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Summary. This paper begins by recalling how a constraint distribution on a configu-
ration manifold induces a Dirac structure together with an implicit Lagrangian system,
a construction that is valid even for degenerate Lagrangians. In such degenerate cases,
it is shown in this paper that an implicit Hamiltonian system can be constructed by
using a generalized Legendre transformation, where the primary constraints are in-
corporated into a generalized Hamiltonian on the Pontryagin bundle. Some examples
of degenerate Lagrangians for L—C circuits, nonholonomic systems, and point vortices
illustrate the theory.

1 Introduction

In recent years, the theory of implicit Hamiltonian systems has been developed
along with associated formulations of physical systems, such as L-C circuits and
nonholonomic systems. This is a useful analytical tool, in which Dirac struc-
tures are employed to help understand how interconnected system elements are
energetically related and are systematically incorporated into the Hamiltonian
formalism; see, for instance, [9, 2, 8, 1]. The notion of Dirac structures, which
was first developed in [3], is also relevant to Dirac’s theory of constraints for
degenerate Lagrangian systems. However, research has only just begun on the
theory of implicit Lagrangian systems, and, in addition there is a need to un-
derstand how they are related to implicit Hamiltonian systems as well as with
Dirac’s theory of constraints.

Recently, the theory of implicit Lagrangian systems, namely, a Lagrangian
analogue of implicit Hamiltonian systems, has been developed by {10, 11]. This
theory, which also makes use of Dirac structures, has similar examples that can
be systematically treated from the Lagrangian viewpoint, namely nonholonomic
mechanical systems and degenerate Lagrangian systems, such as L-C circuits.

In the present paper, we investigate systems with degenerate Lagrangians and,
following [10], we first show how to construct a Dirac structure on the cotangent
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bundle 7% induced from a constraint distribution on a configuration manifold
Q. Second, we demonstrate how an implicit Lagrangian system can be con-
structed from the induced Dirac structure. Using this framework, we show how
to construct an implicit Hamiltonian system from a given, possibly degenerate,
Lagrangian. To do this, we make use of a generalized Legendre transformation
for degenerate Lagrangians to define a Hamiltonian on a constraint momentum
space P C T"(Q) and also define a generalized Hamiltonian on the Pontryagin
bundle TQ & T*Q by combining primary constraints in the sense of Dirac with
the Hamiltonian. Thus, we show how degenerate Lagrangian systems that are
useful in L-C circuits as well as in nonholonomic systems, can be represented
in the context of both implicit Lagrangian systems and Hamiltonian systems.
Lastly, we illustrate an example of degenerate Lagrangians for point vortices and
the KdV equations.

2 Induced Dirac Structures

Dirac Structures. We begin by reviewing the definition of a Dirac structure
on a vector space, following [3].

Let V be an n-dimensional vector space, V* be its dual space, and let {-,-)
be the natural paring between V* and V. Define the symmetric paring {-,-)) on
Ve V* by

<< (v, @), (777 @) >> = <a7 v) + (a, U>7

for (v,a),(v,@&) € V& V*. A Dirac structure on V is a subspace D C V @ V*
such that D = D+, where D+ is the orthogonal of D relative to the pairing
-

Let M be a smooth differentiable manifold whose tangent bundle is denoted
as T'M and whose cotangent bundle is denoted as T*M. Let TM & T* M denote
the Whitney sum bundle over M; that is, it is the bundle over the base M
and with fiber over the point x € M equal to T, M x T;M. An (almost) Dirac
structure on M is a subbundle D C TM ¢ T*M that is a Dirac structure in the
sense of vector spaces at each point x € M.

In geometric mechanics, (almost) Dirac structures provide a simultaneous gen-
eralization of both two-forms (not necessarily closed, and possibly degenerate)
as well as almost Poisson structures (that is brackets that need not satisfy the
Jacobi identity). An integrable Dirac structure, which corresponds in geometric
mechanics to assuming the two-form is closed or to assuming Jacobi’s identity
for the Poisson tensor, is one that satisfies

(£x,02, X3) + (£x,03, X1) + (£x,01, X2) =0,

for all pairs of vector fields and one-forms (X1, 1), (X2, a2), (X3, a3) that take
values in D and where £x denotes the Lie derivative along the vector field X
on M.

Induced Dirac Structures. We now construct induced Dirac structure, an
essential ingredient in the setting of implicit Lagrangian systems; see [10].
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Let @Q be an n-dimensional configuration manifold, whose kinematic con-
straints are given by a constraint distribution Ag C T'Q, which is defined, at
each ¢ € Q, by

Ag(q) ={veT,Q | (w*q),v) =0, a=1,..,m},
where w® are m one-forms on Q. Define the distribution Ar.g on T*Q by
Ar-q = (Tmg) ' (4q) CTT"Q,

where T'rg : TT*Q — TQ is the tangent map of 7o : T*Q — Q, while the
annihilator of Ar.q can be defined for each z = (¢,p) € T*Q, by

A% o(z) = {a, e T;T*Q | {0z, w;) =0 for allw, € Ar-g(2)}.

Let £2 be the canonical symplectic structure on T*@Q and §2° : TT*Q — T*T*Q
be the associated bundle map. Then, a Dirac structure D, on T*Q induced
from the constraint distribution Ag can be defined for each z = (q,p) € T*Q,
by

Da,(2) ={(w:, ) e T, T*Q x T;T*Q | w, € Ar-g(2),
and o, — 2°(2) - w, € Af.g(2) }.

Local Representation. Let us choose local coordinates ¢* on @ so that lo-
cally, @ is represented by an open set U C R™. The constraint set Ag defines
a subspace of TQ, which we denote by A(q) C R"™ at each point ¢ € U. If
the dimension of the constraint space is n — m, then we can choose a basis

em—}—l(q)’ 6m+2(q), cee aen<Q) of A(q)

The constraint sets can be also represented by the annihilator of A(g), which is

denoted by A°(q), spanned by such one-forms that we write as wlhiw? . w™

Since the cotangent bundle projection ng : T*Q — @ is locally denoted as
(g,p) — g, its tangent map may be locally given by T'ng : (¢,p,4,D) — (q,49).
So, we can locally represent Ar.g as

Areq 2 {vgp = (@,0,4:0) | g€ U, € A(g)} .
Then, the annihilator of Ap«¢ is locally represented as
A3 = {0y = (¢.p.0,w) | g €U, a € A°(g) and w = 0}.

Because of the local formula 2°(z) - v, = (g, p, —p, §), the condition o, — 2°(z) -
v, € A%*Q reads
a+pe A°(q), and w—¢=0.

Thus, the induced Dirac structure is locally represented by

Dao(2) ={((¢;p,6:0), (¢ pr 0, w)) | § € Alq), w=¢, a+p€ A°(q)}. (1)
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3 Implicit Lagrangian Systems

Dirac Differential Operator. Let L : TQ) — R be a Lagrangian (possibly
degenerate). The differential of L is the map dL : TQ — T*T(Q, which is locally
given, for each (q,v) € TQ, by

L OL
dL = <q7U7 8_(]’ 55) .

Define the Dirac differential of a Lagrangian L, to be the map
DL.TQ->T'T"Q

defined by
DL = ygodlL.

Here, the map vg : T*T'Q — T*T*Q is the natural symplectomorphism (see
[10]), which is defined by »
o =2 orgl,

where 2° : TT*Q — T*T*Q is the induced map from 2 and ko : TT*Q —
T*T(Q) is the natural symplectomorphism (see [7]). In coordinates, the symplec-
tomorphism vg : T*TQ — T*T*() is given by

(g,6q,6p,p) — (q,p, —bp, bq)

and hence the Dirac differential of L is locally given, at each (q,v) € TQ, by

oL 0L
DL = (q, %,——8—&,’1)> . (2)

Implicit Lagrangian Systems. An implicit Lagrangian system is a triple
(L, Ag, X ), which satisfies the condition

(X,DL) € Day, (3)

where X : Ag @ P CTQ®T*Q — TT*Q is a partial vector field defined at
points (v, p) € Ag x P, where P = FL(Ag); that is, X assigns a vector in T,7*Q
to each point (g,v,p) € Ag & P. We write X (q,v,p) = (¢,p, 4, D), so that ¢ and
p are functions of (g, v, p).

Equality of base points in (3) implies that p is given by the Legendre trans-
formation, and so one can equivalently say that X depends only on (g, v) with
p determined by the Legendre transform. That is, equation (3) means that for
each (g,v) € Ag C TQ, we have

(X(g,v,p).DL(q,v)) € Dag(a,p), (4)
where (¢,p) = FL(g,v). It follows from equations (1), (2) and (4) that
oL . ., OL o
p=75, (€4, ¢=v, and P= g €@ (5)
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A solution curve of an implicit Lagrangian system (L, Ag,X) is a curve
(q(t),v(t),p(t)) € TQ & T*Q,t; <t < ty, such that it is an integral curve
of X in the sense that the time derivative of (q(t), p(¢)) = FL(q(t),v(t)) coin-
cides with the value of X (q(t),v(#),p(t)), which is a vector in T at the point
(q(t), p(t)) = FL(q(t), v(t)).

Note that for the case Ag = T'Q the condition of an implicit Lagrangian
system is equivalent to the Euler-Lagrange equations p = dL/0q together with
the second order condition ¢ = v.

Energy Conservation. We now show that energy is conserved for any implicit
Lagrangian system (L, Ag, X). Define the generalized energy E on TQ & T(Q)
by

E(q,v,p) = (p,v) — L(g,v).
Let (g(2),v(t)), t1 <t < t3, be the solution curve of implicit Lagrangian systems
together with (q(t), p(t)) = FL(q(t), v(t)); thus,

d i .. OL. 0oL,
—E(q,v,p) = (p,v) + (p,) — AT

dt
/0L
- p aq » U
which vanishes since ¢ = v € A(q), p=8L/0v and p — IL/dq € A°(q).

Remark. Using the generalized energy E on T'Q & T*Q, the condition for an
implicit Lagrangian system (L, Ag, X ), namely, (X,DL) € Da,, can be restated
as (X,dE|rr-g) € Da, together with the Legendre transform P = FL(Ag).
Namely, the following relation holds, for each (¢,v) € Ag,

(X(q,v,p),dE(q,v,p)|1,, ,,1+@) € Dag(a,p),

together with (q,p) = FL(q,v). The restriction dE(q,v,p)|r, ,, 7@ is under-
stood in the sense that T{, ,»T*Q is naturally included in (g, ) (TQ & T*Q).

Coordinate Representation. In coordinates, since the one-forms w?, ...,w™
span a basis of the annihilator A°(g) at each ¢ € U C R", it follows that
equation (5) can be represented in terms of Lagrange multipliers p,, a = 1,...,m

as follows:
(qi ) — ( 01 ) oq* ( 0 )
pi 10 vi Ha W (q) ’

o oL
pl - 8’Ui,
0=wl(g)v’,

where w? = w? dq'.
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Later, we shall see that L—C circuits, which are a typical degenerate La-
grangian system, can be represented by equation (6) in the context of implicit
Lagrangian systems [10].

Example: Lagrangians Linear in the Velocity. Consider a system with the
Lagrangian L : TQ) — R given by

L(qivvi) = <al(qj)7 vi> - h(ql)v Z?] = 17"'7"»

where o is a one-form on @ and A is a function on Q. This form arises in various
physical systems such as point vortices and the KdV equation (see, for instance,
5, 6]). It is obvious that the Lagrangian is degenerate.

Since there are no kinematic constraints, it follows from equation (6) that
equations of motion are given by

q' =1,

s 0L _00i(a) ,  0hlg
Y gt Oq* dqt
o,

Pi = gl q)-

4 Implicit Hamiltonian Systems

Degenerate Lagrangians. Let @ be a manifold, L be a Lagrangian on T'Q
and Aq a given constraint distribution on Q. The constraint momentum space
P C T*Q is defined to be the image of Ag under the Legendre transform
FL:TQ — T*Q; namely, P = FL(Ag), which in coordinates, is represented by

i i 0L .
(qvpl)_ (q’a’l)i>7 Z—].,...,TL.

Now, suppose that L is degenerate; that is,

2L o
det ,:W:l = 07 t, ] = 1, vy T,

and also that the dimension of P, at each ¢ € Q is a fixed integer k (0 < k < n),
and the submanifold P can be represented by, at each q € Q,

Py={peT;Q|¢alg,p) =0, A=k+1,...n}, (7)

where ¢4, A =k +1,...,n, are functions on T;Q. The functions ¢4(q,p) = 0 in
equation (7) are called primary constraints when Ag = TQ (see, for instance,
[4]), and we shall continue to call them primary constraints even in the case
of Ag C TQ. Needless to say, if the Lagrangian is regular, then there are no
primary constraints.

Thus, we can choose the local coordinates (@', pr),i=1,...,n; A= 1,.., kfor
P C T*Q together with the partial Legendre transform
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oL
=5, A=1,..,k
Px 6'0)‘7 ’ y vy

where

0L
det ’:WJ 7é 0, A, H = 1, ...,k,

and v = (v*,v4) are local coordinates for T4Q and with the constraints v € A(g).

Generalized Legendre Transform. Define a generalized energy F on the
Pontryagin bundle TQ ® T*Q by

E(¢" v, pi) = piv' — L(¢*,v")
=pav +pavt — L(g’, v, vh),

where p; = (px,pa). Then, the Hamiltonian Hp on P can be defined by
Hp(¢',py) = stat .« E(¢', v, p;)| P,

where stat . is the stationarity operator (defining a critical point in the vari-
able v). In view of the primary constraints in (7), we can define a generalized
Hamiltonian H by

H(q',v",pi) = Hp(¢', px) + da(q’, pi) v

which has the property that H|P = Hp (but it does depend on how we split the
coordinates for p; and v*). In the above, va, A= k+1,...,n, are local coordinates
for an (n — k)-dimensional subspace of T,Q, which can be regarded as Lagrange
multipliers for the primary constraints ¢4 (¢*,p;) = 0. The range of the index A
varies according to the degeneracy of the Lagrangian, namely, 0 < k < n. So,
the generalized Hamiltonian H may be regarded as a function on TQ ® T*Q.

Implicit Hamiltonian Systems. The differential of the generalized Hamilto-
nian A : TQ&T*Q — Ris in coordinates given by, for each (g:v,p) € TQDOT*Q,

<8H OH 8H)

dH(Q7v7p): a—q’gv—’a—p

where we can obtain the primary constraints by setting

OH .
- =0a(¢",pi)) =0, A=k+1,..,n.
ov

Meanwhile, since dH (g, v, p) takes its values in L ) (TQ®T*Q), the restriction
of the differential of H to TigpT*Q is

OH O6H
dH(q,v,p)l1,, , 10 = (c‘Tq’ %) '
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Then, an implicit Hamiltonian system is a triple (H, Ag, X), which satisfies the
condition

(X(g,p),dH(q,v,p)|1,, ,,7+q) € Dag(q,p), (8)
where X = (q,p, ¢,p) is a vector filed on T*Q.

The local expression for implicit Hamiltonian systems in equation (8) is given
by

. _ 0H(q,v,p) ., OH(g,v,p) _
= - —_— 9
q oy c4@, Pt 9 €4 (9) (9)
and with the primary constraints
OH(q,v,
% = ¢alg,p) = 0. (10)

Coordinate Representation. In coordinates, recall the one-forms w', ..., w™
span a basis of the annihilator A°(g) at each ¢ € U € R™, and it follows from
equations (9) and (10) that

@\ _(01 %ﬂ 0
<m) (—1 o) 8H(aq,iv,p) " (na w?(q)) ’
3H(q,?,p1)) ()

0=wi(g) oy
0=0al¢",pi), A=k+1,...n,

where w® = w? dg* and we employed the Lagrange multipliers u,, a = 1,...,m.

Example of a Lagrangian Linear in the Velocity. Again let us consider
the example the Lagrangian L : TQ — R, which is given by

L', v") = (ai(¢’), v') = h(g"), i,j = 1,..,m.
By a direct computation, we obtain the primary constraints as
0u(a’ps) =pi = 5 = pi —aulg?) =0,

so that the submanifold P is the graph of a in T*@Q. Define a generalized energy
EonTQ&T*Q by

E(ql’ ’Uiapi) = Di vi - L(q27 Ui)
= (pi — i(¢’)) v* + h(q")
and the Hamiltonian Hp on P can be defined by

Hp(q',pi) = stat, E(¢',v', p;)|P = h(q'),
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where p; = a;(¢?). Hence, the generalized Hamiltonian H on TQ &T"Q is given
by

H(q',v',pi) = Hp(g',pi) + ¢i(d", pi) v*
= h(q") + (pi — ai(g’)) V",
where we note H|P = Hp. Therefore, the equations of motion are given, in the
context of implicit Hamiltonian systems, by

, O0H
= Opi -
5= _OH _ da;(q) i oh(q)
oq aq’ g
OH . '
=d:(¢7 ;) =1p;, — a;(¢°) =
v ¢i(¢’,pj) =pi —ou(¢’) = 0.

5 Examples of L-C Circuits

As an Implicit Lagrangian System. Consider the illustrative example
of an L—C circuit shown in Fig. 1, which was also investigated in [8]. In the
L-C circuit, the configuration space W is a 4-dimensional vector space, that
is, W = R*. Then, we have TW (2 W x W) and T*W (2 W x W*). Let
q = (qr,qc,,9c,,9c,) € W denote charges and f = (fr, fou, fe,, fos) € T,W
currents associated with the L-C circuit.

! €L 1
= |
— —— IO
L f
eCQ eCl 603
o c, — Cs ___
Tf02 fClL fcal
BN 1

Fig. 1. L-C Circuit

The set of currents satisfying the KCL (Kirchhoff current law) constraints
forms a constraint subspace A C TW, which we shall call the constraint KCL
space that is defined, for each ¢ € W, by

Alg) ={f €TW | (v, f) =0, a=1,2},

where f = (fl, f2a f37 f4) = (fLa fC1 ’ fC27 sz) and w® denote 2‘independent
covectors (or one-forms) represented, in coordinates, by
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W =wldd®, a=1,2;k=1,..4,

where ¢ = (¢%,¢%,¢%,¢*) = (qr,9c,,9c,, c,)- In this example, the coefficients
wy are given in matrix representation by

o _(-1010
“e=lo0 —11-1)"
Consistent with the general theory, the induced distribution Ap«y on T*W is
defined by the KCL constraint distribution A € TW by

Ar-w = (Trw) ™' (A) C TT*W,

where my : T*W — W is the canonical projection and Twy : TT*W — TW.
Recall that the constraint set A C TW is represented as the simultaneous kernel
of a number of constraint one-forms; that is, the annihilator of A(q), which is
denoted by A°(q), is spanned by such one-forms, that we write as w!, w?, ..., w™.
Now writing the projection map 7w : T*W — W locally as (g,p) — g, its
tangent map is locally given by Tmw : (q,p,4,p) — (¢,4). Then, we can locally
represent Ay as

AT*W = {v(q,p) = (Qap7Q7p) | qc Uvq € A(q)} .

Let points in T*T*W be locally denoted by a(, ) = (q,p,, w), where o is a
covector and w is a vector, and the annihilator of Ap.y is

Ao ={agpy =(@,pa,w) | g€ U, a€ A%(g) and w =0} .

Recall also from equation (1) that the Dirac structure D4 on T*W induced from
the KCL constraint distribution A is locally given, for each (¢, p) € T*W, by

Da(g,p) = {{(¢,p,4,:p), (g, p,,w)) | § € Alg), w=¢, a+pe A°(q)}.

Let T : TW — R be the magnetic energy of the L-C circuit, which is defined
by the inductance L such that

T,(f) = 5L ()"

and let V : W — R be the electric potential energy of the L-C circuit, which is
defined by capacitors Cy, Ca, and C5 such that

_1(ge,)? | 1(gc,)? | 1(gc,)?
V(Q)—2 C. +3 . +5 o

"~ Then, we can define the Lagrangian of the L-C circuit £: TW — R by

L(g, f) =To(f) = V(g

_ 1 2 1 (q01)2 _ l(qcz)z _ E(QC3)2
=3k =35 . 2 C, 2 C;
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It is obvious that the Lagrangian £ : TW — R of the L-C circuit is degenerate,
since

oL

det {——8fi3fj

] =0; 4,5=1,..,4.

The constraint fluz linkage subspace is defined by the Legendre transform:
P=FL(A) CT"W.
In coordinates, (q,p) = FL(g, f) € T*W, and it follows

oc oL or ac)
avaafC;asz’asz ’

(vapCupCz,pCs) = <

from which we obtain
pr=1LfL
and with the constraints

pc, =0, pc, =0, pc, =0,

which correspond to primary constraints in the sense of Dirac. Needless to say,
the primary constraints form the constraint flux linkage subspace P C T"W,
which immediately reads

(q7p) = (qLquUQCQaQC;w pL,0,0,0) e P.

Let X : TW & T*W — TT*W be a partial vector field on T*W, defined at
each point in P, with components denoted by

X(q, f,p) = (4L, dcy»dcs» dess PL, 0,0,0).
Since the differential of the Lagrangian dL(q, f) = (0L/0q,0L/0f) is given by

qc qc qc
dL s = Oa_ la— 27__37-[/ 1070-0 ’
(¢.f) ( G0, G fr )

the Dirac differential of the Lagrangian DL(q, f) = (—0L/dq, f) is given by

_ (0.9 9o o
DL(qu)_ <0a Cl s 027 Ca,vafClfobfoa)

together with p = 9L/8f.
Thus, the L-C circuit can be represented in the context of implicit Lagrangian
systems (£, A, X) by requiring that, for each (g, f) € A CTW,

(X(q7 fap)’@‘c(qv f)) € DA(va)

holds and with the Legendre transform (q, p) = FL(q, f). Therefore, the implicit
Lagrangian system for this L-C circuit may be locally described by
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qL 0 0 0 0]1000 qg 0 0
dc, 0 0 0 0J0100 <y 0 0
dc, 0 0 0 0010 | %2 0 0
des | 1 0 0 0 00001 1 . 0 0 (m)
b -10 0 00000 5 -1 0 Hh2
0 0 -10 00000 L 0 —1
0 0 0 -101[0000 fer 1 1
0 0 0 0 —1[0000 fe, 0 —1
fcs

together with the Legendre transformation

=1L fr.

The above equations of motion are supplemented by the KCL constraints

fr
0y _(-1010)\]| fo
<0> _<0 —11—1> fe,
fea

Finally, we can obtain the implicit Lagrangian system for this L-C circuit as

9L = fL, dc, = fey, de. = foy, do, = fess

DL = —pa1,

—_9a - _ qc, = _49cs
Ha2 = Cl7)u'1 /J’2+C2a,u‘2 033
pL =1L fi,

fL = szv fc1 = sz —fCS'

Representation as an Implicit Hamiltonian System. Next, let us il-
lustrate this example of an L-C circuit in the context of implicit Hamiltonian
systems via the generalized Legendre transformation.

First, define the generalized energy E on TW & T*W by

E(¢', f',p:) = pi f* = L(d', F7)
=PL fL +Ppc, fcl +pC’2 fcz +pCs fC3
1 (qcl)z E(QC’2)2 1 (QC3)2

1 2
R TE Yy e T e

In the above, (p1,p2,ps,ps) = (PL,PCy,PCys PCy)- Therefore, we can define the
constrained Hamiltonian Hp on P ¢ T*W by

HP(qiap/\) = Sta’tfi E(qi’ fiypi)|P

1 _ 1(gci)? | 1(4c,)?  1(qe,)?
=211 2 - 1 - 2 = 3
gL )"+ 3 o i Yo
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where A = 1, that is, p; = pr and we employed the inverse partial Legendre
transformation

fu=L"'p..

Since the primary constraints are given by

¢2:pC1 :Oa ¢3:p02:0’ ¢4:p03:05

we can define a generalized Hamiltonian H on TW & T*W by

H(¢', f'pi) = Hp(g',p2) + dald’,pi) fA
_1. 2 1(%‘1)2 1(q02)2 1(q03)2
=5l )+ . T2 e taa

+pc, fe, +pc, fo, + e, fo,-

The differential of H is given by

. OH 8H O6H
dH = (qzv flvpiﬁ )

dq 9f* dp;
Considering the primary constraints, we can set

OH .
gja = 0aldp) =pa=0, A=234

restriction dH(q, f,p) : T(q 5., (TW & T*W) — R to TigpT*W is

O0H OH
dH(Qafap”T(q,p)T*W - < >’

9q'" dp,

which gives

_ qc, 4o, qo -1
dH(Q’ fap)'T(q,p)T"‘W - (07 Cllv 022 > C—;v L vafCUszfog) .

Hence, the L-C circuit can be represented as an implicit Hamiltonian system
(H, A, X) that satisfies, for each (q,p) € T*W,

(X(Q7p)7 dH(Q» f7 p)IT(q,p)T*W) € DA(Qap)

together with the primary constraints

Recall that the vector filed X on T*W is given in coordinates by

X(qap) = (QLan1voQaqc:3a pInOvaO) .

Then, it follows from equation (11) that the implicit Hamiltonian system for the
L-C circuit can be represented in coordinates as
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L 0 0 0 0/1000 4oy 0 0
dc, 0 0 0 00100 chl 0 0
e, 0 0 0 0/0010 o 0 0
ges [ | 0 0 0 0jo001 ac . 0 0 <u1>,
; ~10 0 00000 -1 0 po
L -1
0 010 0[0000 Lf”L 0 -1
0 0 0 -10610000 fcl 1 1
0 0 0 0 —1/0000 Ca 0 —1
fcs

where the primary constraints

Pc, =Pc; =ps =0

have been incorporated. The above equations of motion are accompanied with
the KCL constraints

L~ pr,
0\ (-1010 fe,
()= %) &
fes

Finally, the implicit Hamiltonian system for the L-C circuit can be locally given
as follows:

qr = L' pr, 4oy = fors dcy = fous oy = fos,
pL = —Hi,

_ 9o 40 4G
Uz = Cl,ul N2+02,M2 s

L_lpL = szv fCl = sz - f03~

It seems that this Hamiltonian view of this electric circuit is consistent with that
presented in [8] and [2]. Note that the present approach derives the Hamiltonian
structure in a systematic way from a degenerate Lagrangian, whereas the direct
Hamiltonian approach requires some ingenuity to derive and its applicability to
all cases is not clear.

6 Conclusions

The paper started by reviewing how a Dirac structure on a cotangent bundle is
induced from a constraint distribution. In this context, implicit Lagrangian sys-
tems can be introduced in association with this induced Dirac structure, which is
available for degenerate Lagrangians. It was shown how an implicit Hamiltonian
system can be defined by a generalized Legendre transformation, starting with
a generalized Hamiltonian on the Pontryagin bundle of a configuration manifold
by incorporating the primary constraints that are present due to the possible de-
generacy of the Lagrangian. The techniques were illustrated via some examples
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of degenerate Lagrangians with constraints, namely for L-C circuits and point
vortices, as well as for nonholonomic systems, where the Lagrangian is typically
nondegenerate, but constraints are present.
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