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Representations of Dirac
Structures and Implicit
Port-Controlled
Lagrangian Systems

Hiroaki Yoshimura∗ and Jerrold E. Marsden†

1 Introduction
The idea of multiport systems has been known as a useful tool when regarding a
system as an interconnection of physical elements throughout principle of power
invariance, which has been widely used in electrical circuits and networks (see, for
instance, [4, 14]), where the principle of power invariance is known as Tellegen’s
theorem in electrical network theory (see [6]). From the viewpoint of the analogy
between mechanical and electrical systems, much effort has been done to develop
a network-theoretic approach to nonlinear mechanical systems such as multibody
systems in the context of interconnected systems (see, for instance, [15]). Recently,
it was shown by [12] and [3] that such interconnections can be represented by Dirac
structures, which may be a generalization of both symplectic as well as Poisson
structures (see [8, 7]) and also that interconnections of L-C circuits can be modeled
by Dirac structures and then incorporated into the context of implicit Hamiltonian
systems (see also [1, 2]). On the Lagrangian side, a notion of implicit Lagrangian
systems, namely, a Lagrangian analogue of implicit Hamiltonian systems, was de-
veloped by [16, 17], where nonholonomic mechanical systems and L-C circuits as
degenerate Lagrangian systems were shown to be formulated in the context of im-
plicit Lagrangian systems in which induced Dirac structures were systematically
introduced. Furthermore, it was shown by [19] that even for the case in which a
given Lagrangian is degenerate, an implicit Hamiltonian system can be constructed
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from an implicit Lagrangian system by the generalized Legendre transformation.
From the viewpoint of control theory, a notion of implicit port-controlled

Hamiltonian (IPCH) systems, which is an implicit Hamiltonian system with ex-
ternal control inputs such as control forces and voltages, was developed by [12].
For the case of regular Lagrangian systems, the equivalence between controlled La-
grangian (CL) systems and controlled Hamiltonian (CH) systems was shown by
[5]. For the general case in which a given Lagrangian is degenerate, an implicit
Lagrangian analogue of IPCH systems, namely, a notion of implicit port-controlled
Lagrangian (IPCL) systems for electrical circuits was constructed by [18], where
it was shown that L-C transmission lines can be represented in the context of the
IPLC system by employing induced Dirac structures with Lagrange multipliers.

In this paper, we will develop two different representations for induced Dirac
structures and their associated IPCL systems; namely, (1) a standard representation
with Lagrange multipliers; and (2) a representation without Lagrange multipliers.
Those representations are consistent with those developed by [8, 7, 3, 9]. Specifi-
cally, the second representation without using Lagrange multipliers may be crucial
in formulation of constrained mechanical systems since it systematically enables
one to eliminate unnecessary constraint forces. In mechanics, it is known that the
elimination of constraint forces can be done by the orthogonal complement method
or the null space method (see, for instance, [15, 10]), although the link with Dirac
structures has not been clarified. The present paper fills this gap to show that the
orthogonal complement method can be incorporated into the context of Dirac struc-
tures and the associated IPCL systems and we demonstrate those representations
for Dirac structures and implicit Lagrangian systems by an example of L-C circuits.

2 Dirac Structures
Dirac Structures. Recall from [7, 8] that a Dirac structure D on a vector space V
is defined as a maximally isotropic subspace of V ⊕ V ∗ such that D = D⊥, where
V ∗ is the dual space of V and D⊥ is the orthogonal of D relative to the pairing
〈〈·, ·〉〉, which is a symmetric paring on V ⊕ V ∗ given by

〈〈 (v, α), (v̄, ᾱ) 〉〉 = 〈α, v̄〉+ 〈ᾱ, v〉, (1)

for (v, α), (v̄, ᾱ) ∈ V ⊕V ∗. In the above, 〈· , ·〉 is the natural paring between V ∗ and
V . For the case of a smooth manifold M whose tangent bundle is denoted as TM
and whose cotangent bundle is denoted as T ∗M , an (almost) Dirac structure on M
is a subbundle D ⊂ TM ⊕ T ∗M that is a Dirac structure in the sense of vector
spaces at each point x ∈ M . In geometric mechanics, (almost) Dirac structures
provide a simultaneous generalization of both two-forms (not necessarily closed,
and possibly degenerate) as well as almost Poisson structures (that is brackets that
need not satisfy the Jacobi identity) (see, for instance, [11]). An integrable Dirac
structure, which corresponds in geometric mechanics to assuming the two-form is
closed or to assuming Jacobi’s identity for the Poisson tensor, is one that satisfies

〈£X1α2, X3〉+ 〈£X2α3, X1〉+ 〈£X3α1, X2〉 = 0,

for all pairs of vector fields and one-forms (X1, α1), (X2, α2), (X3, α3) ∈ D.
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Distributions. Recall from [2] that any Dirac structure D on M naturally defines
a distribution ∆M ⊂ TM , which is denoted by, for each x ∈ M ,

∆M (x) = {vx ∈ TxM | (vx, 0) ∈ D(x)}

and a codistribution ΓM ⊂ T ∗M whose fibers are given by

ΓM (x) = {αx ∈ T ∗x M | ∃vx such that (vx, αx) ∈ D(x)} .

In this paper, we assume that all distributions are regular, i.e., smooth and constant
in dimension at each point x ∈ M . Since D is isotropic, one has ∆M (x) ⊂ Γ◦M (x),
where Γ◦M (x) ⊂ TxM is the annihilator of ΓM (x) ⊂ T ∗x M , which is defined by

Γ◦M (x) = {vx ∈ TxM | 〈αx, vx〉 = 0 for all αx ∈ ΓM (x)} .

Similarly, one can read ΓM (x) ⊂ ∆◦
M (x), where ∆◦

M (x) ⊂ T ∗x M is the annihilator
of ∆M (x), which is given by

∆◦
M (x) = {αx ∈ T ∗x M | 〈αx, vx〉 = 0 for all vx ∈ ∆M (x)} .

Since D is maximally isotropic, it reads ∆M = Γ◦M and equivalently, ΓM = ∆◦
M .

Induced Dirac Structures. Let us review an induced Dirac structure for the
setting of implicit port-controlled Lagrangian systems by following [16].

Let Q be an n-dimensional configuration manifold, whose kinematic con-
straints are given by a constraint distribution ∆Q ⊂ TQ, given by, at each q ∈ Q,

∆Q(q) = {v ∈ TqQ | 〈ωa(q), v〉 = 0, a = 1, ...,m},

where ωa are m one-forms on Q. Define the distribution ∆T∗Q on T ∗Q by

∆T∗Q = (TπQ)−1(∆Q) ⊂ TT ∗Q,

where TπQ : TT ∗Q → TQ is the tangent map of the cotangent bundle projection
πQ : T ∗Q → Q, while the annihilator of ∆T∗Q can be defined by, for each z ∈ T ∗q Q,

∆◦
T∗Q(z) = {αz ∈ T ∗z T ∗Q | 〈αz, wz〉 = 0 for all wz ∈ ∆T∗Q(z)}.

Let Ω be the canonical symplectic structure on T ∗Q and Ω[ : TT ∗Q → T ∗T ∗Q be
the associated bundle map. Then, a Dirac structure D∆Q

on T ∗Q induced from
∆Q can be defined by, for each z ∈ T ∗q Q,

D∆Q
(z) = { (wz, αz) ∈ TzT

∗Q×T ∗z T ∗Q | wz ∈ ∆T∗Q(z),

and αz − Ω[(z) · wz ∈ ∆◦
T∗Q(z) }.
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Local Expression. Let us choose local coordinates qi on Q so that Q is locally
represented by an open set U ⊂ Rn. The constraint set ∆Q defines a subspace of
TQ, which we denote by ∆(q) ⊂ Rn at each point q ∈ U . If the dimension of ∆(q)
is n−m, then we can choose a basis em+1(q), em+2(q), . . . , en(q) of ∆(q).

Recall that the constraint sets can be also represented by the annihilator
of ∆(q), which is denoted by ∆◦(q) spanned by such one-forms that we write as
ω1, ω2, . . . , ωm. Using πQ : T ∗Q → Q locally denoted by z = (q, p) 7→ q and
TπQ : TT ∗Q → TQ; (q, p, q̇, ṗ) 7→ (q, q̇), it follows that

∆T∗Q
∼= {(q, p, q̇, ṗ) | q ∈ U, q̇ ∈ ∆(q)} .

Let points in T ∗T ∗Q be locally denoted by (q, p, β, u), where β is a covector and u
is a vector. Then, the annihilator of ∆T∗Q is locally represented as

∆◦
T∗Q

∼= {(q, p, β, u) | q ∈ U, β ∈ ∆◦(q) and u = 0} .

Since we have the local formula Ω[(q, p) ·w(q,p) = (q, p,−ṗ, q̇), the condition α(q,p)−
Ω[(q, p)·w(q,p) ∈ ∆◦

T∗Q reads α+ṗ ∈ ∆◦(q), and w−q̇ = 0, where α(q,p) = (q, p, α, w)
and w(q,p) = (q, p, q̇, ṗ). So, the induced Dirac structure is locally represented by

D∆Q
(q, p) = {((q̇, ṗ), (α, w)) | q̇ ∈ ∆(q), w = q̇, α + ṗ ∈ ∆◦(q)} . (2)

Representation (I). Let us introduce a matrix representation of D∆Q
given in

equation (2). First, let NT (q) be an n × m matrix whose m-column vectors
ω1(q), ..., ωm(q) span the basis of ∆◦(q), namely, NT (q) = [ω1(q), ..., ωm(q)] and
the distribution ∆(q) ⊂ Rn ∼= TqQ may be represented by

∆(q) = {q̇ ∈ Rn | N(q) q̇ = 0} .

So, using Lagrange multipliers λ = (λ1, ..., λm) ∈ Rm, one has

∆◦(q) =
{
β ∈ (Rn)∗ | β = NT (q)λ

}
.

Thus, the induced Dirac structure can be represented by

D∆Q
(q, p) =

{
((q̇, ṗ), (α, w)) | N(q)q̇ = 0, w = q̇, α + ṗ = NT (q)λ

}
. (3)

Example: L-C Circuits. Consider an illustrative example of L–C circuits shown
in Fig.1, which was also investigated in [3, 13]. Refer also to [16, 17, 19]. In the
L–C circuit, the configuration space W is a 4-dimensional vector space, that is,
W = R4. Then, we have TW (∼= W × W ) and T ∗W (∼= W × W ∗). Let q =
(qL, qC1 , qC2 , qC3) ∈ W denote charges and q̇ = (q̇L, q̇C1 , q̇C2 , q̇C3) ∈ TqW currents
associated with the L–C circuit. The set of currents satisfying the KCL (Kirchhoff
current law) constraints forms a constraint KCL space ∆ ⊂ TW , which is given for
each q = (q1, q2, q3, q4) = (qL, qC1 , qC2 , qC3) ∈ W , by the 2-dimensional distribution
∆(q) ⊂ R4 ∼= TqW such that

∆(q) =
{
q̇ ∈ R4 | N(q) q̇ = 0

}
,
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Figure 1. L-C Circuit

where the matrix N(q) is given by

N(q) =
(

−1 0 1 0
0 −1 1 −1

)
. (4)

On the other hand, the transpose of N(q) span the 2-dimensional annihilator
∆◦(q) ⊂ (R4)∗ ∼= T ∗q W as

∆◦(q) =
{
β ∈ (R4)∗ | β = NT (q)λ

}
where λ = (λ1, λ2) denotes Lagrange multipliers. Note that the constraint voltage
space is spanned by the transpose of N(q), namely, NT (q) = [ω1(q), ω2(q)], where
ω1 and ω2 are one-forms on W associated with the KCL constraints.

Consistent with the general theory, the induced distribution ∆T∗W on T ∗W
is defined by the KCL constraint distribution ∆ ⊂ TW as

∆T∗W = (TπW )−1(∆) ⊂ TT ∗W,

where πW : T ∗W → W is the canonical projection and TπW : TT ∗W → TW . Now
writing the projection map πW : T ∗W → W locally as (q, p) 7→ q, its tangent map
is locally given by TπW : (q, p, q̇, ṗ) 7→ (q, q̇). Then, we can represent ∆T∗W as

∆T∗W
∼= {(q, p, q̇, ṗ) | q ∈ U, N(q)q̇ = 0} .

The annihilator of ∆T∗W is denoted by

∆◦
T∗W

∼=
{
(q, p, β, u) | q ∈ U, β = NT (q)λ and u = 0

}
.

Recall also from equation (2) that the Dirac structure D∆ on T ∗W induced from
the KCL constraint distribution ∆ is locally given, for each (q, p) ∈ T ∗W , by

D∆(q, p) =
{
((q, p, q̇, ṗ), (q, p, α, w)) | N(q)q̇ = 0, w = q̇, α + ṗ = NT (q)λ

}
.
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Representation (II). In Representation (I) for the induced Dirac structure in equa-
tion (3), we utilized the Lagrange multipliers, which represent constraint forces in
constrained mechanical systems. Here, let us develop another representation of
D∆Q

on T ∗Q without using the Lagrange multipliers.
Let us choose an n × (n − m) matrix B(q) = [em+1(q), em+2(q), . . . , en(q)],

whose column vectors span the basis of ∆(q). Then, it follows that the distribution
∆(q) ⊂ Rn ∼= TqQ can be also represented by

∆(q) = {q̇ ∈ Rn | q̇ = B(q) u} ,

where u = (um+1, um+2, ..., un) ∈ Rn−m. It is needless to say that the orthogonality
condition between N(q) and B(q) holds as BT (q)NT (q) = 0. The above condition
naturally comes from the fact that ∆◦ is the annihilator of the distribution ∆;
namely, in other words, the basis em+1(q), ..., en(q) is orthogonal to the dual basis
ω1(q), ..., ωm(q) at each q ∈ Q. Therefore, one can read that

∆◦(q) =
{
β ∈ (Rn)∗ | BT (q) β = 0

}
.

Thus, the induced Dirac structure D∆Q
⊂ TT ∗Q ⊕ T ∗T ∗Q can be represented

without using the Lagrange multipliers as

D∆Q
(q, p) =

{
((q̇, ṗ), (α, w)) | N(q)q̇ = 0, w = q̇, BT (q)(α + ṗ) = 0

}
. (5)

Example: L-C Circuits. Associated with the matrix in equation (4), namely,

N(q) =
(

−1 0 1 0
0 −1 1 −1

)
,

we can construct its orthogonal complementary matrix B(q) such that BT (q)NT (q) =
0, which is, by inspection, given by

BT (q) =
(

−1 −1 −1 0
0 1 0 −1

)
. (6)

By using this matrix B, we can eliminate unnecessary Lagrange multipliers, which
may correspond to the elimination of constraint forces in mechanics. This lead to
the representation

∆◦(q) =
{
β ∈ (Rn)∗ | BT (q) β = 0

}
.

It immediately follows that we can obtain Representation (II) in equation (5).

Remarks. It was shown by [15] that the dual connection matrices N(q) and
B(q) are the orthogonal complement with each other, each of which plays an es-
sential role in eliminating unnecessary constraint forces in constrained mechanical
systems such as multibody systems and also that from the viewpoint of analogy
between mechanics and circuits, the matrices N(q) and B(q) may correspond to
the so-called fundamental cut–set and loop matrices in electrical network theory. In
conjunction with optimal control theory, the matrix BT (q) is sometimes called the
null space matrix (see, for instance, [10]).
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3 Implicit Port-Controlled Lagrangian Systems
Let us define an implicit port-controlled Lagrangian system, which is an implicit
Lagrangian system that has an external control force.

Implicit Port-Controlled Lagrangian Systems. Given an external control force
field F : TQ → T ∗Q, it induces a horizontal one-form F̃ on T ∗Q such that, for
vq ∈ TQ and pq ∈ T ∗Q,

F̃ (pq) · w = 〈F (vq), TπQ(w)〉 ,

where F̃ = (q, p, F (v), 0) ∈ T ∗pq
T ∗Q and w = (q, p, δq, δp) ∈ TpqT

∗Q.

Let L be a given Lagrangian on TQ and let ∆Q ⊂ TQ be a constraint distribu-
tion. Then, an implicit port-controlled Lagrangian (IPCL) system or an im-
plicit controlled Lagrangian (ICL) system is defined by a triple (L,F,∆Q, X),
which satisfies for each (q, v) ∈ ∆Q ⊂ TQ and with (q, p) = FL(q, v),

(X(q, v, p),DL(q, v)− π∗QF (q, v)) ∈ D∆Q
(q, v). (7)

In the above, DL : TQ → T ∗T ∗Q denotes the Dirac differential of a given La-
grangian L, given by DL(q, v) = (q, ∂L/∂v,−∂L/∂q, v) and X : TQ⊕T ∗Q → TT ∗Q
is a partial vector field defined at points (v, p) ∈ ∆Q × P that assigns a vector in
TpT

∗Q to each point (q, v, p) ∈ ∆Q ⊕ P , where P = FL(∆Q) ⊂ TQ. Let us write
X(q, v, p) = (q, p, q̇, ṗ), so that q̇ and ṗ are functions of (q, v, p) and it follows that
the local expression of IPCL systems in equation (7) may be locally given by

q̇ = v, ṗ− ∂L

∂q
− F (q, v) ∈ ∆◦(q), q̇ ∈ ∆(q), p =

∂L

∂v
. (8)

The curve (q(t), v(t), p(t)), t1 ≤ t ≤ t2 in TQ⊕T ∗Q that satisfies the condition
(7) is a solution curve of the IPCL system (L,F,∆Q, X).

Power Balance. Let (q(t), v(t), p(t)), t1 ≤ t ≤ t2 in TQ⊕T ∗Q be a solution curve
of the IPCL system. Let E be the generalized energy, which is given by

E(q, v, p) = 〈p, v〉 − L(q, v)

and the time derivative of E reads
d

dt
E(q(t), v(t), p(t)) = 〈F (q(t), q̇(t)), q̇(t)〉 ,

where we employed p = ∂L/∂v and q̇ = v.

Representation (I). Using Representation (I) in equation (3) for the induced Dirac
structure, an IPCL system in equation (8) can be represented in matrix by(

q̇
ṗ

)
=
(

0 1
−1 0

)( −∂L
∂q − F (q, v)

v

)
+
(

0
NT (q) λ

)
,

0 = N(q) q̇,

p =
∂L

∂v
.
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In the above, the IPCL system may be represented by differential–algebraic equa-
tions for the 3n-dimensional local coordinates (q, v, p) for TQ⊕ T ∗Q and with the
m Lagrange multipliers λ = (λ1, ..., λm). The term on the right-hand side

Y (q, p) =
(

0
NT (q) λ

)
denotes the vertical vector field Y : T ∗Q → TT ∗Q associated to the constraint
force field F c : TQ → T ∗Q, which is referred to as a special horizontal one-form
F̃ c = −iY Ω on T ∗Q that satisfies

F̃ c(pq) · w =
〈
F c(vq), TvqπQ(w)

〉
= 0

for vq ∈ TQ, pq ∈ T ∗Q and w = (q, p, δq, δp) ∈ ∆T∗Q(pq).

Example: L-C Circuits. Let T : TW → R be the magnetic energy of the L-C
circuit, which is defined by the inductance L as

Tq(f) =
1
2
L (fL)2,

and let V : W → R be the electric potential energy of the L-C circuit, which is
defined by capacitors C1, C2, and C3 such that

V (q) =
1
2

(qC1)
2

C1
+

1
2

(qC2)
2

C2
+

1
2

(qC3)
2

C3
.

Then, we can define the Lagrangian of the L–C circuit L : TW → R by

L(q, f) = Tq(f)− V (q) =
1
2
L (fL)2 − 1

2
(qC1)

2

C1
− 1

2
(qC2)

2

C2
− 1

2
(qC3)

2

C3
.

It is obvious that L : TW → R of the L-C circuit is degenerate, since

det
[

∂2L
∂f i∂f j

]
= 0; i, j = 1, ..., 4.

The constraint distribution ∆ ⊂ TW is given by using the matrix N(q) as in equa-
tion (4), while the constraint flux linkage subspace is given by using the Legendre
transform as

P = FL(∆) ⊂ T ∗W.

In coordinates, (q, p) = FL(q, f) ∈ T ∗W , and it follows

(pL, pC1 , pC2 , pC3) =
(

∂L
∂fL

,
∂L

∂fC1

,
∂L

∂fC2

,
∂L

∂fC3

)
,

from which we obtain pL = LfL and with the constraints pC1 = 0, pC2 = 0, pC3 =
0, which correspond to primary constraints in the sense of Dirac. Needless to
say, the primary constraints form the constraint flux linkage subspace P ⊂ T ∗W .
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Let X : TW ⊕ T ∗W → TT ∗W be a partial vector field on T ∗W , defined at
each point in P , with components denoted by

X(q, f, p) = (q̇L, q̇C1 , q̇C2 , q̇C3 , ṗL, 0, 0, 0) .

The Dirac differential of L, namely, DL(q, f) = (q, ∂L/∂v,−∂L/∂q, f) is given by

DL (q, f) =
(

qL, qC1 , qC2 , qC3 , pL, 0, 0, 0, 0,
qC1

C1
,
qC2

C2
,
qC3

C3
, fL, fC1 , fC2 , fC3

)
together with p = ∂L/∂f .

Thus, the L-C circuit can be represented in the context of implicit Lagrangian
systems (L,∆, X) by requiring that, for each (q, f) ∈ ∆ ⊂ TW ,

(X(q, f, p),DL(q, f)) ∈ D∆(q, p)

holds and with the Legendre transform (q, p) = FL(q, f). Therefore, the implicit
Lagrangian system for this L-C circuit may be locally described by

q̇L

q̇C1

q̇C2

q̇C3

ṗL

0
0
0


=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0





0
qC1
C1
qC2
C2
qC3
C3

fL

fC1

fC2

fC3


+



0 0
0 0
0 0
0 0

−1 0
0 −1
1 1
0 −1


(

λ1

λ2

)

together with the Legendre transformation pL = LfL. The above equations of
motion are supplemented by the KCL constraints

(
0
0

)
=
(

−1 0 1 0
0 −1 1 −1

)
q̇L

q̇C1

q̇C2

q̇C3

 .

Thus, we obtain the differential-algebraic equations as

q̇L = fL, q̇C1 = fC1 , q̇C2 = fC2 , q̇C3 = fC3 ,

ṗL = −λ1, λ2 = −qC1

C1
, λ1 = −λ2 +

qC2

C2
, λ2 = −qC3

C3
,

pL = LfL, q̇L = q̇C2 , q̇C1 = q̇C2 − q̇C3 .

Representation (II). Using Representation (II) in (5) for the induced Dirac struc-
ture, it follows that an IPCL system in equation (8) can be represented by

0 = BT (q)
{

ṗ− ∂L

∂q
− F (q, v)

}
,
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0 = N(q) q̇,

q̇ = v,

p =
∂L

∂v
.

In the above, the constraint forces represented by Lagrange multipliers λ = (λ1, ..., λm)
are eliminated by premultiplying the matrix BT (q) and the equations of motion
for the system are given by the set of differential–algebraic equations for the 3n-
dimensional local coordinates (q, v, p) for TQ⊕ T ∗Q.

Example: L-C Circuits. By analogy with mechanics, dynamics of electric circuits
can be described in Representation (II) without Lagrange multipliers. As to the
representation (II) of the L-C circuit in Fig.1, the equations of motion

0 = BT (q)
{

ṗ− ∂L

∂q
− F (q, v)

}
are given, in coordinates, by

(
0
0

)
=
(
−1 −1 −1 0
0 1 0 −1

)


ṗL

0
0
0

−


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




0
qC1
C1
qC2
C2
qC3
C3


 ,

while the KCL constraints 0 = N(q) q̇ are given, in coordinates, by

(
0
0

)
=
(

−1 0 1 0
0 −1 1 −1

)
q̇L

q̇C1

q̇C2

q̇C3

 ,

together with pL = LfL and q̇L = fL, q̇C1 = fC1 , q̇C2 = fC2 , q̇C3 = fC3 .

Finally, the resultant equations of motion without Lagrange multipliers are
given by the following implicit differential-algebraic equations:

q̇L = fL, q̇C1 = fC1 , q̇C2 = fC2 , q̇C3 = fC3 ,

ṗL = −qC1

C1
− qC2

C2
, 0 = −qC1

C1
− qC3

C3
,

pL = LfL, q̇L = q̇C2 , q̇C1 = q̇C2 − q̇C3 .

4 Conclusions
In this paper, we showed how implicit port-controlled Lagrangian (IPCL) systems
can be developed in the context of Dirac structures with two representations: (1)
a standard representation with Lagrange multipliers and (2) a representation using
orthogonal complementary matrices that eliminates Lagrange multipliers. Espe-
cially, the latter representation enables one to obtain lower order system equations.
Finally, we demonstrated our theory of IPCL systems by an example of L-C circuits.
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