
J. Fluid Mech. (2007), vol. 593, pp. 315–331. c© 2007 Cambridge University Press

doi:10.1017/S0022112007008865 Printed in the United Kingdom

315

Transport and stirring induced
by vortex formation

S. C. SHADDEN1, K. KATIJA2, M. ROSENFELD 3,
J. E. MARSDEN1 AND J. O. DABIRI2

1Control and Dynamical Systems, California Institute of Technology, Pasadena,
CA 91125, USA

2Graduate Aeronautical Laboratories & Bioengineering, California Institute of Technology,
Pasadena, CA 91125, USA

3Department of Fluid Mechanics and Heat Transfer, Tel Aviv University, Ramat Aviv, 69978, Israel

(Received 1 December 2006 and in revised form 28 August 2007)

The purpose of this study is to analyse the transport and stirring of fluid that
occurs owing to the formation and growth of a laminar vortex ring. Experimental
data was collected upstream and downstream of the exit plane of a piston–cylinder
apparatus by particle-image velocimetry. This data was used to compute Lagrangian
coherent structures to demonstrate how fluid is advected during the transient process
of vortex ring formation. Similar computations were performed from computational
fluid dynamics (CFD) data, which showed qualitative agreement with the experimental
results, although the CFD data provides better resolution in the boundary layer of
the cylinder. A parametric study is performed to demonstrate how varying the
piston-stroke length-to-diameter ratio affects fluid entrainment during formation.
Additionally, we study how regions of fluid are stirred together during vortex
formation to help establish a quantitative understanding of the role of vortical flows
in mixing. We show that identification of the flow geometry during vortex formation
can aid in the determination of efficient stirring. We compare this framework with
a traditional stirring metric and show that the framework presented in this paper is
better suited for understanding stirring/mixing in transient flow problems. A movie
is available with the online version of the paper.

1. Introduction
Vortex formation is of interest throughout fluid mechanics. Vortex formation is

ubiquitous in turbulence (Pullin & Saffman 1998); vortex shedding occurs in many
engineering applications (e.g. transportation, flow control, etc.) as well as in biological
systems (e.g. fish swimming and insect flight; see for example Moore & Saffman
1973; Weihs 1973; Lugt 1983; Dudley 2002). Vortex formation, growth and eventual
shedding into the wake is also of major interest because fluid forces can be computed
from the resulting coherent structures (Spedding, Rosen & Hedenstrom 2003; Dabiri
2005). Instabilities including Richtmyer–Meshkov and the gravity-driven Rayleigh–
Taylor flows are dominated by vortex formation at varying length scales (Zabusky
1999).

Because vortex ring formation is prototypical of a broad range of vortex dynamics
problems, it is an active area of research with a rich history. Maxworthy (1977)
identified the vortex bubble outline of an impulsively ejected slug of fluid, where the
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formation process was inferred from the motion of injected dye. Didden (1979)
investigated the vorticity flux using a cylinder apparatus to create vortex rings
(which led to a related computational study by Nitsche & Krasny 1994). Dye
visualization techniques were later improved upon by the implementation of particle-
image velocimetry (PIV) (Adrian 1991), which was later applied to vortex rings
in several studies (e.g. Willert & Gharib 1991; Gharib, Rambod & Shariff 1998).
In addition to laboratory experiments, numerical computation and development of
related theory has made many important contributions to the current understanding
of vortex formation (e.g. Pullin 1979; Saffman 1978). Despite these studies, there
remain important questions concerning the precise manner in which the vortex forms.
The purpose of this study is to analyse the transport mechanisms associated with the
formation and growth of a vortex ring. Specifically, we aim to bridge the self-similar
roll-up concept adopted in previous theoretical and numerical studies of early vortex
formation with the vortex bubble perspective used in experimental investigations of
fully formed vortex rings.

We also seek to relate the geometric view of formation to the mixing of the
surrounding fluid. Eckart (1948) divided mixing into three separate stages. The first
stage of entrainment is characterized by vortical fluid creating large-scale motions.
In the following stage of stirring, fluid elements are strained, causing high gradients
in concentrations until the large-scale motions are reduced in order to reach that of
diffusive processes. Finally, in the third and final stage, the gradients disappear and
the molecular mixing process begins. The notion of a quantitative metric for mixing
is particularly useful when approaching the control and optimization of mixing.
There have been a vast number of mixing measures used for various applications,
probably because the quantification of mixing is highly application-specific.
Chella & Ottino (1985), Khakhar & Ottino (1986) and Khakhar, Rising & Ottino
(1986) provide mixing metrics related to the stirring mechanisms (second stage) that
are well documented to govern mixing in laminar flows (see also Mathiew, Mezić &
Petzold 2005).

Because of the challenging nature of flow geometry in unsteady systems, vortex
formation in the present study is viewed in terms of coherent structures that develop
during the formation process. When the velocity field is steady (and two-dimensional),
understanding transport is straightforward. Dabiri & Gharib (2004) used streamlines
to define vortex structures by transforming to a reference frame moving with the vortex
ring, but found that when the field was sufficiently unsteady, they could not adequately
define the boundary of the ring. These conclusions led to an application of dynamical
systems theory, as proposed by Haller (2001) and Shadden, Lekien & Marsden (2005),
to vortex rings, which is described in Shadden, Dabiri & Marsden (2006). However,
the study of Shadden et al. (2006) did not consider the vortex formation process; the
present paper addresses this topic. The application of dynamical systems ideas to study
the flow geometry of unsteady systems is a growing subject, see e.g. Haller & Poje
(1998), Malhotra, Mezić & Wiggins (1998), Mezić & Wiggins (1999), Haller & Yuan
(2000), Haller (2001), Mancho et al. (2003) and Padberg (2005) for examples of related
theoretical developments; and Pierrehumbert & Yang (1993), Poje & Haller (1999),
Jones & Winkler (2002), Joseph & Legras (2002), Koh & Legras (2002), Krasny &
Nitsche (2002), Voth, Haller & Gollub (2002), Arratia, Voth & Gollub (2005), Lekien
et al. (2005) and Wiggins (2005) for example applications of related methods.

For a vortex generated with a piston–cylinder apparatus, it is intuitive that some
portion of the fluid in the cylinder will end up in the vortex, and as the vortex ring
grows, ambient fluid will be entrained. We show that Lagrangian coherent structures
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Figure 1. Top view of cylinder nozzle exit in tank. Image adapted from
Dabiri & Gharib (2004).

(LCS) determine precisely what fluid inside the cylinder ends up in the vortex bubble
and exactly what ambient fluid is entrained. This perspective is used in § 4.2.3 to
determine the time variation of entrainment during formation and how entrainment
varies owing to changes in piston-stroke length-to-diameter ratio (L/D). In § 5, we
discuss the stirring observed owing to vortex formation. In particular, we study the
stretching induced at various interfaces in the flow, relate the observed results to LCS,
and compute the average stretching efficiency during formation.

2. Experimental methods
Experiments were conducted using a piston–cylinder apparatus similar to the set-up

used in Dabiri & Gharib (2004) (figure 1). A cylinder was placed inside a transparent
water tank with dimensions 60 cm H × 40 cm W × 110 cm L. A constant pressure
head tank (�p = 8.2 kPa) drove fluid through a transparent acrylic cylinder with an
inner diameter of 2.54 cm and a outer 2◦ taper at the exit. This sharp angle ensured a
thin cylinder wall in the domain of interest, which enabled visualization of the flow
both inside and outside the cylinder without excess noise from light scatter off the
cylinder walls. The apparatus was operated at a nominal flow speed of 5.5 cm s−1 and
each vortex ring was generated at a piston-stroke length-to-diameter ratio of 2. Based
on the cylinder diameter and flow at the exit, the operating Reynolds number was in
the laminar regime (Re = 1225).

The tank was seeded with 13 µm diameter glass spheres. Two pulsed Nd:YAG
lasers (New Wave Research) supplied 30 mJ light pulses at a wavelength of 532 nm.
A black-and-white CCD camera (Uniq Vision) was oriented perpendicular to the
light sheet and captured the particle motion in the laser plane at 1024 × 1024 pixel
resolution and 30 frames per second. Based on the location of the laser sheet relative
to the camera, a conversion ratio of 86.6 pixels cm−1 was used for subsequent data
analysis.

Image pairs were separated by a time interval of 18 ms. Each image was evaluated
with an interrogation window size of 32 × 32 pixels and a 50 % window overlap.
This method produced velocity field data every 1/15 s over a rectangular domain,
approximately [0, 20] × [−10, 10] in cm, with the exit plane of the cylinder at
x = 3.6 cm and the centreline of the cylinder at y = 0.55 cm. These velocity data
were used to compute LCS, as described below.
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3. Lagrangian method
To study the geometry of the flow, we employ a Lagrangian criterion based on the

distribution of the finite-time Lyapunov exponent (FTLE) field (Shadden et al. 2005)
(also sometimes referred to as the direct Lyapunov exponent field in the literature,
see Haller 2001). The FTLE measures the maximum stretching about a material
point over a chosen time interval. More precisely, let φt+T

t : x(t) �→ x(t + T ) denote the
mapping of a material point located at x(t) at time t to its position at time t + T

under the influence of the fluid motion. The map φt+T
t is commonly referred to as the

flow map. The derivative of the flow map, the deformation gradient,

dφt+T
t (x)

dx
,

is a linear operator that describes how infinitesimal changes of the initial position x(t)
influence the final position x(t+T ). Defining the finite-time Cauchy–Green deformation
tensor as

�(x, t, T ) =
dφt+T

t (x)

dx

�
dφt+T

t (x)

dx
, (3.1)

(where A� denotes the transpose of A) allows us to define the FTLE as

σ (x, t, T ) �
1

|T | ln
√

λmax (�(x, t, T )), (3.2)

where λmax (�(x, t, T )) denotes the maximum eigenvalue of �(x, t, T ). It is easily
shown (see Shadden et al. 2005) that a perturbation δ(t) to x(t) evolves as

‖δ(t + T )‖ � expσ (x,t,T )|T | ‖δ(t)‖, (3.3)

where equality holds when δ(t) is aligned with the eigenvector corresponding to
λmax (�(x, t, T )).

The FTLE field can be used to reveal LCS. Within this framework, LCS are defined
as codimension one structures along which the FTLE field is maximized, a notion that
is made precise in Shadden et al. (2005). LCS represent almost-invariant boundaries
that separate fluid with dynamically different behaviour. For example, it has been
shown in Shadden et al. (2006) and Green, Rowley & Haller (2007) that LCS defined
in this manner are an effective and frame-independent way of defining the boundary
and structure of vortices in laminar and turbulent flow.

The sign of the integration time, T , relates to the type of LCS revealed in the
FTLE field. Positive integration times reveal repelling LCS and negative integration
times reveal attracting LCS. Additionally, the length of the integration time |T | can
be increased or decreased according to the extent of the LCS that must be captured.
In many applications, especially when a large integration time is chosen, trajectories
leave the velocity domain before the integration time is complete. The domain of
the velocity data used in the present study extended far enough for this not to be
a concern. However, if trajectories left before the integration time, FTLE for those
trajectories, and their immediate neighbours, was computed at the instant before it
left the velocity domain. More details on how to choose an appropriate integration
time and the computational method can be found in Shadden (2006).

In the results listed herein, time t is non-dimensionalized to τ = t�U/πD so that
the results can be interpreted independently of the particular experimental set-up. The
parameter �U is the jet velocity relative to the ambient fluid, nominally 5.5 cm s−1.
The cylinder circumference πD serves as the characteristic length scale for the
non-dimensionalization. For the current analyses, the absolute time t = 1 s corresponds
to the dimensionless time τ = 0.69.



Transport and stirring induced by vortex formation 319

4(a)

2

0

y

y

y

2 4 6 8 10 12 14 16

–2

4(b)

2

0

2 4 6 8 10 12 14 16

–2

4(c)

2

0

2 4 6 8 10 12 14 16

–2

4(d )

2

0

2 4 6 8 10 12 14 16

–2

4(e)

2

0

2 4 6 8 10 12 14 16

–2

4( f )

2

0

2 4 6 8 10 12 14 16

–2

Figure 2. Forward-time FTLE, σ (x, τ, T ), fields for vortex formation for various τ . The
integration time used was T = 2.78 for all plots and x- and y-axes are plotted in centimetres.
The location of the cylinder is given by the solid rectangle. (a) τ =0, (b) 1.104, (c) 0.368,
(d) 1.472, (e) 0.736, (f ) 1.840.
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Figure 3. Backward-time FTLE plots for vortex formation, with five time instances
superimposed on same figure. For each FTLE plot, the integration time was T = −τ .

4. Flow geometry
4.1. Empirical data

FTLE fields were computed from DPIV data obtained by the methods described
in § 2. Figure 2 shows the forward-time FTLE field at a sequence of times, with
the cylinder outlined in black. Time τ = 0 corresponds to the instant the piston is
impulsed. The contour levels in figure 2 are set so that FTLE values below 70 % of
the maximum are transparent. The ridge of high FTLE is a repelling LCS. This LCS
bounds the fluid that will be entrained into the vortex.
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Figure 4. Repelling and attracting LCS for vortex formation. (a) τ =0.368, (b) 0.736,
(c) 1.104, (d) 1.472, (e) 1.840. Vortex bubble fully formed by τ ≈ 1.8.
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Figure 5. (a) The box (dashed line) marks the boundary of a parcel of tracers that will be
released in the flow at τ = 0.368. (b) The tracers shaded according to their initial location with
respect to the repelling LCS. (c–f )The forward time integration of the parcel.

Similarly, the backward-time FTLE fields were computed from the DPIV data to
provide the plots shown in figure 3 (where several snapshots in time are superimposed
on the same figure). The attracting LCS revealed from these plots defines the ‘front
boundary’ (downstream side) of the vortex. Since the flow is quiescent for τ < 0, the
backward-time FTLE is everywhere zero for τ � 0. Thus, no attracting LCS is present
at τ = 0. When τ � 0.368 the attracting and repelling LCS can be superimposed to
provide a closed boundary to the forming vortex (figure 4).

To demonstrate that the repelling LCS bounds the fluid that is entrained, we
place a parcel of fluid particles in the flow (figure 5a). The release time, τ =0.368,
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and location are somewhat arbitrary. To aid the visualization, particles are shaded
according to their initial location with respect to the repelling LCS (figure 5b). As
these particles are advected, it is clear that all particles inside the repelling LCS are
directed into the vortex, and all particles outside are left in the wake. In dynamical
systems terminology, there is a persistent hyperbolic trajectory at the rear of the
vortex, which is the turning point for particles that recirculate from those that are
pushed to the wake. The repelling LCS is the boundary between all particles that
are either pushed to the interior of the vortex or pushed to the wake by this turning
point. Likewise, there is a persistent hyperbolic trajectory at the front of the vortex
and the attracting LCS is the boundary between the particles in front of the vortex
and the recirculating particles in the interior of the vortex.

A precise boundary of the vortex during formation is not well-posed. Once the
vortex bubble has fully formed, it is natural to define the vortex boundary from the
attracting and repelling LCS, as in Shadden et al. (2006). What is relevant during form-
ation is understanding how fluid is entrained into the vortex bubble as it forms. The
region bound by the repelling LCS inside the cylinder constitutes the fluid inside the
cylinder that ends up in the vortex bubble. It is clear from figure 2(a) that this region
constitutes the majority of the fluid initially entrained into the vortex. In § 4.2.3, we
perform a more detailed analysis to quantify entrainment during formation. Following
the LCS outside the cylinder, the LCS loops back and forth, forming lobes. Previous
studies have shown that the dynamics of such lobes provide the mechanism by which
fluid is entrained into fully formed vortex bubbles; see Leonard, Rom-Kedar &
Wiggins (1987); Romkedar, Leonard & Wiggins (1990); Shariff & Leonard (1992)
and Shadden et al. (2006). It should be noted that these plots show the cross-sectional
geometry of a three-dimensional vortex ring. In three-dimensional space, the LCS are
two-dimensional surfaces, and these figures can be interpreted as displaying cross-
sections of those LCS. Because PIV techniques currently limit data collection to
planar sections, an empirically based computation of the complete two-dimensional
LCS is not possible. However, this is of little consequence for the flow being analysed
since the flow is approximately axisymmetric.

Figure 6 compares the Eulerian velocity and vorticity fields with the location of the
LCS during the vortex formation. Note that the maximum vorticity is always located
inside the boundary given by the LCS, but the LCS give a much clearer understanding
of the vortex boundary and how fluid is entrained or detrained.

4.2. Numerical results

The DPIV data are not sufficiently resolved to capture flow features in the boundary
layer near the cylinder wall. Classical theory predicts that the boundary layer close
to the exit plane rolls up and is the primary source of vortex ring circulation. To
be geometrically consistent with previous formation studies focusing on roll-up, the
repelling LCS should at least partially contain the boundary layer inside the cylinder
‘close’ to the exit plane. Otherwise, this portion of the boundary layer would not end
up in the core of the vortex. However, the LCS deduced from the DPIV data appears
to prematurely constrict away from the cylinder wall (see figure 2a), erroneously
suggesting that none of the boundary layer enters the vortex. This is probably due to
the inability of the DPIV measurements to resolve boundary-layer effects given the
coarseness of the DPIV data, cf. the spatial resolution of the data in figure 6.

Next we test the hypotheses that the geometric structure of the LCS is robust,
and that better measurement resolution allows the LCS to ‘hug’ the cylinder wall,
capturing the boundary layer near the exit, by relying on CFD simulations.
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Figure 7. Forward-time FTLE field at τ = 0 for axisymmetric CFD vortex data with L/D = 2.
The integration time used was T = 3 and the x- and y-axes are plotted in centimetres. The
location of the cylinder is represented by the solid rectangle. A complete animation of the
FTLE field during vortex formation in available with the online version of the paper.

4.2.1. CFD method

An axisymmetric numerical model, similar to the model used in Rosenfeld,
Rambod & Gharib (1998), was constructed with dimensions to match the experimental
set-up. The fluid parameters were also set to match the experiment. The downstream
boundary was placed at a distance of 15 diameters from the exit plane, while the
radial boundary was placed 4 diameters away from the symmetry line. The length of
the cylinder was 5 diameters, and the piston was moved with a constant velocity of
5.5 cm s−1. No-slip and no-injection velocity was enforced on the walls of the cylinder,
while at the outer and downstream boundaries, zero gauge pressure was specified.
Zero velocity was specified as the initial condition. Mesh and time step independence
tests were used to determine the acceptable mesh and time step, resulting in a mesh
of 60 000 nodes (clustered near the walls, near the exit of the vortex-ring generator,
and in the shear-layer region) and a time step of 2.5 × 10−3 s. The laminar time-
dependent Navier–Stokes equations were solved using the commercial package Fluent
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(Fluent, Lebanon, NH, USA) employing a second-order spatial and temporal scheme.
Although the experiment considered only a piston-stroke length-to-diameter ratio of
2, numerical simulations were performed for L/D =0.5, 1, 2 and 4.

4.2.2. Comparison with experimental results

Figure 7 shows the forward time FTLE field at τ = 0 computed from the CFD
data for L/D = 2, the same L/D as the experimental set-up. The repelling LCS
from the empirical data and computational data are qualitatively similar. In both
cases, the repelling LCS encloses a slug of fluid inside the cylinder and encloses
lobes of fluid outside the cylinder. This resemblance should be expected since LCS
are relatively robust to perturbations of the velocity data (Haller 2002). A notable
difference is that the repelling LCS computed from the CFD data hugs the wall more
closely than the LCS from the empirical data. This confirms the hypothesis that a
finer resolution of the velocity data is required near the cylinder wall for the LCS
to capture the boundary layer. Also, measurement of the velocity field inside the
cylinder is subject to greater measurement error than outside the cylinder owing to
unavoidable light scatter from the cylinder wall. This further complicates the ability
of the LCS computed from empirical data to capture the boundary layer.

Outside the cylinder, the LCS computed from the empirical data exhibits more
spatial oscillation than the LCS from CFD. These oscillations could be due to
disturbances in the flow that are inherent to the experimental set-up and are not
modelled in the CFD simulations, or due to high-frequency measurement errors. The
former is thought to be dominant.

4.2.3. Entrainment during formation

The computation of LCS allows insight on how much fluid is entrained during
formation. In this section, we compute the amount of fluid that enters the vortex
bubble from inside the cylinder, and from outside the cylinder (external fluid), during
the formation stage. This information would be difficult to obtain without knowledge
of the LCS. In particular, it would be difficult to determine the boundary of the
vortex, but also to differentiate cylinder fluid from external fluid over time. For
example, empirically visualizing entrainment would be difficult as fluid quickly mixes
near the vortex core and diffusion would lead to uncertainty since most common
dye tracers possess relatively high Schmidt numbers. Tracking particles by numerical
integration would introduce artificial divergence (Tambasco & Steinman 2002). Using
LCS, we can circumvent these issues, as the LCS predict exactly what fluid is entrained.

To compute entrainment during formation, we use CFD data. This allows variation
of formation parameters to understand better the effect on entrainment, and allows a
more accurate representation of the LCS inside the cylinder, which is important for
these computations.

LCS were computed from CFD simulations representing vortex formation for
piston-strokes L/D = 0.5, 1, 2 and 4. All other parameters discussed in § 4.2.1 remained
constant.

Table 1 gives, for each L/D, the amount of fluid bound by the repelling LCS inside
the cylinder at τ = 0, and, to give a sense of the formation time length, the approximate
time at which the vortex boundary attains the prototypical elliptic bubble shape. The
values in the second row are computed by taking the (axisymmetric) areas bound by
the repelling LCS inside the cylinder and non-dimensionalizing those values by the
cross-sectional area of the cylinder.
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L/D 0.5 1 2 4

Fluid from cylinder 9.8 × 10−2 2.8 × 10−1 6.2 × 10−1 1.3

Time fully formed 1.1 1.1 1.3 2.6

Table 1. Amount of fluid and bubble formation time for different values of L/D.
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Figure 8(a) plots the total fluid (from inside and outside the cylinder), entrained over
time. No detrainment occurs during the time intervals plotted in figure 8, therefore
figure 8(a) can be interpreted as the total amount of fluid inside the vortex. The plots
do not begin from τ = 0 because for τ small, it is difficult to define precisely the
extent of entrained external fluid. Figure 8(a) indicates entrainment is approximately
linear. Since the fluid from the cylinder is always included, this entrainment is from
external fluid. Furthermore, if we compare the y-intercept for the linear best fit to
the amount of fluid from the cylinder (see table 1), we see that the entrainment is
relatively linear between τ =0 and the first data points. For L/D from 0.5 to 2, the
rate of entrainment (i.e. slope of the linear fit) appears to increase, and then slightly
decrease from L/D = 2 to L/D = 4.

Figure 8(b) displays the relative contribution of entrained external fluid to the total
vortex volume. This plot demonstrates that relative to the size of the vortex, smaller
L/D leads to more entrainment of external fluid. This conclusion is consistent with
measurements of Müller & Didden (1980) and Dabiri & Gharib (2004).

5. Stirring and mixing
5.1. Interface stretching

Next we discuss the amount of stretching induced at various interfaces in the flow
during formation in order to shed light on the use of pulsatile or vortical flows
for mixing. It is well-known that the mixing of two fluids is greatly enhanced by
increasing the interface between the fluids (Aref 2002; Ottino 1989). The increase in
the interface between two fluids (stirring) allows for a larger area for diffusion to
occur (mixing). For this analysis, we use the empirical flow data. Similar conclusions
are found by analysis of the computational flow data.

The first interface, I1, is located across the exit plane of the cylinder, representative
of a fluid inside a chamber being injected into another fluid (figure 9a). The other two
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Figure 9. (a) Location of interfaces used to study mixing. The cylinder outline is shown by the
thin black line. (b) Stretching factor of interface versus time, τ = 0 corresponds to initialization
of vortex formation.

interfaces, I2 and I3, are located, respectively, along the top and bottom edge of the
cylinder, downstream from the exit plane. Their location coincides with the location
of the shear layer (in a time-averaged sense). For comparison, interfaces I1–I3 are
initially the same length, equal to the cylinder diameter. Figure 9(b) shows the length
of each interface over time, plotted on a linear and natural log scale. The lengths
plotted in figure 9(b) are normalized by the initial length of the interface, therefore
the graph represents the stretch factor over time.

The stretching of I1, I2 and I3 appears exponential. Interface I1 has the highest
exponential growth during formation. The growth rates of interfaces I2 and I3 are
similar to each other, which should be expected since the vortex ring is approximately
axisymmetric.

The discrepancy in the stretching between I1 and I2 or I3 can be better understood
by considering the repelling LCS. Figure 10(a) superimposes the forward-time FTLE
field with the locations of the material interfaces at τ = 0. As discussed previously,
there is hyperbolic trajectory at the rear of the vortex that acts as a turning point
between fluid that recirculates and fluid left in the wake; the repelling LCS defines
the boundary between this fluid. Thus a fluid parcel placed over the repelling LCS
will be (exponentially) stretched apart. If an interface intersects a repelling LCS, then
we can expect this to result in high stretching. If the interface intersects this structure
multiple times, then this influence is multiplied.
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Figure 10. (a) Location of interfaces used to study mixing with respect to initial location of
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Figure 11. Average mixing efficiency field in (a) the x-direction and (b) the y-direction. For
reference, the LCS at τ =0 is superimposed on the efficiency fields (solid black curve).

It is clear that interface I1 intersects the LCS multiple times and I2 or I3 intersect
the LCS less than I1. Therefore we can expect the stretching of I1 to be higher than
the other two interfaces, which is consistent with the data of figure 9(b).

Note that most of the stretching of I2 and I3 is due to the segments intersecting the
region bound by the repelling LCS. The segment of I2 intersecting the area enclosed
by LCS at τ = 0 is denoted by the dotted line (I2i) and the segment located outside
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this region is denoted by the solid line (I2o) in figure 10(b). Interface I3 can be
similarly partitioned to give corresponding segments I3i and I3o. The growth rates
of these individual segments are shown in figure 10(c), where again each segment
length is normalized by its length at τ = 0 to be interpreted as the stretching factor
over time. The stretching factor of I1 over time is also plotted in figure 10(c) for
comparison. The stretching of I2i and I3i is substantially greater than for I2o or I3o.
In fact, the stretching of I2i and I3i is very close to the stretching of I1 during the
formation stage, i.e. τ < 1.5. As we continue along the LCS, further intersections of
the LCS with I1 are present, which lead to the increasing rate of stretching of I1 over
I2i or I3i during the remainder of the time interval considered.

As the integration time used to compute the FTLE increases, more of the LCS
is revealed. In addition, the LCS cannot intersect itself. As we follow the repelling
LCS away from the rear hyperbolic trajectory, the LCS progressively loops backward
and forward. When it loops backward, it is confined by the previous segment, which
leads to an accumulation of lobes in the interior of the vortex. For example, this
leads to lobes within lobes, which shows how fluid that is initially entrained is later
detrained. Although I2 or I3 appear to intersect the repelling LCS only twice, if the
integration time used to compute the FTLE field were increased, more of the LCS
would be revealed and more intersections would probably be apparent inside the area
intersected by I2i. Since the integration time required to reveal this portion of the LCS
would be greater than 2.54 (the integration time used to compute the field shown),
the influence of these intersections is most noticeable after the time interval presently
considered. However, it is only in this region bound by the LCS that continued
stretching induced by the vortex circulation will persist.

We see that the location of an interface with respect to an LCS plays a pivotal
role in predicting stirring. Once the LCS are computed, they tell us directly the best
locations in the flow to introduce different fluids to be mixed. This offers a perspective
that does not require tracking interfaces, a task that becomes increasingly difficult,
in both experiments and simulations, as the fluid becomes well stirred. In addition to
revealing where stirring occurs, this perspective also allows us to understand better
the mechanisms of stirring.

5.2. Mixing measures

There are a number of mixing measures that have been used in the literature to
characterize how well a fluid mixes. No single measure is best suited for all applications
because the measures are highly dependent upon factors such as importance of
diffusion, chemical reaction, miscibility, domain of interest, etc. The present study
is focused on kinematic phenomena and thus neglects diffusion or reacting fluids.
A parameter that was developed to gauge such kinematic mixing is the average
stretching efficiency (see Khakhar et al. 1986; Ottino 1990). Here, we apply this
criterion to evaluate mixing for the empirical vortex formation.

Before defining the average stretching efficiency we first define the stretch factor

ρ(x, t, T ) = lim
‖δ(t)‖→0

‖δ(t + T )‖
‖δ(t)‖ , (5.1)

that is, the factor by which the magnitude of an infinitesimal perturbation δ(t) to
an arbitrary point x(t) grows in time. Note that if the initial perturbation δ(t)
is aligned with the eigenvector of the maximum eigenvalue of �(x, t, T ), then
ρ(x, t, T ) =

√
λmax (�(x, t, T )), see § 3. Also, if δ(t) is thus aligned, the FTLE field
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can be rewritten as

σ (x, t, T ) =
1

|T | ln ρ(x, t, T ) (5.2)

=
1

|T |

∫ t+T

t

ρ ′(x, t, s)

ρ(x, t, s)
ds , (5.3)

where ρ ′ denotes differentiation with respect to the third slot (e.g. the variable s).
The average stretching efficiency can be defined in terms of the specific rate of

stretch, ρ ′/ρ, as

〈e(x, m, t, T )〉 =

∫ t+T

t

ρ ′/ρ√
S : S

ds, (5.4)

where S is the symmetric part of the linearized velocity field,

S(x, t) =
1

2

[
dv(x, t)

dx

�

+
dv(x, t)

dx

]
, (5.5)

and S : S represents the tensor inner product (contraction). The quantity
√

S : S is
the rate of viscous dissipation in a Newtonian fluid. Therefore it allows comparison
between the action of fluid stretching and the action of viscosity, i.e. it tells how much
energy is lost in the process of the stretching. Using

δ̇(t) =
dv(x, t)

dx
δ(t), (5.6)

it readily follows that

ρ ′

ρ
= 〈m, Sm〉 , (5.7)

where m = δ(t)/‖δ(t)‖, which makes explicit the dependence of the stretching efficiency
on m. That is, the stretching efficiency is dependent on the orientation of the
perturbation δ(t) used to compute it.

The average stretching efficiencies in the x- (axial) and y- (radial) direction are
plotted in figure 11, where we have chosen m and n to denote unit vectors in the
x- and y-directions, respectively. The efficiency fields shown are for τ = 0 with an
integration/averaging time of T = 2.622 (after 2.622 time units, particles begin to
leave the velocity data domain). These plots also contain the repelling LCS at τ = 0
for comparison. The average efficiency fields have some similarity to the FTLE fields,
which might be expected since the FTLE is related to the average efficiency, as derived
above. It is clear, however, that the average efficiency fields do not provide sharp
boundaries as the FTLE fields, thus making interpretation of the efficiency fields
difficult. Additionally, the efficiency fields show regions of high efficiency outside the
repelling LCS, which is misleading since we know from § 5.1 that stirring is poor in
these regions. This is probably due to the denominator

√
S : S being small in these

regions where the flow has little motion or is approximately quiescent.
It is instructive to consider how the average efficiency field changes with the

integration (averaging) time, T . Figure 12 shows the spatial maximum of the average
efficiency field 〈e(m)〉 versus the integration time. The spatial maximum of the average
efficiency field in the y-direction versus T is nearly identical to the plot in figure 12.
Notice that the stretching efficiency is highly dependent on the integration time
for T < 1. This is one indication that the average stretching efficiency is not a
good indicator of mixing for transient flows. Secondly, we notice that the maximum
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Figure 12. Change in the maximum of the average efficiency field versus
the integration time.

efficiency asymptotes to a very small, if not zero, value with increasing integration time,
implying that the field becomes homogeneous, and hence void of useful information.
This is probably due to the vortex having only a local, in time, influence on the
domain shown, and eventually the stretching induced by the vortex formation no
longer causes stirring in this domain, either because the vortex ring has detrained all
particles initially in this domain, or simply the vortex ring is too far downstream.

It can be shown that irrespective of the integration time used to compute the
average stretching efficiency field, the metric erroneously predicts high kinematic
mixing where we know kinematic mixing is low. Furthermore, the mechanism for
kinematic mixing is not clearly revealed from the average stretching efficiency field.
Although it is not possible to apply all existing kinematic mixing metrics, we expect
other measures of kinematic mixing to have similar performance. Such methods
typically assume periodicity or some sort of ergodicity, which is often not present in
many applications, including the application studied here.

6. Conclusions
The purpose of this paper was to provide a clear understanding of the flow

structure during vortex-ring formation, and demonstrate how stirring is induced by
vortex formation. Intuitively, we expect that during the formation of a piston–cylinder
generated vortex ring, much of the fluid in the cylinder will end up in the vortex, and
as the vortex propagates, external fluid will be entrained. We demonstrated that LCS
can be used to determine precisely what fluid is entrained to form the vortex, and
how that entrainment occurs over time.

Demonstrating the process of vortex formation from this perspective aids in the
qualitative understanding of the formation process, but can also be exploited to derive
quantitative information that would otherwise be difficult to obtain. In § 4.2.3, be we
computed LCS from CFD simulations to determine the overall entrainment volume
during formation and the rate of entrainment of fluid outside the cylinder. The piston–
stroke length-to-diameter ratio was varied to study its influence on entrainment. Lower
L/D was shown to increase the relative contribution of entrained external fluid.

In § 5.1, the stretching at various interfaces is analysed for the empirical data. It is
shown that LCS can be used to guide the introduction of fluid(s) into the flow in order
to achieve maximum stirring. We also apply a common stirring metric, the average
stretching efficiency, to study the empirical flow data. The effectiveness of this metric
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was limited owing to the transient nature of the problem. Other common measures
of kinematic mixing are often based on instantaneous deformations or asymptotic
distributions in time, making such measures poorly suited for unsteady flows, or those
that have a transient effect on the domain of interest.

The authors would like to acknowledge funding from NSF OCE-0623475 (to
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