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ABSTRACT

This paper formulates the dynamical equations of mechan-
ics subject to holonomic constraints in terms of the statas a
controls using a constrained version of the Lagrange-dwbert
principle. Based on a discrete version of this principlefras-
ture preserving time-stepping scheme is derived. Itis shibat
this respect for the mechanical structure (such as a reéiaom-
putation of the energy and momentum budget, without nualeric
dissipation) is retained when the system is reduced to its-mi
mal dimension by the discrete null space method. Togethr wi
initial and final conditions on the configuration and conjuga
momentum, the reduced time-stepping equations serve as non
linear equality constraints for the minimisation of a giveost
functional. The algorithm yields a sequence of discreteigen
urations together with a sequence of actuating forces nogity
guiding the system from the initial to the desired final stdiee
resulting discrete optimal control algorithm is shown to/kaex-
cellent energy and momentum properties, which are illustta
by two specific examples, namely reorientation and refmositg
of a rigid body subject to external forces and the reorieiotabf
a rigid body with internal momentum wheels.

*Address all correspondence to this author.

Sina Ober-Bl 6baum

Chair of Applied Mathematics, University of Paderborn
D-33095 Paderborn, Germany, sinaob@math.upb.de

Jerrold E. Marsden 1
marsden@cds.caltech.edu

Michael Ortiz 2
ortiz@aero.caltech.edu

INTRODUCTION

This work combines two recently developed methods,
namely the discrete null space method which is suitabletfer t
accurate, robust and efficient time integration of cons&di
dynamical systems (in particular for multibody dynamicsila
a new approach to discrete mechanics and optimal control
(DMOC) based on a discretisation of the Lagrange-d’Alerhber
principle.

From the variety of methods to enforce holonomic con-
straints in the framework of the Hamiltonian or Lagrangiar f
malism (see e.g. [1, 2] and for a computational approach [3])
the focus here is on two methods yielding exact constralfik-fu
ment, the Lagrange multiplier method and a null space method
described e.qg. in [4]. Because of the relatively simplecstme of
the evolution equations emanating from the Lagrange miigltip
method, their temporal discrete form can be derived easitygu
mechanical integrators as demonstrated among others H. [5—
However, the presence of the Lagrange multipliers in theket
unknowns enlarges the number of equations to solve and€ause
the discrete system to be ill-conditioned for small timepst as
reported by [8,9]. In contrast to that, the use of a specifit nu
space method, especially in conjunction with a reparasegiaon
in generalised coordinates, has the advantageous praopfeaty
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small dimensional system of equations. On the other haedeth
evolution equations have a highly complicated structuaasimg
the derivation of their temporal discrete form to be expemnaind
therefore, in most cases, not recommended [10, 11].

A remedy for these difficulties is found in the discrete null

which serve as equality constraints for the resulting finite
dimensional nonlinear optimisation problem. In [26, 28] 29
the described method was firstly applied to low orbital thrus
transfers and the optimal control of formation flying sated
including an algorithm that exploits a hierarchical struet of

space method introduced in [12] which proposes a reversal of that problem. In [30], it has been applied to a multibody syst

the two main steps when designing a specific numerical method
First of all, the discrete form of the simple structured DAEs
resulting from the use of the Lagrange multiplier method is
derived using a mechanical integrator, e.g. an energy-mame
conserving integrator [5, 6] or a variational integratoadang

to a symplectic-momentum conserving scheme [7]. For forced

formulated in generalised coordinates.

In this work, DMOC is used to find optimal trajectories of
state and control variables for systems of rigid bodies doeth
with joint constraints. Each rigid body is viewed as a caaised
continuum, i.e. it is described in terms of redundant cawatts

systems, both methods correctly compute the change in momen subject to holonomic constraints [31, 32]. Then the equatio
tum maps. The evolution of energy is represented accurately of motion assume the form of DAEs with a constant mass ma-
by the first class of schemes while the latter captures these trix. Their temporal discrete form can be derived and reduce

changes qualitatively. The transition to the reduced sehand
finally the nodal reparametrisation are performed in theptenal
discrete setting in complete analogy to the procedure testr
in the continuous case according to the so-called discnaite n

according to the discrete null space method. This proceuase
the advantage of circumventing the difficulties associatét
rotational parameters [33, 34] and it can be generalisety¢as

the modelling of geometrically exact beams and shells and to

space method. The resulting time-stepping scheme performsmultibody systems consisting of theses structures as olesdl

excellently in all relevant categories. First of all, it e the
smallest possible dimension for the system of equatioasnis-

ing lower computational costs than other schemes. Secoihdly
is second order accurate and inherits the conservatiorepiep
from the constrained scheme and thirdly, the condition nermb
of the scheme is independent of the time-step. Summarisiag,
discrete null space method is especially suited for the rateu
simulation of large dimensional systems subject to a high
number of constraints. In particular the resulting equetilend
themselves as dynamics constraints in an optimisatiormriggo
since only the exactly required number of unknowns has to be
determined.

To find local solutions of nonlinear optimal control
problems consisting of a given cost functional and equation
describing the underlying dynamics of the system, a nurakric
method falling into the class of direct methods is used here.
Thereby, the state and control variables are discretisedtt
in order to transform the optimal control problem. The réagl|
finite dimensional nonlinear constrained optimisationigbem
can be solved by standard nonlinear optimisation techsigke
sequential quadratic programming [13—15]. In contrasttheio
methods like, e.g. shooting [16—-18], multiple shooting{29],
or collocation methods [22, 23], relying on a direct integma of
the associated ordinary differential equations or on ifiilfaent
at certain grid points (see also [24, 25] for an overview @& th
current state of the art), a recently developed method DMOC
(Discrete Mechanics and Optimal Control, [26]) is used here
It is based on the discretisation of the variational strrectof
the mechanical system directly. In the context of varialon
integrators [27], the discretisation of the Lagrange-émbert
principle leads to structure preserving time-steppinga¢igus

in [35-37]. The reduced time-stepping equations then sasve
constraints in the optimisation algorithm.

The combination of the two proposed methods involves sev-
eral specific benefits. First of all, the discrete dynamicsgiqns
constraining the optimal control problem when using DMOG@ ca
be formulated easily. Using the discrete Lagrange-d’Alerhb
principle, they are derived as the discrete analog to thelsim
structured evolution equations whereby the configuratiom- c
straints are enforces using Lagrange multipliers. Segoiok
discrete null space method reduces the dynamics consttaint
the smallest possible number of equations and variableshwhi
leads to lower computational cost for the optimisation &tgm.
Thirdly, the benefit of exact constraint fulfilment, correcim-
putation of the change in momentum maps and good energy be-
haviour is guaranteed by the optimisation algorithm. THese
efits are of high importance especially for high dimensioiugd
body systems combined with joint constraints.

CONSTRAINED DYNAMICS AND OPTIMAL CONTROL

Consider ann-dimensional mechanical system with the
time-dependent configuration vecit) € Q and velocity vec-
tor q(t) € Ty Q, wheret € [to, tn] C R denotes the time. Let the
configuration be constrained by the functigiy) = 0 € R™ and
influenced by the force fielfl: W x TQ— T*Q. Due to the pres-
ence of constraints, the forcésare not independent. They can
be calculated in terms of the time dependent generaliseiaton
forcest(t) e W CR™ ™

Optimisation problem. The goalis to determine the op-
timal force field, such that the system is moved from theaiiti
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state(q?, @°) to the final statég™, gV) while the cost functional

. tN . .
Jaaf) = [ Blaaf(rad)ad (1)
0
is minimised.
Constrained Lagrange-d’Alembert principle. Con-

temporaneously, the motidig, ) has to be in accordance with

Reparametrisation.  For many applications it is possi-
ble to find a reparametrisation of the constraint manifeld
U CR"™™M— Cin terms of independent generalised coordinates
u e U. Then the JacobiaDF (u) of the coordinate transforma-
tion plays the role of a null space matrix. Since the constsai
(3)2 are fulfilled automatically by the reparametrised configura
tion variableq = F(u), the system is reduced to— m second
order differential equations. This is the minimal possitiilaen-
sion for the present mechanical system which consists of pre
ciselyn— m configurational degrees of freedom. Consequently,

an equation of motion which in the present case is based on athere aren — m independent generalised forces W C R™™

constrained version of the Lagrange-d’Alembert princifdee
e.g. [38]) requiring

N

. tN .
5[ L@ -g'(@-Mdi+ [ " f(r.aq)-3dt=0 ()
0 0

for all variationsdq € TQ andd\ € R™ vanishing at the end-
points. The Lagrangiah : TQ — R comprises the kinetic en-
ergy% q" -M - g including the consistent mass mathke R™"
and a potential functioV : Q — R. FurthermoreA(t) € R™
represents the vector of time dependent Lagrange mutsplie
The constrained Lagrange-d’Alembert principle (2) leadthe
differential-algebraic system of equations of motion

dL(q,q) d (GL(q,Q)
dt

aq - aq )—GT(C]))\—Ff(T,q,Q):O (3)

g(q) =0

whereG(q) = Dg(q) denotes the Jacobian of the constraints. The
vectorGT(q) -\ represents the constraint forces that prevent the
system from deviations of the constraint manifold

C={qeQlg(a) =0} (4)
Null space method.  Assuming that the constraints are
independent, for everg € C the basis vectors ofgC form an
nx (n—m) matrix P(q) with corresponding linear map(q) :
RM™M — TC. This matrix is called null space matrix, since

rangg(P(q)) = null (G(q)) = TqQ (5)
Thus a premultiplication of the differential equation {3y
PT(q) eliminates the constraint forces including the Lagrange
multipliers from the system. The resulting equations ofiomot
read

oL d (dL(q.0)
PT(q)'[ oq ( o4

dt

>+f(r,q,q)] =0 (©6)
9(q) =0

acting on the degrees of freedom. These can be calculated as
T
1= (%) - f, see e.g. [39].

CONSTRAINED DISCRETE DYNAMICS AND OPTIMAL
CONTROL

A variational integrator is chosen to derive the temporsd di
crete version of the dynamical problem at hand. In [7], a-vari
ational integrator has been employed to simulate a consuai
problem, whereby Lagrange multipliers have been used to en-
force the constraints. For a detailed introduction to ditcme-
chanics and variational integrators see [27].

Corresponding to the configuration manif@the discrete
phase space is defined Qyx Q which is locally isomorphic to
TQ. For a constant time-stépe R, a pathq: [to,tn] — Q is re-
placed by a discrete patf : {to,to+h,,...,to+Nh=tn} — Q,

N € N, whereq,, = gq4(to + nh) is viewed as an approximation
to q(to + nh). Similarly, An = A4(tn) approximates the Lagrange
multiplier att, = to + nh, T, = 14(tn) approximates the gener-
alised control force and the force fiefds approximated by two
discrete forces,,, f;y :Wx Q— T*C.

Discrete constrained Lagrange-d’Alembert princi-
ple. According to the variational integrator in use, the action
integral in (2) is approximated in a time intenl, t,1] using
the discrete Lagrangidny : Q x Q — R via

thi1 )
Lo (s Oy 1) — OB (G ) Amia [ L(6.0)~g7(@)-Adlt (7)

Among various possible choices to approximate this infetirta
midpoint rule is in use for the Lagrangian, i.e.

Qn+1 + Qn Qn+l B Qn) (8)

Lg (qna Qn+1) = hL( 2 h

and the constraints and multipliers are evaluated at thertiodes
themselves

9)
Copyright © 2007 by ASME
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Likewise, the virtual work is approximated in a time intdrva
[tn;thrl] by

thi1 . B
|7 a0 Badtx 50, + 1 By (10)

wheref f, are called the left and right discrete forces, respec-
tively. They are specified in (16).

The discrete version of the constrained Lagrange-
d’Alembert principle (2) requires the discrete pafh, ﬁzo
and multipliers{An}N_, to fulfil

N-1 N-1
85 La(tnOne1) =94 (Gnya) -Ansat > fn 80+ Ty 30y 1 =0
n=0 n=0

(11)
for all variations{dq,}N_, and {SAn}N_; with 3qy = &gy = 0
andoA; = Oy = 0, which is equivalent to the constrained forced
discrete Euler-Lagrange equations

Dalg (qnfla qn) +Di1lq (qna qn+l) - Gg (qn) A+ f:—l"’ fr: =0
g(Qn+1) =0
(12)

forn=1,...,N—1whereGy(q,) denotes the Jacobian@f(an).

Note that the time-stepping scheme (12) has not been deduced

discretising (3), but via a discrete variational principle

Discrete null space method. The reduction of the

time-stepping scheme (12) can be accomplished in analogy to

the continuous case according to the discrete null spadeatiet
In order to eliminate the discrete constraint forces frometua-
tions, a discrete null space matrix fulfilling

ranggP(d,)) = null (G(ay)) (13)

is employed.

Remark It is important to note, that the choice to evaluate
the constraints and the Lagrange multipliers at the timeeaod
in (9) causes the evaluation of the constraint Jacobian 2y (1
at the time nodes. Therefore a discrete null space matrix wit
the property (13) can simply be found by evaluation of the
continuous null space matrix at the time nodes. Acquaimanc
of the continuous null space matrix for a specific mechanical
system always yields an explicit representation of therdisc
null space matrix for the symplectic-momentum conserving
time-stepping scheme emanating from the discrete vaniailtio
principle in conjunction with the chosen approximation. isTh
is in contrast to energy-momentum conserving time-steppin

4

schemes based on the concept of discrete derivatives [12, 40
or on finite elements in time [5], where the discrete constrai
JacobianG(q,,q,, 1) depends on both the present and the
unknown configuration.

Analogue to (6), the premultiplication of (12) by the trans-
posed discrete null space matrix cancels the constraines$or
from the system, i.e. the Lagrange multipliers are elingdat
from the set of unknowns and the system’s dimension is ratluce
ton.

PT(0) - [D2Ld(Gn_1.0n) + D1la(0hn, Onya) + fiy + fn] =0

g(Qn+1) =0
(14)

Nodal Reparametrisation.  Similar to the continuous
case, a reduction of the system to the minimal possible dimen
sion can be accomplished by a local reparametrisation afdhe
straint manifold in the neighbourhood of the discrete carrfig
tion variableg,, € C. At the time nodesy, is expressed in terms
of the discrete generalised coordinatgs U C R"™™, such that
the constraints are fulfilled.

FIUCR™xQ—C e g(gqy)=9(F(UnGy 1)) =0

(15)
Furthermore, the components of the discrete force vedtprs
and f,, are also not independent. They can be calculated using
the the discrete generalised forags1,1, € W C R"™™ as fol-

lows.

f(tn,tn) €TgC

NI o

h -
fx,l = E f (Tn—lvqn)v fn =

1
fn = 5 (f (Tn;qn+1) + f (qun)) (16)
fa={fnlnzo

Note that the discrete generalised control forces are asdion
be constant in each time interval, see Fig. 1. Thils, denotes
the effect of the generalised forcg 1 acting in[tn—1,ts] onq,
while f; denotes the effect o, of T, acting inftn, th+1].

Insertion of the nodal reparametrisations for the configura
tion (15) and the force (16) into the scheme redundantigbs.(1
The resulting scheme

PT(G) - [D2La(0n_1,n) + D1l (O, Gnsy) + fpq + F] =0
17)
is equivalent to the constrained scheme (12), thus it alsalea
key properties of exact constraint fulfilment, sympled¢yi@and
momentum consistency, i.e. any change in the value of a mo-
mentum map reflects exactly the applied forces. When no load
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T on configuration level only, one can hardly expect the comgut

n discrete momenta to equal those prescribedi@. However,
Tn-1 § one can request their projection TgU to be equal. Thus the
| § | § | velocity boundary conditions are transformed to the foltayv
tha |ttt conditions on momentum leved(to) = p°, p(ty) = p", which
. o read in detail
n—1<----> n-1 .
fao i fi P (do) - [D2L(dlo, o) + D1La(do, ) + fo] =0 (20)
Figure 1. Relation of redundant forces at tj, to piecewise constant dis- T T . + -
crete generalised forces. P (an) [ DaL (G, An) + DaLa(dn-1,an) + fN_l] =0
Discrete constrained optimisation problem. With
is present, momentum maps are conserved exactly. While thethe described preliminaries at hand, now the optimal cdntro
constrained scheme becomes increasingly ill-conditidoede- problem for the constrained discrete dynamical problemltzzan

creasing time-steps, the condition number of (17) is inddpat formulated. To begin with, an approximation
of the time-step.

thyl
Bulth o )~ [ Bla.6 f(rad)dt (1)
Boundary conditions. In the next step, the boundary tn
conditionsg(to) = ¢, §(to) = 6° andq(tn) = . (tn) = g have
to be specified. Those on configuration level can be used as con
straints for the optimisation algorithmin a straightfordiavay as
up = u® anduy = uN. However, since in the present formulation n B
velocities are approximated in a time interjtalt, 1] according Bd (O, Gns1: fFn) =B (q”” q“, Gn1 q”, fn) (22)
to (8) (as opposed to an approximation at the time nodesyghe 2 h
locity conditions have to be transformed to conditions adbn-
jugate momentum, which is defined at each and every time node

of the continuous cost functional (1) has to be defined. Sinbdl
the approximations in (8) and (10) the midpoint rule is agqbli

with the discrete forces given in (16). This yields the diter

using the discrete Legendre transform. The presence oégorc cost functional

at the time nodes has to be incorporated into that transforma N—1

tion leading to the so called forced discrete Legendre foams Ja(qq, fq) = z Ba (0, One1s ) (23)
- +

Fl Ly :QxQ— T*QandFl Ly: QxQ— T*Q (see [27]) ri=0

reading

where the discrete configurations and forces are expressed i
- terms of their corresponding independent generalisedttjiesn
ol Ld : (Gr-1,9n) — (An_1, Pn_1) ;’-;Iternativelly a OInew coﬁ functional can be formulated disein
- e generalised quantities
Ph1 = _DlLd(qnflvqn) - fn_l

o (18) B N-1 _
F" Lg : (dh-1,G0) = (T, Pn) Ja(Ug, Tq) = zDBd(Un,UnH,Tn) (24)
+ n=
Pn = D2Ld(qnflvqn) + fn_l
depending on the desired interpretation of the optimisgti@b-

In these transformations, constraints have not been take®c- lem. In any case, (23) or (24) has to be minimised with respect
count. To do so, the discrete momenta can be projected dgngt to ug,Tg Subject to the constraints
transposed discrete null space maRixq) : TﬁQ — TyU.

Prescribed initial and final velocities of course should be U—w =0
consistent with the constraints on velocity level. Using sten-

—uN =
dard continuous Legendre transfofth: TC — T*C Un—Uu 0
PT(qo) - [D2L (0o, Go) + D1la(do, @) + fo] =0
FL:(q,) — (d,p) = (9, D2L(q, ) (19) P (o) - [~D2L(aw. Gy) +Dala(ty-1,0n) + fi_1] = 0
PT (qn) ’ [DZLd(qnflaqn) + DlLd(qnaqn+1) + fn+—1+ fﬂ =0

yields momenta which are consistent with the constraintmon (25)

mentum level as well. Since the algorithm enforces comngsai forn=1,... N—1.

5 Copyright © 2007 by ASME



Figure 2. Configuration of a rigid body with respect to an orthonormal
frame {@ } fixed in space.

OPTIMAL CONTROL FOR RIGID BODY DYNAMICS

The treatment of rigid bodies as structural elements relies
on the kinematic assumptions illustrated in Fig. 2 (see)[#1gt
the placement of a material point in the body’s configuration
X = Xd, € B C R® relative to an orthonormal bas(g } fixed
in space can be described as

X(X,t) = () +Xid (t) (26)

HereX, € R, = 1,2,3 represent coordinates in the body-fixed
director triad{d, }. The time-dependent configuration variable
of a rigid body

at) = | g @)
(

consists of the placement of the center of miassR® and the di-
rectorsd, € R3,| = 1, 2,3 which are constrained to stay orthonor-
mal during the motion, representing the rigidity of the baahg

its orientation. These orthonormality conditions petitagrto the
kinematic assumptions of the underlying theory are termed i
ternal constraints. There amay = 6 independent internal con-
straints for the rigid body with associated constraint fiors

[d] -d1—1]
[d} -d2 — 1]
0 - ds— 1]
d_][__ . d2
df -ds
d} -d3

NIENIN =

Oint (Q) = (28)

For simplicity, it is assumed that the axes of the body frame ¢
incide with the principal axes of inertia of the rigid bodyhdn
the body’s Euler tensor with respect to the center of masdean
related to the inertia tensdrvia

E=Z(trd)l —J (29)

NI -

wherel denotes the 3 3 identity matrix. The principal values of
the Euler tensoE; together with the body’s total mas4y, build
the rigid body’s constant symmetric positive definite maasrin

Mgl O 0 0

o0 ElO0 O

M=110 0El 0 (30)
0 0 0 El

where 0 denotes the>33 zero matrix. This description of rigid
body dynamics has been expatiated in [36] where also the null
space matrix

)& 2

Pint(q) = (31)

|
o
[

corresponding to the constraints (28) has been derived. nWhe
the nodal reparametrisation of unknowns is applied, the con
figuration of the free rigid body is specified by six unknowns
u= (up,0) € U C R®x R3, characterising the displacement and
rotation, respectively. Accordingly, in the present cdseriodal
reparametrisatioR : U — Cintroduced in (15) assumes the form

¢nj‘ (U¢)
exp(6) - (d)n
exp(®) - (d2)n
exp(0) - (d3)n

On1 = F(Un) = (32)

where Rodrigues’ formula is used to obtain a closed formesqr
sion of the exponential map, see e.g. [38]. Translationae®

T € RR3 can directly be applied to the body’s center of mass,
thusfy =1¢. However, torquesg € RR3 have to be transformed
to follower forces perpendicular to the directors accagdia

fdI = %Te x dj. This ensuresg = d; x fdl- Consistency of
momentum maps is guaranteed by the following discrete $orce

(fd)):—l (Td)n 1 = g(T In-1

(fo)n = (9 3(1)n (33)
(fd)n-1=—3(d)n- (Tg)4_1 = —3(d)n- §(Tg)n-1

(fg)a = —3(d)n-(tghy = —3(d)n-3(tg)n

Numerical example
Optimal control of a rigid sphere As a first exam-
ple to demonstrate the performance of the proposed proegedur

Copyright © 2007 by ASME
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Figure 3. Rigid sphere: initial and final configuration and axis of rotation.

the actuation of a rigid sphere in three-dimensional spade-i
vestigated. The sphere has the radi#s0.05 and a density of

p = 27000. In the initial position, its center of mass is located
atu) = [R,0,0]" with R=1 and the directors are aligned with

the axes of the inertial frame, th@8 = [0,0,0]". The body is
forced to move to the positiody = [0,R,2R]" while perform-

ing three full rotations around the axjs-1,1,1]" /v/3, hence
N = 3—13‘ [—1,1,1)". The motion starts and ends at rest and takes

places withinN = 30 time-steps of siza = 0.1. The cost func-
tion in use is of type (24) and reads=hy N ||tq|[%.

Figure 3 shows the initial (blue) and final (red) configura-
tion of the sphere as well as the specified axis of rotatiost{ed
line). While the sphere moves in space, this axis is traadlat
parallel. The motion of the sphere is depicted in Fig. 4 at ev-
ery third time-step. The corresponding motion of the cenfer
mass and evolution of the directors are depicted in Fig. % Th
evolution of the generalised forces, consisting of thediational
forces and the torques can be observed in Fig. 6. According to
the assumptions made, the generalised forces are comstauth
time interval. Figure 7 shows the evolution of the kinetiergy
and the components of the angular momentum. Apparently the
initial and final conditions of zero motion are met. The firgt-d
gram in Fig. 8 depicts the change of angular momentum in each
time interval while the second diagram reveals its consgste
in the sense that the change of angular momeritym — L,
equals exactly the sum of the applied torques and the momen-
tum induced by the translational forces during that timerivel

NN = (1)t + (Tg)n +Onya X (1) + 0n X (Th)n -

Figure 5. Rigid sphere: motion of center of mass and directors (h =

0.1).

in orientation is induced by external spinning rotors, atihady

system consisting of a main body to which rotors are condecte

by revolute joints has been analysed. The revolute joiridsval

each rotor to rotate relative to the main body around an axis

through its center which is fixed in the main body. Therefore

the torque in each revolute joint is a scalar quantity. Thal go

to determine optimal torques to guide the main body into the fi

nal positionu} = 1a[1,2,3], whereby the system starts and ends
Optimal control of a rigid body with rotors Inspired at rest. The motion takes 5 seconds and the time-steg-i.1,

by space telescopes like e.g. the Hubble telescope, whasgeh thusN = 50. As in the first example, the objective function rep-

7 Copyright © 2007 by ASME
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~ X1 - L-A
[} 008 $ = bA,
o} + 05}
=) 0 < L=/
8 | o
-0.05 =
-
T, -05} B
-0.1
0 t
o~ 4L L L L L L
~ 0.5 1 15 2 25 3

Figure 6. Rigid sphere: force and torque (h = 0.1).

t

Figure 8. Rigid sphere: change and consistency of angular momentum

h=0.1).

angular momentum

Figure 7. Rigid sphere: energy and components of angular momentum

vector L = Ljg (h=0.1).

resents the control effort which has to be minimised.

Figure 9 shows the configuration of the systemtat
0,1,...,5 seconds. The static frame represents the required fi-
nal orientation whereby the axes must coincide with theersnt
of the rotors as the motion ends (see last picture). The @ptim
torques which are constant in each time interval are depiate
Fig. 10. Finally Fig. 11 illustrates the evolution of the &tit

bbb o e w s

%

energy and a special attribute of the system under consiolera Figure 9. Rigid body with rotors: configuration at t = 10nh,n =

It has a geometric phase which means that the motion occurs al 0,...,5h=0.1).
though the total angular momentum remains zero at all times.

8
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CONCLUSION

This paper proposes a new approach to the solution of op-
timal control problems for constrained dynamical systernas v
the combination of two recently developed methods: therdisc
null space method, which is suitable for the accurate, rtodnug
efficient time integration of such kind of systems, and thinoal
control method DMOC.

DMOC is used to compute trajectories for a mechanical sys-
tem that is optimally guided from an initial to a final configu-
ration via external forces. Thereby, the given cost fumalas
extremised subject to the dynamics of the constrained nmécha

9

cal system. Starting form the constrained Lagrange-d’Alern
principle, the discrete null space method yields reduces-ti
stepping equations that lend themselves as constraintsdae-
sulting optimisation problem.

The proposed method benefits from an easy derivation of the
constraint equation for the optimisation algorithm anduees
exactly constraint fulfillment and structure preservingparties
of the computed solutions.

As a first example to demonstrate the performance of the
proposed procedure, it has been applied to enforce a ttemslh
and rotational motion of a rigid sphere in three-dimensiona
space starting and ending at rest. Furthermore an example in
volving the actuation of a multibody system with joint caragtts
has been investigated. Since the system under considehatso
a geometric phase, it is of great importance that the chairayeo
gular momentum according to the applied forces (which is zer
for this example) is captured correctly. This property isnde-
strated in the documentation of both examples.
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