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ABSTRACT
This paper formulates the dynamical equations of mechan-

ics subject to holonomic constraints in terms of the states and
controls using a constrained version of the Lagrange-d’Alembert
principle. Based on a discrete version of this principle, a struc-
ture preserving time-stepping scheme is derived. It is shown that
this respect for the mechanical structure (such as a reliable com-
putation of the energy and momentum budget, without numerical
dissipation) is retained when the system is reduced to its mini-
mal dimension by the discrete null space method. Together with
initial and final conditions on the configuration and conjugate
momentum, the reduced time-stepping equations serve as non-
linear equality constraints for the minimisation of a givencost
functional. The algorithm yields a sequence of discrete config-
urations together with a sequence of actuating forces, optimally
guiding the system from the initial to the desired final state. The
resulting discrete optimal control algorithm is shown to have ex-
cellent energy and momentum properties, which are illustrated
by two specific examples, namely reorientation and repositioning
of a rigid body subject to external forces and the reorientation of
a rigid body with internal momentum wheels.

∗Address all correspondence to this author.

INTRODUCTION

This work combines two recently developed methods,
namely the discrete null space method which is suitable for the
accurate, robust and efficient time integration of constrained
dynamical systems (in particular for multibody dynamics) and
a new approach to discrete mechanics and optimal control
(DMOC) based on a discretisation of the Lagrange-d’Alembert
principle.

From the variety of methods to enforce holonomic con-
straints in the framework of the Hamiltonian or Lagrangian for-
malism (see e.g. [1, 2] and for a computational approach [3]),
the focus here is on two methods yielding exact constraint fulfil-
ment, the Lagrange multiplier method and a null space method,
described e.g. in [4]. Because of the relatively simple structure of
the evolution equations emanating from the Lagrange multiplier
method, their temporal discrete form can be derived easily using
mechanical integrators as demonstrated among others in [5–7].
However, the presence of the Lagrange multipliers in the setof
unknowns enlarges the number of equations to solve and causes
the discrete system to be ill-conditioned for small time-steps as
reported by [8, 9]. In contrast to that, the use of a specific null
space method, especially in conjunction with a reparametrisation
in generalised coordinates, has the advantageous propertyof a
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small dimensional system of equations. On the other hand, these
evolution equations have a highly complicated structure, causing
the derivation of their temporal discrete form to be expensive and
therefore, in most cases, not recommended [10,11].

A remedy for these difficulties is found in the discrete null
space method introduced in [12] which proposes a reversal of
the two main steps when designing a specific numerical method.
First of all, the discrete form of the simple structured DAEs
resulting from the use of the Lagrange multiplier method is
derived using a mechanical integrator, e.g. an energy-momentum
conserving integrator [5, 6] or a variational integrator leading
to a symplectic-momentum conserving scheme [7]. For forced
systems, both methods correctly compute the change in momen-
tum maps. The evolution of energy is represented accurately
by the first class of schemes while the latter captures these
changes qualitatively. The transition to the reduced scheme and
finally the nodal reparametrisation are performed in the temporal
discrete setting in complete analogy to the procedure described
in the continuous case according to the so-called discrete null
space method. The resulting time-stepping scheme performs
excellently in all relevant categories. First of all, it yields the
smallest possible dimension for the system of equations, promis-
ing lower computational costs than other schemes. Secondly, it
is second order accurate and inherits the conservation properties
from the constrained scheme and thirdly, the condition number
of the scheme is independent of the time-step. Summarising,the
discrete null space method is especially suited for the accurate
simulation of large dimensional systems subject to a high
number of constraints. In particular the resulting equations lend
themselves as dynamics constraints in an optimisation algorithm
since only the exactly required number of unknowns has to be
determined.

To find local solutions of nonlinear optimal control
problems consisting of a given cost functional and equations
describing the underlying dynamics of the system, a numerical
method falling into the class of direct methods is used here.
Thereby, the state and control variables are discretised directly
in order to transform the optimal control problem. The resulting
finite dimensional nonlinear constrained optimisation problem
can be solved by standard nonlinear optimisation techniques like
sequential quadratic programming [13–15]. In contrast to other
methods like, e.g. shooting [16–18], multiple shooting [19–21],
or collocation methods [22,23], relying on a direct integration of
the associated ordinary differential equations or on its fulfillment
at certain grid points (see also [24, 25] for an overview of the
current state of the art), a recently developed method DMOC
(Discrete Mechanics and Optimal Control, [26]) is used here.
It is based on the discretisation of the variational structure of
the mechanical system directly. In the context of variational
integrators [27], the discretisation of the Lagrange-d’Alembert
principle leads to structure preserving time-stepping equations

which serve as equality constraints for the resulting finite
dimensional nonlinear optimisation problem. In [26, 28, 29]
the described method was firstly applied to low orbital thrust
transfers and the optimal control of formation flying satellites
including an algorithm that exploits a hierarchical structure of
that problem. In [30], it has been applied to a multibody system
formulated in generalised coordinates.

In this work, DMOC is used to find optimal trajectories of
state and control variables for systems of rigid bodies combined
with joint constraints. Each rigid body is viewed as a constrained
continuum, i.e. it is described in terms of redundant coordinates
subject to holonomic constraints [31, 32]. Then the equations
of motion assume the form of DAEs with a constant mass ma-
trix. Their temporal discrete form can be derived and reduced
according to the discrete null space method. This procedurehas
the advantage of circumventing the difficulties associatedwith
rotational parameters [33, 34] and it can be generalised easily to
the modelling of geometrically exact beams and shells and to
multibody systems consisting of theses structures as developed
in [35–37]. The reduced time-stepping equations then serveas
constraints in the optimisation algorithm.

The combination of the two proposed methods involves sev-
eral specific benefits. First of all, the discrete dynamics equations
constraining the optimal control problem when using DMOC can
be formulated easily. Using the discrete Lagrange-d’Alembert
principle, they are derived as the discrete analog to the simple
structured evolution equations whereby the configuration con-
straints are enforces using Lagrange multipliers. Secondly, the
discrete null space method reduces the dynamics constraints to
the smallest possible number of equations and variables which
leads to lower computational cost for the optimisation algorithm.
Thirdly, the benefit of exact constraint fulfilment, correctcom-
putation of the change in momentum maps and good energy be-
haviour is guaranteed by the optimisation algorithm. Theseben-
efits are of high importance especially for high dimensionalrigid
body systems combined with joint constraints.

CONSTRAINED DYNAMICS AND OPTIMAL CONTROL
Consider ann-dimensional mechanical system with the

time-dependent configuration vectorq(t) ∈ Q and velocity vec-
tor q̇(t) ∈ Tq(t)Q, wheret ∈ [t0,tN] ⊂ R denotes the time. Let the
configuration be constrained by the functiong(q) = 0∈ R

m and
influenced by the force fieldf :W×TQ→T∗Q. Due to the pres-
ence of constraints, the forcesf are not independent. They can
be calculated in terms of the time dependent generalised control
forcesτ(t) ∈W ⊆ R

n−m.

Optimisation problem. The goal is to determine the op-
timal force field, such that the system is moved from the initial
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state(q0, q̇0) to the final state(qN, q̇N) while the cost functional

J(q, q̇, f ) =
Z tN

t0
B(q, q̇, f (τ,q, q̇))dt (1)

is minimised.

Constrained Lagrange-d’Alembert principle. Con-
temporaneously, the motion(q, q̇) has to be in accordance with
an equation of motion which in the present case is based on a
constrained version of the Lagrange-d’Alembert principle(see
e.g. [38]) requiring

δ
Z tN

t0
L(q, q̇)−gT(q) ·λdt+

Z tN

t0
f (τ,q, q̇) ·δqdt = 0 (2)

for all variationsδq ∈ TQ and δλ ∈ R
m vanishing at the end-

points. The LagrangianL : TQ→ R comprises the kinetic en-
ergy 1

2 q̇T ·M · q̇ including the consistent mass matrixM ∈ R
n×n

and a potential functionV : Q → R. Furthermore,λ(t) ∈ R
m

represents the vector of time dependent Lagrange multipliers.
The constrained Lagrange-d’Alembert principle (2) leads to the
differential-algebraic system of equations of motion

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
−GT(q) ·λ+ f (τ,q, q̇) = 0

g(q) = 0
(3)

whereG(q) = Dg(q) denotes the Jacobian of the constraints. The
vectorGT(q) ·λ represents the constraint forces that prevent the
system from deviations of the constraint manifold

C = {q∈ Q|g(q) = 0} (4)

Null space method. Assuming that the constraints are
independent, for everyq ∈ C the basis vectors ofTqC form an
n× (n−m) matrix P(q) with corresponding linear mapP(q) :
R

n−m → TqC. This matrix is called null space matrix, since

range(P(q)) = null(G(q)) = TqQ (5)

Thus a premultiplication of the differential equation (3)1 by
PT(q) eliminates the constraint forces including the Lagrange
multipliers from the system. The resulting equations of motion
read

PT(q) ·
[

∂L(q, q̇)

∂q
− d

dt

(
∂L(q, q̇)

∂q̇

)
+ f (τ,q, q̇)

]
= 0

g(q) = 0
(6)

Reparametrisation. For many applications it is possi-
ble to find a reparametrisation of the constraint manifoldF :
U ⊆ R

n−m →C in terms of independent generalised coordinates
u∈ U . Then the JacobianDF(u) of the coordinate transforma-
tion plays the role of a null space matrix. Since the constraints
(3)2 are fulfilled automatically by the reparametrised configura-
tion variableq = F(u), the system is reduced ton−m second
order differential equations. This is the minimal possibledimen-
sion for the present mechanical system which consists of pre-
ciselyn−m configurational degrees of freedom. Consequently,
there aren−m independent generalised forcesτ ∈ W ⊆ R

n−m

acting on the degrees of freedom. These can be calculated as

τ =
(

∂F
∂u

)T
· f , see e.g. [39].

CONSTRAINED DISCRETE DYNAMICS AND OPTIMAL
CONTROL

A variational integrator is chosen to derive the temporal dis-
crete version of the dynamical problem at hand. In [7], a vari-
ational integrator has been employed to simulate a constrained
problem, whereby Lagrange multipliers have been used to en-
force the constraints. For a detailed introduction to discrete me-
chanics and variational integrators see [27].

Corresponding to the configuration manifoldQ, the discrete
phase space is defined byQ×Q which is locally isomorphic to
TQ. For a constant time-steph∈ R, a pathq : [t0,tN] → Q is re-
placed by a discrete pathqd : {t0,t0 +h, , . . . ,t0 +Nh= tN}→ Q,
N ∈ N, whereqn = qd(t0 + nh) is viewed as an approximation
to q(t0 +nh). Similarly, λn = λd(tn) approximates the Lagrange
multiplier at tn = t0 + nh, τn = τd(tn) approximates the gener-
alised control force and the force fieldf is approximated by two
discrete forcesf−n , f +

n : W×Q→ T∗C.

Discrete constrained Lagrange-d’Alembert princi-
ple. According to the variational integrator in use, the action
integral in (2) is approximated in a time interval[tn,tn+1] using
the discrete LagrangianLd : Q×Q→ R via

Ld(qn,qn+1)−gT
d (qn+1) ·λn+1 ≈

Z tn+1

tn
L(q, q̇)−gT(q) ·λdt (7)

Among various possible choices to approximate this integral, the
midpoint rule is in use for the Lagrangian, i.e.

Ld(qn,qn+1) = hL

(
qn+1 +qn

2
,
qn+1−qn

h

)
(8)

and the constraints and multipliers are evaluated at the time nodes
themselves

gT
d (qn+1) ·λn+1 = hgT(qn+1) ·λn+1 (9)
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Likewise, the virtual work is approximated in a time interval
[tn,tn+1] by

Z tn+1

tn
f (τ,q, q̇) ·δqdt≈ f−n ·δqn + f +

n ·δqn+1 (10)

wheref +
n , f−n are called the left and right discrete forces, respec-

tively. They are specified in (16).
The discrete version of the constrained Lagrange-

d’Alembert principle (2) requires the discrete path{qn}N
n=0

and multipliers{λn}N
n=1 to fulfil

δ
N−1

∑
n=0

Ld(qn,qn+1)−gT
d (qn+1)·λn+1+

N−1

∑
n=0

f−n ·δqn+ f +
n ·δqn+1 = 0

(11)
for all variations{δqn}N

n=0 and{δλn}N
n=1 with δq0 = δqN = 0

andδλ1 = δλN = 0, which is equivalent to the constrained forced
discrete Euler-Lagrange equations

D2Ld(qn−1,qn)+D1Ld(qn,qn+1)−GT
d (qn) ·λn + f +

n−1 + f−n = 0

g(qn+1) = 0
(12)

for n= 1, . . . ,N−1 whereGd(qn) denotes the Jacobian ofgd(qn).
Note that the time-stepping scheme (12) has not been deduced
discretising (3), but via a discrete variational principle.

Discrete null space method. The reduction of the
time-stepping scheme (12) can be accomplished in analogy to
the continuous case according to the discrete null space method.
In order to eliminate the discrete constraint forces from the equa-
tions, a discrete null space matrix fulfilling

range(P(qn)) = null(G(qn)) (13)

is employed.

Remark It is important to note, that the choice to evaluate
the constraints and the Lagrange multipliers at the time nodes
in (9) causes the evaluation of the constraint Jacobian in (12)
at the time nodes. Therefore a discrete null space matrix with
the property (13) can simply be found by evaluation of the
continuous null space matrix at the time nodes. Acquaintance
of the continuous null space matrix for a specific mechanical
system always yields an explicit representation of the discrete
null space matrix for the symplectic-momentum conserving
time-stepping scheme emanating from the discrete variational
principle in conjunction with the chosen approximation. This
is in contrast to energy-momentum conserving time-stepping

schemes based on the concept of discrete derivatives [12, 40]
or on finite elements in time [5], where the discrete constraint
JacobianG(qn,qn+1) depends on both the present and the
unknown configuration.

Analogue to (6), the premultiplication of (12) by the trans-
posed discrete null space matrix cancels the constraint forces
from the system, i.e. the Lagrange multipliers are eliminated
from the set of unknowns and the system’s dimension is reduced
to n.

PT(qn) ·
[
D2Ld(qn−1,qn)+D1Ld(qn,qn+1)+ f +

n−1 + f−n
]

= 0

g(qn+1) = 0
(14)

Nodal Reparametrisation. Similar to the continuous
case, a reduction of the system to the minimal possible dimen-
sion can be accomplished by a local reparametrisation of thecon-
straint manifold in the neighbourhood of the discrete configura-
tion variableqn ∈C. At the time nodes,qn is expressed in terms
of the discrete generalised coordinatesun ∈U ⊆ R

n−m, such that
the constraints are fulfilled.

F : U ⊆ R
n−m×Q→C i.e. g(qn) = g(F(un,qn−1)) = 0

(15)
Furthermore, the components of the discrete force vectorsf +

n
and f−n are also not independent. They can be calculated using
the the discrete generalised forcesτn−1,τn ∈ W ⊆ R

n−m as fol-
lows.

f +
n−1 =

h
2

f (τn−1,qn) , f−n =
h
2

f (τn,qn) ∈ T∗
qn

C

f n =
1
2

(
f
(
τn,qn+1

)
+ f (τn,qn)

)

f d = { f n}N−1
n=0

(16)

Note that the discrete generalised control forces are assumed to
be constant in each time interval, see Fig. 1. Thusf +

n−1 denotes
the effect of the generalised forceτn−1 acting in [tn−1,tn] on qn
while f−n denotes the effect onqn of τn acting in[tn,tn+1].

Insertion of the nodal reparametrisations for the configura-
tion (15) and the force (16) into the scheme redundantises (14)2.
The resulting scheme

PT(qn) ·
[
D2Ld(qn−1,qn)+D1Ld(qn,qn+1)+ f +

n−1 + f−n
]
= 0
(17)

is equivalent to the constrained scheme (12), thus it also has the
key properties of exact constraint fulfilment, symplecticity and
momentum consistency, i.e. any change in the value of a mo-
mentum map reflects exactly the applied forces. When no load
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τ

ttn−1 tn tn+1

f +
n

f +
n−1

f−n

f−n−1

τn−1

τn

Figure 1. Relation of redundant forces at tn to piecewise constant dis-

crete generalised forces.

is present, momentum maps are conserved exactly. While the
constrained scheme becomes increasingly ill-conditionedfor de-
creasing time-steps, the condition number of (17) is independent
of the time-step.

Boundary conditions. In the next step, the boundary
conditionsq(t0) = q0, q̇(t0) = q̇0 andq(tN) = qN, q̇(tN) = q̇N have
to be specified. Those on configuration level can be used as con-
straints for the optimisation algorithm in a straightforward way as
u0 = u0 anduN = uN. However, since in the present formulation
velocities are approximated in a time interval[tn, tn+1] according
to (8) (as opposed to an approximation at the time nodes), theve-
locity conditions have to be transformed to conditions on the con-
jugate momentum, which is defined at each and every time node
using the discrete Legendre transform. The presence of forces
at the time nodes has to be incorporated into that transforma-
tion leading to the so called forced discrete Legendre transforms

F
f −Ld : Q×Q → T∗Q andF

f +

Ld : Q×Q → T∗Q (see [27])
reading

F
f −Ld : (qn−1,qn) 7→ (qn−1, pn−1)

pn−1 = −D1Ld(qn−1,qn)− f−n−1

F
f +

Ld : (qn−1,qn) 7→ (qn, pn)

pn = D2Ld(qn−1,qn)+ f +
n−1

(18)

In these transformations, constraints have not been taken into ac-
count. To do so, the discrete momenta can be projected using the
transposed discrete null space matrixPT(q) : T∗

qQ→ T∗
uU .

Prescribed initial and final velocities of course should be
consistent with the constraints on velocity level. Using the stan-
dard continuous Legendre transformFL : TC→ T∗C

FL : (q, q̇) 7→ (q, p) = (q,D2L(q, q̇)) (19)

yields momenta which are consistent with the constraints onmo-
mentum level as well. Since the algorithm enforces constraints

on configuration level only, one can hardly expect the computed
discrete momenta to equal those prescribed inT∗C. However,
one can request their projection toT∗

uU to be equal. Thus the
velocity boundary conditions are transformed to the following
conditions on momentum levelp(t0) = p0, p(tN) = pN, which
read in detail

PT(q0) ·
[
D2L(q0, q̇0)+D1Ld(q0,q1)+ f−0

]
= 0

PT(qN) ·
[
−D2L(qN, q̇N)+D2Ld(qN−1,qN)+ f +

N−1

]
= 0

(20)

Discrete constrained optimisation problem. With
the described preliminaries at hand, now the optimal control
problem for the constrained discrete dynamical problem canbe
formulated. To begin with, an approximation

Bd(qn,qn+1, f n) ≈
Z tn+1

tn
B(q, q̇, f (τ,q, q̇))dt (21)

of the continuous cost functional (1) has to be defined. Similar to
the approximations in (8) and (10) the midpoint rule is applied.

Bd(qn,qn+1, f n) = hB

(
qn+1+qn

2
,
qn+1−qn

h
, f n

)
(22)

with the discrete forces given in (16). This yields the discrete
cost functional

Jd(qd, f d) =
N−1

∑
n=0

Bd(qn,qn+1, f n) (23)

where the discrete configurations and forces are expressed in
terms of their corresponding independent generalised quantities.
Alternatively a new cost functional can be formulated directly in
the generalised quantities

J̄d(ud,τd) =
N−1

∑
n=0

B̄d(un,un+1,τn) (24)

depending on the desired interpretation of the optimisation prob-
lem. In any case, (23) or (24) has to be minimised with respect
to ud,τd subject to the constraints

u0−u0 = 0

uN −uN = 0

PT(q0) ·
[
D2L(q0, q̇0)+D1Ld(q0,q1)+ f−0

]
= 0

PT(qN) ·
[
−D2L(qN, q̇N)+D2Ld(qN−1,qN)+ f +

N−1

]
= 0

PT(qn) ·
[
D2Ld(qn−1,qn)+D1Ld(qn,qn+1)+ f +

n−1 + f−n
]

= 0
(25)

for n = 1, . . . ,N−1.
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e3

d1

d2
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ϕ

Figure 2. Configuration of a rigid body with respect to an orthonormal

frame {eI} fixed in space.

OPTIMAL CONTROL FOR RIGID BODY DYNAMICS
The treatment of rigid bodies as structural elements relies

on the kinematic assumptions illustrated in Fig. 2 (see [41]) that
the placement of a material point in the body’s configuration
X = XIdI ∈ B ⊂ R

3 relative to an orthonormal basis{eI} fixed
in space can be described as

x(X, t) = ϕ(t)+XIdI (t) (26)

HereXI ∈ R, I = 1,2,3 represent coordinates in the body-fixed
director triad{dI}. The time-dependent configuration variable
of a rigid body

q(t) =





ϕ(t)
d1(t)
d2(t)
d3(t)



 ∈ R
12 (27)

consists of the placement of the center of massϕ∈R
3 and the di-

rectorsdI ∈R
3, I = 1,2,3 which are constrained to stay orthonor-

mal during the motion, representing the rigidity of the bodyand
its orientation. These orthonormality conditions pertaining to the
kinematic assumptions of the underlying theory are termed in-
ternal constraints. There aremint = 6 independent internal con-
straints for the rigid body with associated constraint functions

gint(q) =





1
2[dT

1 ·d1−1]
1
2[dT

2 ·d2−1]
1
2[dT

3 ·d3−1]
dT

1 ·d2

dT
1 ·d3

dT
2 ·d3




(28)

For simplicity, it is assumed that the axes of the body frame co-
incide with the principal axes of inertia of the rigid body. Then
the body’s Euler tensor with respect to the center of mass canbe
related to the inertia tensorJ via

E =
1
2
(trJ)I −J (29)

whereI denotes the 3×3 identity matrix. The principal values of
the Euler tensorEi together with the body’s total massMϕ build
the rigid body’s constant symmetric positive definite mass matrix

M =





MϕI 0 0 0
0 E1I 0 0
0 0 E2I 0
0 0 0 E3I



 (30)

where 0 denotes the 3×3 zero matrix. This description of rigid
body dynamics has been expatiated in [36] where also the null
space matrix

Pint(q) =





I 0
0 −d̂1

0 −d̂2

0 −d̂3



 (31)

corresponding to the constraints (28) has been derived. When
the nodal reparametrisation of unknowns is applied, the con-
figuration of the free rigid body is specified by six unknowns
u = (uϕ,θ) ∈U ⊂ R

3×R
3, characterising the displacement and

rotation, respectively. Accordingly, in the present case the nodal
reparametrisationF :U →C introduced in (15) assumes the form

qn+1 = F(un) =





ϕn +(uϕ)

exp(θ̂) · (d1)n

exp(θ̂) · (d2)n

exp(θ̂) · (d3)n



 (32)

where Rodrigues’ formula is used to obtain a closed form expres-
sion of the exponential map, see e.g. [38]. Translational forces
τϕ ∈ R

3 can directly be applied to the body’s center of mass,
thus f ϕ = τϕ. However, torquesτθ ∈ R

3 have to be transformed
to follower forces perpendicular to the directors according to
f dI

= 1
2τθ × dI . This ensuresτθ = dI × f dI

. Consistency of
momentum maps is guaranteed by the following discrete forces.

( f ϕ)+n−1 = (τϕ)+n−1 = h
2(τϕ)n−1

( f ϕ)−n = (τϕ)−n = h
2(τϕ)n

( f dI
)+n−1 = − 1

2(d̂I )n · (τθ)+n−1 = − 1
2(d̂I )n · h

2(τθ)n−1

( f dI
)−n = − 1

2(d̂I )n · (τθ)−n = − 1
2(d̂I )n · h

2(τθ)n

(33)

Numerical example
Optimal control of a rigid sphere As a first exam-

ple to demonstrate the performance of the proposed procedure,
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Figure 3. Rigid sphere: initial and final configuration and axis of rotation.

the actuation of a rigid sphere in three-dimensional space is in-
vestigated. The sphere has the radiusr = 0.05 and a density of
ρ = 27000. In the initial position, its center of mass is located
at u0

ϕ = [R,0,0]T with R = 1 and the directors are aligned with

the axes of the inertial frame, thusθ0 = [0,0,0]T . The body is
forced to move to the positionuN

ϕ = [0,R,2R]T while perform-

ing three full rotations around the axis[−1,1,1]T /
√

3, hence
θN = 6π√

3
[−1,1,1]T . The motion starts and ends at rest and takes

places withinN = 30 time-steps of sizeh = 0.1. The cost func-
tion in use is of type (24) and reads̄Jd = h∑N−1

n=0 ||τn||2.
Figure 3 shows the initial (blue) and final (red) configura-

tion of the sphere as well as the specified axis of rotation (dashed
line). While the sphere moves in space, this axis is translated in
parallel. The motion of the sphere is depicted in Fig. 4 at ev-
ery third time-step. The corresponding motion of the centerof
mass and evolution of the directors are depicted in Fig. 5. The
evolution of the generalised forces, consisting of the translational
forces and the torques can be observed in Fig. 6. According to
the assumptions made, the generalised forces are constant in each
time interval. Figure 7 shows the evolution of the kinetic energy
and the components of the angular momentum. Apparently the
initial and final conditions of zero motion are met. The first dia-
gram in Fig. 8 depicts the change of angular momentum in each
time interval while the second diagram reveals its consistency
in the sense that the change of angular momentumLn+1 − Ln

equals exactly the sum of the applied torques and the momen-
tum induced by the translational forces during that time interval
Λ+

n + Λ−
n = (τθ)+n +(τθ)−n + ϕn+1× (τϕ)+n + ϕn× (τϕ)−n .

Optimal control of a rigid body with rotors Inspired
by space telescopes like e.g. the Hubble telescope, whose change

Figure 4. Rigid sphere: configuration at t = 3nh,n = 0, . . . ,10 (h =
0.1).
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Figure 5. Rigid sphere: motion of center of mass and directors (h =
0.1).

in orientation is induced by external spinning rotors, a multibody
system consisting of a main body to which rotors are connected
by revolute joints has been analysed. The revolute joints allow
each rotor to rotate relative to the main body around an axis
through its center which is fixed in the main body. Therefore
the torque in each revolute joint is a scalar quantity. The goal is
to determine optimal torques to guide the main body into the fi-
nal positionuN

θ = π
14[1,2,3], whereby the system starts and ends

at rest. The motion takes 5 seconds and the time-step ish = 0.1,
thusN = 50. As in the first example, the objective function rep-
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Figure 7. Rigid sphere: energy and components of angular momentum

vector L = Liei (h = 0.1).

resents the control effort which has to be minimised.

Figure 9 shows the configuration of the system att =
0,1, . . . ,5 seconds. The static frame represents the required fi-
nal orientation whereby the axes must coincide with the centers
of the rotors as the motion ends (see last picture). The optimal
torques which are constant in each time interval are depicted in
Fig. 10. Finally Fig. 11 illustrates the evolution of the kinetic
energy and a special attribute of the system under consideration.
It has a geometric phase which means that the motion occurs al-
though the total angular momentum remains zero at all times.
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(h = 0.1).
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momentum vector L = Liei (h = 0.1).

CONCLUSION
This paper proposes a new approach to the solution of op-

timal control problems for constrained dynamical systems via
the combination of two recently developed methods: the discrete
null space method, which is suitable for the accurate, robust and
efficient time integration of such kind of systems, and the optimal
control method DMOC.

DMOC is used to compute trajectories for a mechanical sys-
tem that is optimally guided from an initial to a final configu-
ration via external forces. Thereby, the given cost functional is
extremised subject to the dynamics of the constrained mechani-

cal system. Starting form the constrained Lagrange-d’Alembert
principle, the discrete null space method yields reduced time-
stepping equations that lend themselves as constraints forthe re-
sulting optimisation problem.

The proposed method benefits from an easy derivation of the
constraint equation for the optimisation algorithm and ensures
exactly constraint fulfillment and structure preserving properties
of the computed solutions.

As a first example to demonstrate the performance of the
proposed procedure, it has been applied to enforce a translational
and rotational motion of a rigid sphere in three-dimensional
space starting and ending at rest. Furthermore an example in-
volving the actuation of a multibody system with joint constraints
has been investigated. Since the system under consideration has
a geometric phase, it is of great importance that the change of an-
gular momentum according to the applied forces (which is zero
for this example) is captured correctly. This property is demon-
strated in the documentation of both examples.
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