) in the last section, with
the added condition that the post impact phase lies in DT. This condition, which
is of the form (q(t*),q(t*)) € TR, is essentially a constraint on the allowable force
fields f<°". Following the impact the system will obey the following constrained
Euler-Lagrange equations in (tN, T]:

d (0L\ L .
i (36) 3 + o A= >

together with g(g) = 0, where G(¢g) = Dg(q) denotes the Jacobian of g.

2In some cases the precise definition of g cannot be specified prior to a collision occurring.
Nonetheless, knowing the type of the constraint g (i.e. sticking or sliding contact) will allow one
to fill in these details upon contact with OC



One should note that in describing plastic collisions we made use of two vari-
ational princples. The results from (16), a principle for unconstrained lossful col-
lisions, and the results from (4), a principle for smooth constrained systems, were
joined at £T. While obtaining the perfectly plastic impact equations from a single
variational principle remains a subject of interest, it seems unlikely that this is pos-
sible. The main difficulty is the lack of smoothness in a path space that describes
trajectories subject to constraint distributions of varying dimension. Our technique
of bootstrapping variational results is also utilized in the next section.

To define an algorithm for the integration of trajectories through plastic
collisions we follow arguments analogous to those above for the continuous time
case. The pre-impact equations match those of the case of elastic collisions in dis-
crete time, meaning one would integrate according to (11) until determining some
gr+1 ¢ C. Discarding this gxy1, the equations (12), (20), and (21), along with the
added condition (§,¢;4+1) € (R x R),% are used determine #,§, and ¢;;1. Finally,
after impact one would integrate according to (5) for all k > 4 1.

4.4 Transfer of Contact

The final behavior we will describe is that of an instantaneous transfer of contacts.
That is, a mechanical system with one established contact, corresponding to a
constraint manifold Ry = ¢ 1(0), undergoes a plastic impact which establishes a
new contact on a constraint manifold Ry = g5 '(0) and causes contact release from
R;. That is, D~ = TRy and DT = TR,. For simplicity we assume that on a
specified interval of time [0, 7] a transfer of contact occurs at some # in the interval,
and no other impacts occur. Under this assumption, prior to impact the system
will obey (22) with gy inserted as the constraint function. The transition equations
keep the form of (17) and (18) with the condition (¢(t%),q(tt)) € TR,. These
transition equations do not guarantee release from R; following the collision, and in
fact conditions for that release are not trivial. In certain circumstances, the system
could encounter contacts representative of the paradox of Painleve. Incorporation
of the resolution to this paradox, which involves measure differential inclusions and
tangential impact forces [15], remains a topic of future work. Currently, we simply
assume the impact causes the system to release from R;, and verify this assumption
with the condition ¢(t) € C for t > . Upon release from R; the system obeys (22)
with go inserted as the constraint function.

The discrete time algorithm for integration of a trajectory through transfer
of contacts is as follows. One integrates according to (5) on Ry until gx1 ¢ C.
Discarding this inadmissible configuration, the following equations are used to solve
for \;,t and 4,

DyLg(Gi-1, @) + DaLa(G,q) — G1,(@:)" - N =0, (23)

along with g1(¢) = 0 and ¢ € Ry. Following this, one integrates the system forward

3This condition is analogous to the requirement in continuous time that (q(f1),¢(ft)) € TR



off of Ry and onto Ry by calculating X, §, and ¢;+1 that satisfy

% J—— = _ 1 ~ 3 con
i (D4Ld(% q) + D2La(q, Git1) — iGld(Q)T A+ fg ) =0,

8 3 ]
DsLa(Gi, @) + D1La(q, Gigr) + — [ =0,

P 1
DyL4(Giyq) — 3

along with (G, ¢;+1) € (R2 X R3). Upon solving these equations, release from R; is
verified by checking that ¢;11 € C, meaning the released contact has accelerated
away from the contact surface. Assuming this condition is met, one can proceed in
integrating with (5) on Ra.

5 DMOC Method and Results
5.1 The DMOC Method

The standard continuous time optimal control problem that we consider seeks to
find a local minima of a cost function, J, while moving a mechanical system from
a specified initial phase, (¢",¢"), to a specified final phase, (¢7,¢7), in time T. Tt
is assumed that J is the integral of a performance metric, F', and thus the problem
can be formally stated

T
Minimize J(q(t), u(t)) = /0 Flq(t), d(t), u(t)),

subject to (g(0),¢(0)) = (¢°,4°), (¢(T),4(T)) = (¢7,¢"), and the appropriate forced
Fuler-Lagrange equations of motion. In the case example to come, we replace the
notion of specified boundary conditions with a periodicity relation P : TQ — TQ
such that ((T),¢(T)) = P(q(0),4(0)).

The DMOC method moves all aspects of the problem above to the discrete
time setting. That is, a discrete path g4 is introduced as previously discussed, as
well as left and right discrete forces v, and uz at each time node. As described
n [12], these discrete forces approximate virtual work on each slice of time in
order to incorporate the influence of nonconservative forcing into discrete variational
principles. That is, u, and uz provide the approximation

(k+1)h
Uy, - Oqy + u,:f S OQra1 = /kh u(t) - dq(t) dt.

By appending a sum of these approximations to any of the variational principles

we’ve introduced, one can determine forced DEL equations for the various collision

behaviors we’'ve described with little change to the variational arguments. To pro-

vide a discrete time approximation of J, a discrete cost function, Jg, is introduced

as the sum of a discrete performance metric, Fy, which is to be evaluated at each



Figure 1. Model and gait snapshots for the 4-Link Planar Biped. The
snapshots depict one step of the periodic gait, in which the stance (dark blue) leg
remains in contact with the ground and the swing (light blue) leg travels from contact
release to the next impact. Snapshots are 0.15 sec. apart.

time slice. Finally, the periodic boundary conditions are recast with a discrete pe-
riodicity relation, Py : Q X Q — @ x Q. With all of these components, the problem
which DMOC considers is stated as

N —

Minimize Jy4(qq,uq) = Fa(qr, qrs1, uy, U;;%
k=0

[

subject to (¢n—1,9n) = Pa(qo,q1), and the appropriate forced DEL equations of
motion. This problem, which is an equality constrained nonlinear optimization
problem, can be solved using sequential quadratic programming (SQP) methods.

5.2 4-Link Biped Results

As a case example we have applied DMOC to determine a periodic walking gait for
a 4-link planar bipedal robot. We seek trajectories that are locally optimal with
respect to its specific cost of transport, a standard metric in locomotion problems
[4]. The biped and snapshots of its locally optimal gait are shown in Fig. 1. Fig. 2
plots the configuration and controls for two steps of the gait depicted in Fig. 1. For
precise correspondence between the figures, one could view the step portrayed in
the gait snapshots as taking place between the dotted lines of Fig. 2 that mark the
impact times, and in this interval consider that 3 and 64 indicate the configuration
of the stance leg. For the biped model we prescribed m; = 10 kg, mo = 3 kg,
mg =2 kg, L1 = Ly = 0.5 m, and T = 0.9 s. Further we prescribed that control
inputs uj, ug, and us had the form of torques about the 6> knee joint, the hip,
and the 04 knee joint respectively. The locally optimal value of the specific cost of
transport for the gait is 0.034, roughly one-tenth of that for average human walking.
We hypothesize that this figure could be improved with actuation at the ground,
in the form of a control torque at the contact point or the addition of feet to the
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Figure 2. Locally optimal discrete paths of configuration and control input
provided by the DMOC method. Two steps of the biped’s gait are plotted, in order
to view periodicity.

model. As is, the robot is underactuated, in the sense that it has more degrees of
freedom than control inputs, and thus may have to make inefficient movements to
maintain forward momentum.

6 Conclusions and Future Directions

We have used variational principles to derive governing equations for a variety of
impact behaviors. Furthermore, we have described how the discrete time equations
of motion provide variational integration algorithms and act as constraints in the
DMOC method for determining optimal controls. As a case example, we have de-
termined controls for a 4-link planar biped that produce a periodic gait which is
locally optimal with respect to the specific cost of transport. One extension to
this work that is currently underway is the incorporation of the discrete null space
method [10] into our variational description of impacts. Another extension incorpo-
rates our implementation of DMOC into a “Design of Dynamics” scheme that uses
tools from trend optimization [14] to optimize system designs as well as trajectories
and controls. Beyond this, future work may involve more detailed descriptions of
contact release conditions, tools from the measure differential inclusion formulation
of contact mechanics, or impact models involving multiple contacts.
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