
A Discrete Geometric Optimal Control Framework
for Systems with Symmetries

Marin Kobilarov
USC

Mathieu Desbrun
Caltech

Jerrold E. Marsden
Caltech

Gaurav S. Sukhatme
USC

Abstract— This paper studies the optimal motion control of
mechanical systems through a discrete geometric approach. At
the core of our formulation is a discrete Lagrange-d’Alembert-
Pontryagin variational principle, from which are derived discrete
equations of motion that serve as constraints in our optimization
framework. We apply this discrete mechanical approach to
holonomic systems with symmetries and, as a result, geometric
structure and motion invariants are preserved. We illustrate our
method by computing optimal trajectories for a simple model of
an air vehicle flying through a digital terrain elevation map, and
point out some of the numerical benefits that ensue.

I. INTRODUCTION

The goal of this paper is to design optimal motion control
algorithms for robotic systems with symmetries. That is, we
consider the problem of computing the controls f(t) necessary
to move a finite-dimensional mechanical system with config-
uration space Q from its initial state (q(0) = qi, q̇(0) = q̇i) to
a goal state (q(T ) = qf , q̇(T ) = q̇f ), while minimizing a cost
function of the form:

J(q, q̇, f) =
∫ T

0

C(q(t), q̇(t), f(t))dt. (1)

Minimum control effort problems can be implemented using
C(q(t), q̇(t), f(t)) = ‖f(t)‖2, while minimum-time problems
involve C(q(t), q̇(t), f(t)) = 1. Additional nonlinear equality
or inequality constraints on the configuration (such as obstacle
avoidance in the environment) and velocity variables can
be imposed as well. Systems of interest captured by this
formulation include autonomous vehicles such as unmanned
helicopters, micro-air vehicles or underwater gliders.

A. Related work

Trajectory design and motion control of robotic systems
have been studied from many different perspectives. Of partic-
ular interest are geometric approaches [1, 2, 3] that use sym-
metry and reduction techniques [4, 5]. Reduction by symmetry
can be used to greatly simplify the optimal control problem
and provide a framework to compute motions for general
nonholonomic systems [6]. A related approach, applied to
an underwater eel-like robot, involves finding approximate
solutions using truncated basis of cyclic input functions [7].
There are a number of successful methods for motion planning
with obstacles—see [8] for references.

While standard optimization methods are based on shooting,
multiple shooting, or collocation techniques, recent work on
Discrete Mechanics and Optimal Control (DMOC, see [9,
10, 11]) proposes a different discretization strategy. At the
core of DMOC is the use of variational integrators [12] that
are derived from the discretization of variational principles
such as Hamilton’s principle for conservative systems or
Lagrange-D’Alembert for dissipative systems. Unlike other
existing variational approaches [6, 13] where the continuous
equations of motion are enforced as constraints and subse-
quently discretized, DMOC first discretizes the variational
principles underlying the mechanical system dynamics; the
resulting discrete equations are then used as constraints along
with a discrete cost function to form the control problem.
Because the discrete equations of motion result from a discrete
variational principle, momenta preservation and symplecticity
are automatically enforced, avoiding numerical issues (like
numerical dissipation) that generic algorithms often possess.

B. Contributions

In this paper, we extend the generalized variational principle
of [14, 15, 16] to the DMOC framework to derive optimization
algorithms based on structure-preserving, discrete-mechanical
integrators. In particular, we employ a discrete Lagrange-
d’Alembert-Pontryagin principle to characterize mechanical
systems with symmetries and external forces. We use this new
discrete geometric optimal control framework for holonomic
systems (possibly underactuated and/or with symmetries) and
illustrate the implemented algorithms with a simulated exam-
ple of a simplified helicopter flying through a canyon.

The numerical benefits of our discrete geometric approach
are numerous. First, it automatically preserves motion in-
variants and geometric structures of the continuous system,
exhibits good energy behavior, and respects the work-energy
balance due to its variational nature. Such properties are often
crucial for numerical accuracy and stability, in particular for
holonomic systems such as underwater gliders traveling at
low energies along ocean currents. Second, it benefits from
an exact reconstruction of curves in the Lie group configura-
tion space from curves in its Lie algebra. Thus, numerical
drift, for example associated with enforcing rotation frame
orthogonality constraints, is avoided. Third, the simplicity of
the variational principle allows flexibility of implementation.



Finally, this framework is flexible enough to strike a balance
between a desired order of accuracy and runtime efficiency.

In addition to these well-documented advantages of discrete
variational methods, there is growing evidence that DMOC
methods are especially well suited for optimization problems.
In particular, their discrete variational nature seems to offer
very good trajectory approximation even at low temporal
resolutions. This stability vis-a-vis resolution is particularly
suitable for design and exploration purposes as well as for
hierarchical optimizations, as it leads to faster convergence
towards optimal solutions.

It is also important to note that non-holonomic constraints
can also be imposed in our framework. We refer to [17] for
details on rolling constraints and Chaplygin systems. However,
in this paper we focus solely on holonomic systems with
symmetries.

II. OVERVIEW OF MECHANICAL INTEGRATORS

A mechanical integrator integrates a dynamical system
forward in time. The construction of such numerical algo-
rithms usually involves some form of discretization or Taylor
expansion that results in either implicit or explicit equations to
compute the next state in time. In an optimal control setting,
these equations are then used as constraints.

Instead, the integrators employed in this paper are based
on the discretization of variational principles, i.e. variational
integrators. In essence, they ensure the optimality (in the sense
of Hamilton’s principle, for instance) of the discrete path of the
mechanical system in space-time. In addition, certain systems
have group structure and symmetries that can be factored
out directly in order to obtain more accurate and efficient
integrators, e.g. Lie group integrators. After giving a brief
overview of such integrators below we present a variational
principle to derive more general integrators that account for
symmetries.

A. Variational Integrators

Variational integrators [12] are derived from a variational
principle (e.g., Hamilton’s principle) using a discrete La-
grangian. Unlike standard integration methods, variational
integrators can preserve momenta, energy, and symplectic
structure (i.e., a symplectic 2-form in phase space) for con-
servative systems; in the presence of forces and/or dissipation,
they compute the change in these quantities with remarkable
accuracy. Such features are obviously desirable for accu-
rate dynamics simulation. The underlying theory has discrete
analogs of Noether’s theorem and the Legendre transform, and
a Lagrange-d’Alembert principle to handle non-conservative
forces and constraints. Discrete mechanics, therefore, stands as
a self-contained theory similar to Hamiltonian or Lagrangian
mechanics [15] and has already been applied to several do-
mains: nonsmooth variational collision integration [18], elas-
ticity simulation in computer graphics [14], satellite formation
trajectory design [19], optimal control of rigid bodies [11], of

articulated bodies in fluid [10, 20], and optimal control of
wheeled robots [21].

In the variational integration setting, the state space TQ is
replaced by a product of two manifolds Q × Q [12]. Thus,
a velocity vector (q, q̇) ∈ TQ is represented by a pair of
points (q0, q1) ∈ Q × Q. A path q : [0, T ] → Q is replaced
by a discrete path qd : {kh}Nk=0 → Q (qd = {q0, ..., qN},
qk = q(kh)), Nh = T . One formulates a discrete version of
Hamilton’s principle (i.e. δ

∫ T
0

L(q, q̇)dt = 0) by approximat-
ing the integral of the Lagrangian L : TQ → R between qk
and qk+1 by a discrete Lagrangian Ld : Q×Q → R

Ld(qk, qk+1) ≈
∫ (k+1)h

kh

L(q(t), q̇(t))dt.

The discrete principle then requires that

δ
N−1∑
k=0

Ld(qk, qk+1) = 0,

where variations are taken with respect to each position qk
along the path, and the resulting equations of motion become

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0.

Example: For example, consider a Lagrangian of the form
L(q, q̇) = 1

2 q̇TMq̇− V (q) and define the discrete Lagrangian
Ld(qk, qk−1) = hL

(
qk+ 1

2
, (qk+1 − qk)/h

)
, using the nota-

tion qk+ 1
2

:= (qk + qk+1)/2. The resulting equations are

M
qk+1 − 2qk + qk−1

h2
= −1

2
(OV (qk− 1

2
) + OV (qk+ 1

2
)),

which is a discrete analog of Newton’s law Mq̈ = −OV (q).
For controlled (i.e., non conservative) systems, forces can
be added using a discrete version of Lagrange-d’Alembert
principle and discrete virtual work in a similar manner.

B. Lie Group Integrators

Lie group integrators preserve symmetry and group structure
for systems with motion invariants. Consider a system on
configuration manifold Q = G ×M where G is a Lie group
(with Lie algebra g) whose action leaves the system invariant,
i.e., it preserves the induced momentum map. For example,
G = SE(3) can represent the group of rigid body motions of
a free-floating articulated body while M is a space of internal
variables describing the joints of the body. The idea is to
transform the system equations from the original state space
TQ into equations on the reduced space g×TM (elements of
TG are translated to the origin and expressed in the algebra
g) which is a linear space where standard integration methods
can be used. The inverse of this transformation is then used
to map curves in the algebra variables back to the group.
Two standards maps have been commonly used to achieve
this transformation for any Lie group G:

• Exponential map exp : g → G, defined by exp(ξ) =
γ(1), with γ : R → G is the integral curve through the



identity of the left invariant vector field associated with
ξ ∈ g (hence, with γ̇(0) = ξ);

• Canonical coordinates of the second kind ccsk : g → G,
ccsk(ξ) = exp(ξ1e1) · exp(ξ2e2) · ... · exp(ξnen), where
{ei} is the Lie algebra basis.

A third choice, valid only for certain quadratic matrix groups
[22] (which include the rigid motion groups SO(3), SE(2),
and SE(3)), is the Cayley map cay : g → G, cay(ξ) =
(e − ξ/2)−1(e + ξ/2). Although this last map provides only
an approximation to the integral curve defined by exp, we
include it as one of our choices since it is very easy to
compute and thus results in a more efficient implementation.
Other approaches are also possible, e.g., using retraction and
other commutator-free methods; we will however limit our
exposition to the three aforementioned maps in the formulation
of the discrete reduced principle presented in the next section.

C. Unified View

The optimal control algorithms in this paper are based
on a discrete version of the Lagrange-d’Alembert-Pontryagin
(LDAP) principle [16]. The LDAP viewpoint unifies the
Lagrangian and Hamiltonian descriptions of mechanics [15]
and extends to systems with symmetries and constraints. The
discrete version of this principle yields integration schemes
that generalize both the variational and Lie group integrators
mentioned above.

The Lagrange-d’Alembert-Pontryagin Principle: We briefly
recall the general formulation of the continuous LDAP prin-
ciple for a system with Lagrangian L : TQ → R and control
force1 f : [0, T ] → T ∗Q. For a curve (q(t), v(t), p(t)) in
TQ⊕ T ∗Q, t ∈ [0, T ] the principle states that

δ

∫ T

0

{L(q, v) + p · (q̇ − v)}dt

+
∫ T

0

f(t) · δq(t)dt = 0,

(2)

for variations that vanish at the endpoints. The curve v(t)
describes the velocity determined from the dynamics of the
system. In view of the formulation, v does not necessarily
correspond to the rate of change of the configuration q.
The additional variable p, though, indirectly enforces this
dependence and corresponds to both Lagrange multipliers and
the momenta of the system. Thus 2 generalizes the Lagrange-
d’Alembert principle and is linked to the Pontryagin maximum
principle of optimal control.

The LDAP principle is conceptually equivalent to the
Lagrange-d’Alembert principle. Nevertheless, in the discrete
setting, the LDAP principle provides a more powerful frame-
work for designing mechanical integrators. One notable benefit
lies in the ability to derive higher-order integrators and, in
the case of systems with symmetries, to tailor the algorithm

1In the Lagrangian setting a force is an element of the cotangent bundle
T ∗Q, i.e. a one-form 〈f, ·〉 that pairs with velocity vectors to produce the
total work

∫ T
0 〈f, q̇〉dt done by the force along a path between q(0) and q(T ).

structure to achieve a desired accuracy or efficiency [15].
While in this paper we do not explore higher order approxima-
tions and, in essence, our formulation in Sec. III-B could be
alternatively derived using the discrete Euler-Poincaré (DEP)
approach [23], we follow the LDAP formulation because of its
greater flexibility. Another benefit appears in the discretization
of systems with nonholonomic constraints. In particular, the
optimal control method proposed in this paper is extended
to nonholonomic systems of Chaplygin type in [17] (with
the general case soon to follow) in a unified variational
formulation.

III. SYSTEMS WITH SYMMETRIES

In this section we develop the optimal control formulation
for mechanical systems with symmetries. Assume that the
configuration space is an n-dimensional Lie group G with
algebra g and Lagrangian L : TG → R that is left invariant
under the action of G. Using the invariance we can reduce
such systems by introducing the body-fixed velocity ξ ∈ g
defined by translation to the origin ξ = TLg−1 ġ and the
reduced Lagrangian ` : TG/G → R such that `(ξ) =
L(g−1g, g−1ġ) = L(e, ξ). The system is controlled using a
control vector u : [0, T ] → U, where U ⊂ Rc, c ≤ n, is
the set of controls applied with respect to a body-fixed basis
{F 1, ..., F c}, F i : [0, T ] → g∗.

A. The Continuous System

The continuous equations of motion are derived from the
reduced Hamilton (or Lagrange-d’Alembert in the presence of
forces) principle [4, 5] and have the standard form

ġ = gξ, (3)
µ = `′(ξ), (4)

µ̇ = ad∗ξ µ + uiF
i. (5)

Eq. (5) are the forced Euler-Poincaré equations, with µ ∈ g∗

denoting the system momentum, and (3) are the reconstruc-
tion equations. Note that ad∗ξ µ is defined by 〈ad∗ξ µ, η〉 =
〈µ, adξ η〉, where adξ η = [ξ, η] for η ∈ g.

Example: A Simple Helicopter

Consider the following simplistic model of a helicopter-like
vehicle (Fig. 1). The vehicle is modeled as a single underactu-
ated rigid body with mass m and principal moments of inertia
I1, I2, I3 (the inertia matrix is denoted I = diag(I1, I2, I3)).
The vehicle is controlled through a collective uc (lift produced
by the main rotor) and a yaw uψ (force produced by the
rear rotor), while the direction of the lift is controlled by
tilting the main blades forward or backward through a pitch
αp and a sideways roll αr. The configuration space is Q =
SO(3)×R3 with (R, p) ∈ Q denoting orientation and position.
Ignoring aerodynamic effects, we treat the rotational dynamics
separately from the translational dynamics.
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yaw

Fig. 1. Air vehicle model.

Rotations: Let Ω ∈ R3 ∼ so(3) denote the body angular
velocity. The Lagrangian of the rotational dynamics is `(Ω) =
1
2ΩT I Ω. In the absence of forces the system is invariant under
rotations and we can set G = SO(3) as the symmetry group.
The torque control input basis can be written in matrix form
as

FΩ(αp, αr) :=

 dt sinαr 0
dt sinαp cos αr 0

0 dr

 ,

where dt and dr are the distances from the top and rear blades
to the center of mass of the helicopter. The reduced equations
of the rotational dynamics corresponding to (3)-(5) are

Ṙ = RΩ, (6)
Π = I Ω, (7)

Π̇ = Π× Ω + FΩ(α)u, (8)

where Π ∈ R3 ∼ so(3)∗ denotes angular momentum, α =
(αp, αr), and u = (uc, uψ).

Translations: The translational dynamics is described by

mp̈ = RFV (α)u + fg,

where fg = (0, 0,−9.8m) denotes gravity, and

FV (αp, αr) :=

sinαp cos αr 0
− sinαr −1

cos αp cos αr 0

 .

Next we present the derivation of the corresponding dis-
crete equations of motion and describe how to use them as
constraints in the optimization problem.

B. Discrete Reduced LDAP Principle

The discrete reduced Hamilton-Pontryagin principle for
conservative systems was introduced in [15]. We now propose
a simple extension to systems with internal forces. The princi-
ple is formulated using the discrete reduced path denoted by
(g, ξ, µ)d : {tk}Nk=0 → G × g × g∗, where gd = {g0, ..., gN}
and ξd, µd analogously defined. The discrete control force
which approximates a continuous control force is defined as

fd : {tk}Nk=0 → g∗. The map TL∗g(t)−1 : g∗ → TG∗ trans-
forms the body-fixed momentum or force back to the cotangent
space at point g(t). The reduced LDAP principle results from
expressing the principle (2) in terms of the reduced variables,
i.e. by substituting L(g, ġ) ⇒ `(ξ), v ⇒ TLgξ, p ⇒ TL∗g−1µ
in (2). The discrete principle is then obtained by approximating
the integrals in (2) according to:

δ
N−1∑
k=0

h
[
`(ξk) +

〈
µk, τ

−1(g−1
k gk+1)/h− ξk

〉]
+
N−1∑
k=0

[
TL∗

g−1
k

f−k · δgk + TL∗
g−1

k+1
f+
k · δgk+1

]
= 0,

(9)

where the map τ : g → G defines the difference between two
configurations gk and gk+1 on the group through an element
in the Lie algebra. τ is selected as a local diffeomorphism [15]
such that τ(ξ)·τ(−ξ) = e. The left (resp., right) discrete force
f−k ∈ g∗ (resp., f+

k ∈ g∗, as shown below) is such that the
work done by f along each discrete segment is approximated
using the work done at the beginning (resp., the end) of the
segment; that is, as described in [12], these two discrete forces
provide an approximation of the continuous forcing through:∫ (k+1)h

kh

TL∗g(t)−1f(t) · δg(t)dt

≈ TL∗
g−1

k

f−k · δgk + TL∗
g−1

k+1
f+
k · δgk+1.

After taking variations in (9) we obtain the following
discrete equations of motion (see Sec. 4.2 in [15] for details).

g−1
k gk+1 = τ(hξk), (10)

µk = `′(ξk), (11)

(dτ−1
hξk

)∗µk − (dτ−1
−hξk−1

)∗µk−1 = f+
k−1 + f−k , (12)

where dτξ : g → g is the right-trivialized tangent of τ(ξ)
defined by D τ(ξ)·δ = TRτ(ξ)(dτξ ·δ) and dτ−1

ξ : g → g is its
inverse2. Equations (10)-(12) can be understood as a discrete
approximation of equations (3)-(5). They define a second-order
accurate integrator that is part of the variational Euler family
of methods [15].

The exact form of (12) depends on the choice of τ . It
is important to point out that this choice will influence the
computational efficiency of the optimization framework when
the equalities above are enforced as constraints. There are
several choices commonly used for integration on Lie groups.
We give details of two particularly representative examples:
the exponential map (exp), and the Cayley map (cay)—see
Sec. II-B for their definitions. Note that other maps, such as
canonical coordinates of the second kind (ccsk) (also based
on the exponential map), can be similarly derived.

2D is the standard derivative map (here taken in the direction δ)



Exponential map: The right-trivialized derivative of the map
exp and its inverse are defined as

dexp(x)y =
∞∑
j=0

1
(j + 1)!

adjx y,

dexp−1(x)y =
∞∑
j=0

Bj

j!
adjx y,

(13)

where Bj are the Bernoulli numbers. Typically, these ex-
pressions are truncated in order to achieve a desired order
of accuracy. The first few Bernoulli numbers are B0 = 1,
B1 = −1/2, B2 = 1/6, B3 = 0 (see [22, 24] for details).
Setting τ = exp, (12) becomes

dexp−1(hξk)∗µk − dexp−1(−hξk−1)∗µk−1 = f+
k−1 + f−k .

Cayley map: The derivative maps of cay (see Sec.IV.8.3
in [24] for derivation) are

dcay(x)y =
(
e− x

2

)−1

y
(
e +

x

2

)−1

,

dcay−1(x)y =
(
e− x

2

)
y

(
e +

x

2

)
.

(14)

Using τ = cay (see also [15]) (12) simplifies to

µk − µk−1 −
h

2

(
ad∗ξk

µk + ad∗ξk−1
µk−1

)
− h2

4
(
ξ∗kµkξ

∗
k − ξ∗k−1µk−1ξ

∗
k−1

)
= f+

k−1 + f−k .

(15)

The Cayley map provides a coarser approximation than the
exponential map exp, but its simple form is suitable for
efficient implementation.

Discrete Forces: There are various ways to construct valid
discrete forces f+ and f−. A simple approach, in the spirit of
the midpoint rule, is to assume that the left and right discrete
forces at each segment are equal, and defined as the average of
the forces applied in the beginning and the end of the segment:

f−k = f+
k =

h

2

[
fk + fk+1

2

]
.

Example: Assume that we use the Cayley map and the
midpoint rule to construct a variational integrator for the air
vehicle model defined in Sec. III-A. The discrete equations of
rotational motion (corresponding to eqs. (10)-(12), and making
use of (15)) become

RT
kRk+1 = cay(hΩ̂k),

Πk = I Ωk,

Πk = Πk−1 +
h

2
(Πk−1 × Ωk−1 + Πk × Ωk) (16)

+
h2

4
((ΩTk−1Πk−1)Ωk−1 − (ΩTkΠk)Ωk)

+
h

4
(FΩ(αk−1)uk−1 + 2FΩ(αk)uk + FΩ(αk+1)uk+1),

where the map .̂ : R3 → so(3) is defined by

Ω̂ =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 .

The translational motion is derived using a standard variational
integrator (see the example in Sec. II-A) and, with the addition
of forces, becomes

m

[
pk+1 − 2pk + pk−1

h2

]
=

1
4

[Rk−1FV (αk−1)uk−1

+2RkFV (αk)uk + Rk+1FV (αk+1)uk+1] + fg.

(17)

IV. DIRECT OPTIMAL CONTROL FORMULATION

A straightforward way to find a numerical solution to the op-
timal control problem is to formulate a nonlinear program that
minimizes the cost function over all discrete configurations,
velocities, and forces, while satisfying the boundary conditions
and the discrete equations of motion enforced as equality
constraints. Additional equality or inequality constraints can
also be enforced.

A. Problem Formulation

The optimal control problem can be directly formulated as

Compute: gd, ξd, fd, h

minimizing
N−1∑
k=0

Cd(gk, ξk, f±k , h)

subject to:
g0 = gi, ξ0 = ξi, gN = gf , ξN−1 = ξf ,

Equations (10)− (12) for k = 0, ..., N − 1,

H(gd, ξd, h) ≥ 0,

ξk ∈ [ξl, ξu], fk ∈ [fl, fu], h ∈ [hl, hu],

(18)

where Cd is a discrete approximation of C defined in (1) and
and H : G × g × R → Rp are inequality constraints. The
formulation allows time to vary and the last constraint places
bounds on the time variation as well as bounds on all other
variables.

Remarks

Average Velocity: The variables denoted ξN and µN have
no effect on the trajectory gd so we can treat these last points
as irrelevant to the optimization. This is coherent with thinking
of each velocity ξk as the average body-fixed velocity along
the kth path segment between configurations gk and gk+1.

Velocity at the boundary: A second remark must be made
regarding velocity boundary conditions. For simplicity, we
work with the boundary conditions ξ0 = ξi and ξN−1 = ξf
which are not exact, since according to the above assumption
ξk represents an average velocity. A proper treatment of the
exact velocity boundary conditions given by ξ(0) and ξ(T )
requires further constraints such as

(dτ−1
h/2ξ(0))

∗`′(ξ(0))− (dτ−1
−h/2ξ0)

∗µ0 = f−0 ,

(dτ−1
h/2ξN−1

)∗µN−1 − (dτ−1
−h/2ξ(T ))

∗`′(ξ(T )) = f+
N−1.

However, for simplicity and computational efficient, we as-
sume that the boundary condition is in terms of the initial and
final average velocity.



B. Algorithm Construction

Midpoint Rule: The discrete cost function can be con-
structed using the midpoint rule as

Cd(gk, ξk, f±k , h) = hC

(
gk+ 1

2
, ξk,

fk + fk+1

2

)
(19)

where gk+ 1
2

= gkτ(h2 ξk), i.e. the midpoint along the flow
defined by τ . There are other choices besides the midpoint rule
that can lead to integrators of arbitrary high order of accuracy,
e.g., composition methods and symplectic Runga-Kutta meth-
ods [12]. The midpoint rule is a particularly pertinent choice
for optimization problems since it provides a good balance
between accuracy and efficiency.

Implementation: The optimal control formulation (18) can
be solved using a standard constrained optimization technique
such as sequential quadratic programming (SQP). A continu-
ous control curve f can be obtained from a discrete solution
curve fd using linear interpolation of fd (in case of the
midpoint rule) or some higher order interpolation consistent
with the order of accuracy of the chosen discretization.

V. APPLICATION

We have implemented our framework for solving general
optimal control problems of the form (18). It is written in
C++ and uses the sparse SQP solver SNOPT [25]. The system
is used to compute a control-effort minimizing trajectory for
the simulated helicopter between two zero-velocity states in
an artificial canyon. We use the discrete system described in
the example of Sec.III-B with equations of motion defined
by (16) and (17) and a discrete cost function defined by (19).
Fig. 2 shows a typical output of our system and the resulting
trajectory and control curves are shown on Fig. 5.

Controllability: In order to establish the controllability
of the system one can use the good symmetric products [5] of
the two vectors obtained from the columns of the matrix[

I−1FΩ(α)
1
mFV (α)

]
,

and show that the system is locally configuration controllable
at zero velocity. Since the actuator inputs have bounds, one
has to design an algorithm which allows time to vary in order
to accommodate these limits. In our implementation, the time-
step h (and hence the final time T ) is part of the optimization
state vector and is allowed to vary within some prescribed
bounds.

Optimization Variables: For efficiency the components of
the matrices Rk are not part of the optimization state vector
and the trajectory Rd is reconstructed from the trajectory
Ωd internally during optimization. Alternatively, one could
parametrize the rotations (e.g., using quaternions) and optimize
over these additional coordinates as well. In our experience,
both approaches perform similarly well.

Fig. 2. Example of an optimized trajectory in a complex environment: a
helicopter path through an outdoor canyon.

Fig. 3. Top and side views of the helicopter trajectory shown in Fig. 2

Obstacles: A robot can be required to stay away from
obstacles by enforcing inequality constraints Hi(R, p) =
dist(A(R, p),Oi)−ds, where A ⊂ R3 is the region occupied
by the robot, Oi ⊂ R3 represent the static obstacles, and
ds is some safety distance. The function dist computes the
minimum distance between two rigid objects. In our imple-
mentation both the canyon and the helicopter are triangulated
surfaces and we use the Proximity Query Package (PQP) to
compute dist.

The optimization runs efficiently in the absence of obstacles
or with simple (smooth and convex) obstacles (taking in the
order of a few seconds for most tests). On the other hand,
complex rough terrains can slow down the system significantly.
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Fig. 4. The orientation and position as functions of time for the helicopter
trajectory shown in Fig. 2.

Note also that our simple implementation faces the same
robustness issues as many optimization procedures: a bad
choice for the initial trajectory may lead to a local minima.
One way to speedup convergence is to start with a good
initial obstacle-free path computed, for example, using a local
obstacle avoidance method (e.g. [26]). Nevertheless, as already
pointed out by several similar works cited in our references,
this approach should be used to produce small-scale local
solutions that are combined by more global methods in a
hierarchical fashion (e.g. see [8] regarding incremental and
roadmap planners, as well as [27, 28] for planning using
primitives). An obvious application is also the refinement of
trajectories produced by discrete or sampling-based planners.
Finally, in order to assess the exact numerical benefits of this
method, a detailed performance analysis and comparison to
related methods is needed and is currently under way.

VI. CONCLUSION

There are many ways to solve optimal control problems,
as confirmed by the rich literature on this subject. We have
presented one approach that focuses on a proper discretization
of the system dynamics through the extremization of a discrete
action. An optimal control framework for systems with sym-
metries is then derived and applied to a simple robotic model.
It will be useful to further optimize our approach using ideas
from, e.g., [6, 7, 29]. A comparison with the closely related
method [11] is also an obvious research direction. Since the
optimization algorithm is inherently local (as are most gradient
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Fig. 5. The control forces and blade angles as functions of time for the
helicopter trajectory shown in Fig. 2.

based methods) our method will be most effective in a global
hierarchical optimization framework. This is a central issue
related to the nature of discrete mechanics. In that respect,
discrete mechanics can be used to perform provably correct
coarse-to-fine discretization of time and space which is linked
to global convergence of trajectories.

Future Directions and Related Work

There are several promising directions of potential benefit to
robotics, in which the discrete geometric approach is currently
being extended. One of these is to further exploit the simplicity
of the approach as well as its hierarchical benefits. Another
is the discretization and optimal control of nonholonomic
systems. Initial results with applications to Chaplygin systems
and car-like robots can be found in [17]. Yet another direction
is the inclusion of environment constraints such as obstacles or
interaction constraints in groups of vehicles directly as part of
the discrete optimization framework. Coarse-to-fine methods
can then be used to jointly deform such constraints along
with solution trajectories to produce more efficient methods
with provable convergence properties. For example, multi-
resolution extensions of the optimization methods presented in
this paper already exhibit real-time performance when applied
to rigid body systems. Finally, hierarchical and decentralized
(e.g. [19]) DMOC methods are under development to address
multi-vehicle or other complex systems in a scalable and
robust manner.

As has been indicated, there are several important issues
that need additional attention. One is a detailed comparison



to other optimization, both in terms of accuracy and in terms
of hierarchical and coarse-to-fine benefits. A preliminary and
encouraging study was done in [21], but this needs systematic
and detailed analysis.
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