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Abstract

High-frequency (HF) radar technology produces detailed velocity maps

near the surface of estuaries and bays. The use of velocity data in environ-

mental prediction, nonetheless, remains unexplored. In this paper, we un-

cover a striking flow structure in coastal radar observations of Monterey Bay,

along the California coastline. This complex structure governs the spread of

organic contaminants, such as agricultural run-off which is a typical source of

pollution in the bay. We show that a HF radar-based pollutionrelease scheme

using this flow structure reduces the impact of pollution on the coastal envi-

ronment in the bay. We predict the motion of the Lagrangian flow structures

from finite-time Lyapunov exponents of the coastal HF velocity data. From

this prediction, we obtain optimal release times, at which pollution leaves the

bay most efficiently.

Introduction

Pollution in coastal areas may impact the local ecosystem dramatically if the pol-

lutants recirculate near the coast rather than leaving for the open ocean, where

they are dispersed and then safely absorbed (1, 2). This article shows that accu-

rate current measurements and dynamical systems theory canhelp in designing

timed pollution release with the desirable outcome. Inspired by previous investi-

gations (3), we consider a holding tank where pollutants can be temporarily stored

and released at a later time.

The focus of our study is the Elkhorn Slough and the Duke Energy Moss Land-

ing power plant, both of which are located near the Moss Landing Harbor in Mon-

terey Bay (see Fig.1). The Elkhorn Slough is a regular source of organic con-
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taminants such as dichlorodiphenyl-trichloroethane (DDTs) and polychlorinated

biphenyl (PCBs) from agricultural run-off, phthalic acid esters (PAEs) from plas-

ticizer manufacturing, insecticidal sprays, wetting agents and repellents, and poly-

cyclic aromatic hydrocarbons (PAHs) from the combustion ofnatural fossil fu-

els (1, 2). In addition, the Moss Landing power plant is a source of thermal pol-

lution, which exhausts through a pipe that extends 200 meters into Monterey Bay

(see Fig.2).

Figure 1: Locations of three CODAR SeaSonde HF radar systemsaround Mon-
terey Bay. Top, bottom and right photographs show the HF radar antenna at Santa
Cruz, Point Pinos, and Moss Landing that were used to measurethe current data,
respectively. Also shown are the footprint at 08:00 GMT on August 8th, 2000 (4–6)
and bottom topography contours at various depths.
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In contrast to earlier approaches to timed pollution release from holding tanks

(3, 7–10), we avoid the use of simplified models and target measured ocean data

directly. This strategy accommodates constantly changingflow conditions, an es-

sential requirement for any pollution control algorithm ofpractical use. Another

novel feature of our study is the use of finite-time dynamicalsystems methods (11–

13) for the analysis of HF radar data. The recent interest in thedevelopment and

application of such methods stems from the realization thatstirring in mesoscale

geophysical flows is governed by coherent structures of finite lifespan (13–16).

Figure 2: Aerial view of the Elkhorn Slough and the Duke powerplant (right circle
on the photograph). The plant exhausts warm, desalinated water through a pipe
that extends 200 meters off the beach. The circle on the left of the photograph
indicates the outlet of the pipe and the plume.

The presence of coherent features in geophysical flow data prevents the ap-
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plication of homogeneous and isotropic turbulence theory (11) while the temporal

irregularity and spatial complexity of such data renders the classic techniques of

chaotic advection inapplicable (17–20). Most coastal flows fall into this intermedi-

ate regime. They are too energetic to be modeled as steady or periodic, but there is

insufficient energy to reach a state where homogeneous turbulent diffusion would

be adequate for understanding transport. This quasi-turbulent regime is chaotic,

and thus extremely sensitive to initial conditions. Only a small change in the initial

position or the release time of some material can considerably affect its trajectory.

This is why a dynamical systems approach to transport is often needed for coastal

flows.

In this paper, we use the radar measurements to identify the Lagrangian Coher-

ent Structures (LCSs), which govern chaotic stirring of anyLagrangian particles.

Specifically, we use Lyapunov exponents to find a highly convoluted LCS that re-

pels nearby fluid parcels and, hence, acts as a barrier between two different types

of motion: recirculation and escape from the bay. Recent work (13) shows that

the flux across the LCS is negligeable for the lifetime of the structure. Release of

pollutants on one side of this moving fluid structure will result in sustained recir-

culation of the contaminant in the bay. If, however, pollution is released on the

other side of the repelling material line, then the contamination will quickly clear

from coastal regions and head towards the open ocean. Clearly, the latter scenario

is more desirable. We propose an algorithm that uses real-time HF radar data to

predict release times leading to the desired pollution behavior. A similar approach

should work for optimizing the release of pollution into theatmosphere, rivers,

lakes, or other waterways where sufficiently accurate wind or current data is avail-

able, and the release of pollution can be contained until an appropriate release time.
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Higher frequencies are typically necessary for smaller regions (21).

High-frequency radar measurements

Our analysis makes use of high frequency (HF) radar technology (4–6), which

is now able to resolve time-dependent Eulerian flow featuresin coastal surface

currents. Such an HF radar installation has been operating in Monterey Bay since

1994 (6). In our study, we use data from this installation, acquiredby the three HF

radar antennas (shown in Fig1.), binned every hour on a horizontal uniform grid

with 1 km by 1 km intervals. An example of an HF radar footprintof the bay at

05:00 GMT, August 12, 2000 is shown in Fig.1.

The surface current patterns in Monterey Bay are part of a dynamic upwelling

system dominated by along shore wind forcing. The counterclockwise circulation

pattern shown in Fig.1, including the strong jet-like flow from north to south across

the mouth of the Bay, is representative of the currents understrong, upwelling-

favorable (from the northwest) wind conditions. Such windsare common, par-

ticularly during the summer months. However, periods of three to five days of

upwelling favorable winds are generally followed by a shorter period of weak or

reversed winds known as relaxation periods. During relaxation periods, the surface

currents are generally weaker and less organized and they often exhibit a narrow

band of south-to-north flow across the mouth of Monterey Bay.

To connect with the vast literature on dynamical systems, notice that the avail-

ability of measured velocities in the bay removes the need for a model based on

partial differential equations. If the position of a fluid particle in Monterey Bay is
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referred to as a vectorx, it obeys the ordinary differential equation

ẋ = v(x, t) . (1)

wherev(x, t) is the velocity at timet and positionx. The form of Eq. (1) is a

generic time-dependent dynamical system (11) and demonstrates the connection

between a measured velocity field and the vast literature on dynamical systems

techniques. Rather than modeling, we are demonstrating a method for analyz-

ing Lagrangian trajectories computed from any velocity field: measured, modeled

or assimilated. In this article, the velocity field,v(x, t) is provided by the high-

frequency (HF) radar measurements of near-surface currents in Monterey Bay.

Since the velocity data is measured, there is some measurement error, as well

as vectors that could not be resolved in some areas or at some times. Various

techniques such as Open-boundary Modal Analysis (OMA) (22) are available for

filtering, interpolating and extrapolating this data. Ocean modeling and data as-

similation schemes have also proved to be an adequate sourceof dynamical sys-

tems (11, 23, 24).

We chose to use HF radar datawithout any filtering, interpolation or extrapo-

lation. The objective of this work is to extract and use the coherentstructures from

the data, without any possible correlation with a filtering method or a model. Once

the existence of a flow structure has been established for unfiltered data, modal

techniques can be used to increase the smoothness of the measurements and struc-

tures.

The HF radar data gives the velocity fieldv(x, t) but we are concerned with

making deductions based on the resultingflow x(t; t0,x0), i.e., the solution of
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Eq. (1) that satisfiesx(t0) = x0, wheret0 andx0 are the initial time and position

of the trajectory.

The temporal complexity of the currents becomes evident from tracking differ-

ent evolutions of a fluid parcel (a model for a blob of contaminant) released at the

same precise location, but at slightly different times. We show the results of two

such numerical experiments in Fig.3.

Figure 3: Evolution of two parcels of contaminants releasedfrom the same position
near Moss Landing at 22:00 GMT, August 6, 2000 (black) and 09:00 GMT, August
7, 2000 (white), plotted together with the snapshot of surface currents observed at
08:00 GMT on 8 August 2000. The motion of the two parcels is shown through
daily snapshots over eight days. Note that the black parcel remains in the bay,
while the white parcel departs from the bay.
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Using available HF velocity data, we advected the fluid particles using a 4th

order Runge-Kutta algorithm combined with tricubic interpolation in space and

time. These particle trajectories are used to approximate the flow map, which

associates initial positions,x0, to final positions,x. These numerical algorithms

have been compiled into a software package calledManGen1.

Figure 3 shows that one contaminant parcel remains in the bay, whereas the

other parcel exits the bay and moves immediately towards theopen ocean. The

latter scenario (the white parcel on Fig.3) is highly desirable, because it minimizes

the impact of the contaminant on coastal waters, by causing it to be safely dispersed

in the open ocean. This observation inspires us to understand and predict different

evolution patterns of the same fluid parcel, depending on itsinitial location and

time of release.

Lagrangian Coherent Structures

To understand the evolution of fluid parcels, we use a geometric description of mix-

ing from nonlinear dynamical systems theory. Autonomous and time-periodic fluid

flows have long been known to produce chaotic advection (25), i.e., irregular stir-

ring of fluid parcels. Instrumental in this stirring are stable and unstable manifolds

of hyperbolic fluid trajectories (26). These structures are material curves formed

by fluid trajectories that converge to (resp. diverge from) ahyperbolic trajectory.

For near-incompressible flows, the convergence within a stable manifold causes

the manifold itself to repel nearby fluid parcels. As a result, stable manifolds act as

repelling material lines that send fluid parcels on their twosides to different spa-

1http://www.lekien.com/˜francois/software/mangen
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tial regions. Conversely, unstable manifolds act as attracting material lines, targets

along which fluid parcels spread out and form striations. We refer to attracting and

repelling material lines jointly as hyperbolic material lines.

Figure 4: Distribution ofLt(t0,x0) in Monterey Bay at timet0 = 21:00 GMT,
August 8, 2000 (left panel) and at timet0 = 09:00 GMT Aug 7, 2000 (right panel).
Superimposed on these plot are the dominant stable LCS as indicated by the ridges
of Lt(t0,x0) (black curves).

Recent progress in nonlinear dynamical systems has extended the above geo-

metric picture to velocity fields with general time dependence, such as the surface

velocity field of Monterey Bay. Families of hyperbolic material lines continue

to organize finite-time mixing in such flows, even when the flowbecomes quasi-

turbulent (12). Several numerical algorithms and theoretical criteria have been

proposed to identify hyperbolic material lines in general velocity data sets (11, 13–

15, 27–30). Here we compute finite-time Lyapunov exponents (27). We start with

a grid of initial particle positionsx0 distributed across the domain at timet0. These

are mapped to a later positionx(t; t0,x0) at timet0 We begin by computing the
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Cauchy-Green strain tensor at timet,

Ct(x0, t0) =

[

∂x(t; t0,x0)

∂x0

]⊤ [

∂x(t; t0,x0)

∂x0

]

, (2)

where the superscript⊤ refers to the transpose of a matrix. We compute the eigen-

values ofCt(x0, t0) at some timet, long before or after the reference timet0. The

largest eigenvalueσt(x0, t0) of Ct is also the largest singular value of the flow map

and, for an infinitesimal grid spacing, typically behaves asσt(t0,x0) ∼ e2γ(t−t0).

As shown in (13), the coefficientγ approximates the rate of stretching about the

trajectoryx(t; t0,x0). As a result, we define,

γt(x0, t0) =
1

t − t0
ln

√

σt(x0, t0) , (3)

as our “stretching coefficient”. To compare results at different timest0, we define

Lt(x0, t0) =
γt(x0, t0)

max
x0

{γt(x0, t0)}
, (4)

as the normalized finite-time Lyapunov exponent. We are interested in local max-

imizing curves or “ridges” of the scalar fieldLt(t0,x0) because they represent

repelling material lines (14, 31). By ridgesc(s, t), wheres ∈]a, b[, we mean a

gradient curve ofL that minimizes the (negative) curvature ofL in the direction

orthogonal to the ridge at each timet. More precisely, the ridge is a smooth curve

c(s, t) that satisfies,
∂c

∂s
×∇L = 0. (5)

where the cross product ensures thatc
′(s, t) is parallel to∇L. This first condition
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implies that the ridge is one of the many gradient curves ofL. We select isolated,

distinguished gradient curves by requiring also

n
⊤∂2L

∂x2
n = min

u6=0

u
⊤ ∂2L

∂x2 u

‖u‖2 (6)

wheren is the unit normal vector to the ridge at pointc(s, t). The second condition

states that, among all the gradient curves ofL, the ridge is the one that maximizes

the curvature in the normal direction.

A more extensive description of the ridges ofL and their properties can be

found in (13). If the Lyapunov exponentL is viewed as the altitude, a ridge cor-

responds to a continental divide in the landscape. Any particle sitting on top of a

ridge can fall on either side if there is a perturbation. The valleys on each sides of

a ridge correspond to regions of qualitatively different dynamics. Particles on the

ridges aresensitive to initial conditionsbecause, depending on the direction of the

initial perturbation, they can easily fall in different valleys. The same procedure

performed backward in time (i.e., fort < t0) would render attracting material lines

at t0 as ridges ofLt(t0,x0).

The ridges ofLt(t0,x0) divide the flow into regions of qualitatively different

Lagrangian behavior (13, 32). Particles trapped inside the same loop of a LCS

behave similarly and can be assimilated to a coherent mass offluid. For this reason,

the LCS provide a simple and geometric way to investigate theunderlying velocity

field and its action of particle trajectories. In this paper,we study the relationship

between a symbolic fate (recirculating into the bay or escaping to the ocean) and

the initial position with respect to a LCS .
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Figure 5: Two parcels of contaminants released from the sameposition near Moss
Landing at 22:00 GMT, August 6, 2000 and at 09:00 GMT, August 7, 2000. The
black arrows show instantaneous surface velocities captured by the HF radars. The
ridges of theLt field reveal the hidden Lagrangian structure of the bay at thesame
time instants.
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Analysis of HF radar data

We have performed the above analysis on a grid of fluid particles launched at 06:00

GMT on August 8, 2000. Using available HF velocity data, we advected the fluid

particles for 200 hours, used their positions to approximate the flow map, and then

numerically differentiated the flow map with respect to the initial positions of the

particles. In this computation, we used a 4th order Runge-Kutta algorithm com-

bined with 3rd order polynomial interpolation in space and time (33). We con-

sidered the coastline a free-slip boundary, and disregarded particles that crossed

the linear fluid boundaries of the domain on the northern, southern and western

edges. A sample result of such a computation is shown in Fig.4, where the scalar

distributionLt(t0,x0) is calculated over the initial gridx0.

In agreement with the above general discussion, local maximizing curves, or

ridges, on this plot form repelling material lines that act as moving barriers to trans-

port. Note the highly convoluted maximizing curve that attaches to the southern

coastline of the bay near Point Pinos (34), as seen in both panels of Fig.4. The

black curve can be viewed as a stable LCS — a curve of fluid particles converging

to an attachment point moving back and forth along the coast in the vicinity of

Point Pinos. This stable LCS divides the bay into two regionsof different parcel

behavior. Fluid mechanicists might recognize the black curve as a streakline which

originates at the upwelling source in the center of the bay.

Fluid parcels on one side of the stable LCS will recirculate in the bay after they

pass by the coastal attachment point. Parcels on the other side of the LCS exit to

the open ocean after passing by the attachment point. This isthe reason underlying

the different parcel behaviors in Fig.3: the same release location fall on different
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sides of the stable LCS on August 6 and August 7. Figure5 illustrates this point

by superimposing the instantaneous positions of the stableLCS on snapshots of

parcel positions. Recall that the behavior of the white parcel is highly desirable for

the evolution of pollutants.

Optimal pollutant release times

The Elkhorn Slough and the Duke Energy Moss Landing Power Plant are both

located near the Moss Landing Harbor, which is on the easternshore of Monterey

Bay. Both contribute to pollutants entering Monterey Bay.

An important consequence of the above analysis isthe existence of time inter-

vals where released contaminants have either a high or low impact on the envi-

ronment. Our objective is to show that a pollution control algorithmbased on a

nonlinear dynamic analysis with Lyapunov exponents can achieve a significantre-

duction in the impact of a contaminantin a coastal area,without reducing the total

amount of contaminants released.

To facilitate the discussion, we consider an exhaust pipe similar to that men-

tioned in Fig.2, which carries pollution (e.g., chemical, thermal) from Moss Land-

ing and the Elkhorn Slough to an offshore release site shown in Fig.6.

Although building a pipeline is not necessary for our method, it is necessary

to have some control over the release time and location of thepollutants. Thus to

expedite our explanation we will imagine a pipeline which carries the contaminants

from the Moss Landing area to an offshore release site at the same location that

the black and white parcels were released. This hypothetical pipeline and release

location are shown in Fig.6.
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For any given time, we consider a portion of the previously discussed LCS as it

ascends along the coastline of the bay from Moss Landing, meandering past Santa

Cruz. The meandering of the LCS causes it to intersect the axis of the pipeline

in several points. These intersection points can be countedby following the LCS,

starting from its coastal attachment point. We refer to the first intersection point as

Lpeak
t (t0).

The end of the pipe is at the same location as the release site for the white

and black parcels featured in Fig.3. Figure6 also shows the instantaneous inter-

section of the stable LCS (revealed by a ridge of theLt field) and the axis of the

hypothetical pipeline.

The motion of the intersection point along the axis of the hypothetical pipeline

is complicated, which is evident from the time history of theintersection location

in Fig.7. Superimposed on this plot are the release times and releaselocation of the

white and black parcels of Fig.3. Recall that the reason for their different future

behaviors is the difference in their initial position relative to the curve of Fig.7. In

particular, the white parcel exits the bay quickly because it enters the flow when

the point of release lies between theLpeak
t (curve of Fig.7) and the edge of the

pipeline (horizontal line on Fig.7).

Notice that Fig.7 proves the existence of time intervals where pollutants are

quickly advected outside the bay. The objective of our pollution release algorithm

is to maximize pollutant release during these time windows and to store pollutants

in a tank outside these intervals.
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Figure 6: A hypothetical pipeline carries contaminants to be released in the bay
from the Moss Landing area. Also shown is the instantaneous intersection point of
a peak in the LCS field (i.e.,Lpeak

t ) and the axis of the pipeline.

Real-time Coastal Pollution Management

Based on the analysis in the previous section, it is temptingto think that the inter-

section curve in Fig.7 predicts directly times of pollution release that will leadto a

quick exit from the bay. Why not simply release pollution when the curve indicat-

ing theLpeak
t is well above the horizontal line marking the outlet of the pipeline?

As in the case of the white parcel, such a release would certainly guarantee that

the contaminant is initially east of the stable LCS and henceleaves the bay quickly

as it will approach the Monterey Peninsula west of the separation line near Point
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Figure 7: Oscillations ofLpeak
t along the axis of the pipeline. The zero reference

time corresponds to 07:00 GMT, August 1, 2000. The horizontal line marks the
location of the outlet of the pipeline. The black and white squares represent the
release time and release longitude of the parcels featured in Fig.3.

Pinos.

The above method is flawed for practical applications, because any point of the

Lpeak
t curve in Fig.7 is constructed from future velocity data over the next 200

hours. In other words, to predict when and where to release pollution on Monday,

we would need knowledge of the currents in the bay up until approximately Tues-

day of the following week. Such future data is clearly unavailable at the time when

a decision has to be made. Trying to predict the velocity fieldin the bay for more

than 3 days might be unrealistic, or at least very difficult, because of the spatial

and temporal complexity of the flow. Instead, we propose a focused Lagrangian
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prediction.

As a first step, we modify our calculation ofLt(t0,x0). We fix t = 22:00 GMT,

Aug 6, 2000 as today, or the “present time”, when we would liketo make our pre-

diction. For any earlier timet0, we calculate the peak of theLt ridge; this means

that the future window in our computation is gradually shrinking to zero ast0

approaches the present timet. As expected, this results in a gradual (albeit surpris-

ingly slow) growth of error between the actualLpeak
t (computed with a constant

200 hour future window) and the real-timeLpeak
t (computed with a shrinking fu-

ture window). The actual and the real-timeLpeak
t locations, as functions of time,

are plotted in Fig.8.

The real-timeLt(t0,x0) peak curve approximates the actual (200 hour) curve

with an error less than, approximately, 10% up to 8 hours before the “present time.”

During the last 8 hours, the error on the predictedLpeak
t becomes prohibitive. Note

that the inserts in Fig.8 show slices of theLt contours along the axis of the pipeline

at t − t0 = 20 hours andt − t0 = 100 hours. We observe from inserts that

the position of the barrier is identified by a sharp ridge. It is best to identify the

ridge not by its maximum magnitude, but by the gradient in a direction that is

approximately orthogonal to theLt ridge. TheLt ridge intersects the axis of our

pipeline in a nearly orthogonal direction, so we will use theaxis of the pipeline

to examine the gradient of theLt ridge. In Fig.9, we examine the maximum

value of the ridge and the gradient of theLt ridge as a function of the time used

to compute theLt ridge. Note that the maximum value of theLt ridge shown

in the left panel of Fig.9 displays no behavior which indicates a clear choice for

the computational time needed to evolve theLt contours. However, the gradient

of theLt is more useful. During the first 8 hours, the longitudinal component of
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Figure 8: Oscillation of theLpeak
t along the axis of the pipeline over a 150 hour

period, from 07:00 GMT, August 1, 2000 to 22:00 GMT, Aug 6, 2000. The green
curve is the real-time curve based on information up to the “present time” (com-
puted with ashrinking time window), with theLpeak

t located from the gradient of
a numerical maximization along the pipe axis. The red curve is the actualLpeak

t

location (computed with aconstant200-hour time window). The inserts show a
slice of theLt contours along the axis of the pipeline att − t0 = 20 hours and
t − t0 = 100 hours.

theLt gradient increases linearly with the time used to compute theLt contours.

After the first 8 hours, the magnitude of the longitudinal component of the gradient

begins to oscillate due to nonlinear effects. Thus the minimum integration time

which provides a well-definedLt ridge is approximately 8 hours, which matches

the previous qualitative observation. The magnitude of thelongitudinal component

of the gradient may still increase after 8 hours, but its growth is no longer linear

in time, and thus additional computational time is not as beneficial after the first 8
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hours. Consequently, we need to stop our real-timeLt calculation about eight hours

beforethe “present time” to take advantage of the steep increase inthe gradient

during that time.

Integration Time (hours)

m
ax

σ
(h

ou
rs

-1
)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Integration Time (hours)

σ x
(d

ay
s-1

/k
m

)

0 10 20 30 40 50
0

2

4

6

8 hours

Figure 9: The left panel shows the relative maximum ofLt(t0,x0) as a function of
computational time. The right panel shows the maximum longitudinal component
of the gradient ofLt. During the first 8 hours the gradient continues to grow in
magnitude, thus making theLt ridge more pronounced and identifiable. After 8
hours the magnitude of longitudinal component of the gradient oscillates.

As a second step, we identify the main frequency components of the real-time

Lpeak
t curve over the shortened time interval[t0, t − 8hours]. Shown in Fig.10,

the power spectrum density of the real-timeLpeak
t curve highlights seven dominant

frequency components, with the importance of each frequency determined by the

area under the corresponding peak in the spectrum. Surprisingly, the most influ-

ential component in this particular time interval is not thetidal oscillation (with a

period of 24 hours) or any of its harmonics, but rather a component with a period

of 8.6 days. As it was already obvious from Fig.7, this means that, during the 22

days observed, theLpeak
t stays on one side of the outlet for about 4.3 days before it
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crosses to the other side. Note that the 8.6 day period was computed from 22 days

of data. It is consistent with the major wind reversals observed during this during

this data collection period, but will most likely change based on seasonal changes

in winds, currents outside the bay, and other factors driving flow in the bay.

To complete our prediction procedure, we used all the significant frequencies

of the spectrum of this curve to predict the location ofLpeak
t along the axis of the

pipeline into the near future. The amplitudes and phases of the prediction curve

are determined by minimizing the norm of the difference (i.e., the integral of the

squared difference) between fitted and real-timeLt values. The left panel of Fig.11

shows the predictedLpeak
t together with the actual and the real-time locations of

Lpeak
t . Note how faithfully the predicted curve reproduces the main features of the

actualLpeak
t oscillations.

In particular, the left panel of Fig.11predicts that releasing contaminants from

the pipeline between 3 hours and 110 hours from the present time (22:00 GMT,

Aug 6, 2000) will cause most of the pollution to exit MontereyBay without recir-

culation. On the other hand, pollution released after 110 hours is not expected to

leave the bay immediately due to the excursion of the actualLpeak
t curve into lon-

gitudes on the coastal side of the pipe outlet. In this case, the algorithm should wait

for about 3 hours and prepare to realease pollutants and empty the holding tank for

a period of about 107 hours. Not only does the algorithm predicts wheter or not

to release pollution, but it also provides an estimate of thelength of the discharge

period and, hence, also set the rate at which the tank should be emptied.

On the left panel of Fig.11, the next predicted “red” period starts 110 hours

from the present time, while the actual red period turned outto start 118 hours

after the present time. This means that the error in predicting the end of the release
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Figure 10: Power spectrum density of the real-timeLpeak
t oscillations shown in

Fig. 7. The dominant wavelength is 8.6 days and the spikes at 48 hours and 4 days
indicate harmonics associated with the 24-hour tidal oscillation. The importance
of each frequency is proportional to the area below the corresponding spike.

interval was approximately 8 hours with an horizon of 4 days.

To illustrate the efficacy of the above pollution release scheme, we repeated

the same prediction procedure for a different “present time”, t = 20:00 GMT, Aug

17, 2000. The left panel of Fig.11 shows that similar performances are achieved.

In this case, the algorithm correctly predicts that the LCS is too far east and that
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Figure 11: Actual, real-time, and predictedLpeak
t location along the axis of the

pipeline. The horizontal line marks the location of the outlet of the pipe. The color
bar indicates the periods of desirable releases (green) andthe periods to avoid (red).
Each panel corresponds to a different “present time.”

pollutants should be redirected to the holding tank. It alsopredicts that the next

“green” interval is 60 hours from the present time.

It is worth noticing that, in the second case, the period of the dominant mode in

theLpeak
t oscillation was 9.26 days. The difference in oscillation wavelength (8.6

days fort0 = 22:00 GMT, Aug 6, 2000 and 9.26 days fort0 = 20:00 GMT, Aug 17,

2000) is to be expected since this flow is highly time-dependent. This is evidence

that a static analysis of the flow will never be sufficient to make predictions about

Lagrangian transport in Monterey Bay. A nonlinear analysisof real time current

measurements such as that described in this article is necessary.

More generally, the prediction method described above determines environ-

mentally friendly future time windows. These windows last for about 100 hours,

over which most of the pollution released from the pipeline will advect towards the

open ocean. We marked the bottom of Fig.11with green bars for time periods that
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result in the pollution exiting the bay and with red bars for release times that cause

the pollution to remain within the bay.

Discussion

From the simulations and predictions presented in the previous section, the follow-

ing general principles emerge:

• For best performance, the holding tank must be able to hold contaminants

produced over approximately 5 days. Using such a tank, we canwait, if

needed, for the entire disadvantageous half-period of the mainLpeak
t mode

to pass.

• Previous work on optimal pollution release has focused on releasing the pol-

lution at high tide or some constant time shift from high tide(9), but the

methods used in such studies only hold for simplified models of coastal

flows. When using actual current data as we are here, it can be seen that

using such a release scheme for pollutants in Monterey Bay would not give

optimal results. The complicated flow patterns in Monterey Bay, although

influenced by tidal fluctuations, have their bay-scale retention characteristics

set by the longer period fluctuations associated with the coastal wind forcing.

• The influence of the length of the pipeline reveals the chaotic nature of the

flow in Monterey Bay. Selecting a longer pipeline will raise the horizontal

line (outlet position) in Fig.11, which in turn leads to shorter time windows

for optimal release. This is the opposite of what we would expect a longer

pipeline to do, that is, cause the pollution to exit the bay sooner. Shorter
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pipelines do not, however, necessarily lead to quicker clearance, because

pollutants would fall between secondary peaks ofLt (visible in Fig.6) and

the coastline, thus requiring more revolutions around the bay before exiting.

These principles demonstrate the importance of a nonlinearanalysis of the velocity

field to understand how particles will advect in the field. Lagrangian and quasi-

Lagrangian particles are not necessarily advected in a manner which is intuitive

from a visual inspection of the velocity field alone.

In this paper we have combined surface radar observations and recent results

from dynamical systems theory to identify a hidden dynamic structure of Monterey

Bay. This structure, a highly convoluted repelling material line remains hidden

both in instantaneous and averaged surface velocity plots.Yet the repelling LCS

has a decisive influence on stirring in the bay: it repels nearby fluid parcels and

hence induces qualitatively different behaviors for parcels released from its oppo-

site sides. For pollutants, one of these behaviors, a quick escape to the open ocean,

is highly desirable because it reduces the contamination ofcoastal areas.

As a particular use of our Lagrangian diagnostics, we have proposed a pollu-

tion release scheme that exploits the governing role of the repelling LCS in fluid

transport. We assumed that pollution is released through a pipeline in the Moss

Landing area, and showed how high-frequency radar data can be used to predict

the position of the stable LCS relative to the pipeline outlet for a few days ahead

of time. From this prediction, we have been able to determineenvironmentally

friendly time windows of pollution release. These time windows last for about

100 hours, over which most of the pollution released from thepipeline will head

towards the open ocean. When verified from actual “future” radar data, these pre-
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dictions have proved very accurate: the error in predictingenvironmentally friendly

time intervals of release remained consistently below 15%.

A general physical lesson from our analysis is that focused Lagrangian predic-

tions for a geophysical flow can be feasible even if global Eulerian (i.e., velocity

based) predictions are unrealistic. However, in the case that Eulerian velocity pre-

dictions are possible, through perhaps the prolongation ofopen-boundary modal

coefficients (22) or data-assimilated hybrid models (35), the approach outlined in

this article remains applicable, except that it is no longernecessary to make a pre-

diction for the position of the LCS since the structures willhave been computed

from a “predicted” velocity field. The advantage of the approach outlined in this

article is that the prediction of the LCS is one dimensional,whereas predicting the

velocity field directly is a two or three dimensional problem. The accuracy and

advantages of each approach need to be further investigated.

We need to stress, however, that the method presented in thisarticle is based

on near-surface HF velocity data. As a result, the pollutionrelease scheme we

described here only applies to contaminants that remain close to the ocean surface.

A more general three-dimensional analysis could, in principle, be performed if

velocity data at greater depths became available. Another assumption in this work

is that the turbulent diffusive time scale for the contaminant is longer than the

time of one recirculation in the bay. This assumption is to beverified via dye

release studies and Lagrangian stochastic models for actual pollutants before a real-

life implementation of our methods. Such an implementationwould also require

robustness with respect to measurement uncertainties and numerical errors. Recent

results already show that Lagrangian coherent structures are remarkably robust,

even under substantial errors, provided that the errors aredeterministic and remain
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localized in time (35).

In addition to finding optimal times to release pollutants sothat the impact to

the Elkhorn Slough or Monterey Bay is minimized, using the outlined dynamical

systems approach has other ecological benefits. For example, the seawater sucked

from the Elkhorn Slough and Moss Landing Harbor into the cooling intake system

of the power plant is heated to approximately 20°C higher than natural tempera-

tures and is expelled through a pipe that extends into Monterey Bay. The water

contains billions of fish eggs, invertebrates and larvae. Some die and some live

through the heating and cooling process. Where will the currents carry them once

they are discharged into the bay? The methods presented herecould help to an-

swer what impact this daily relocation of dead and live species has on the local

ecosystem of Monterey Bay, Moss Landing and the Elkhorn Slough.

An important conclusion of this paper is that it is possible to use nonlinear

dynamical systems theory together with recent advances in current measurement

techniques, such as HF radar or ADCPs, to analyze, understand, and predict where

chemical contaminants, thermal pollution, and biologicalpopulations will be car-

ried by the currents. This allows us to determine and mitigate the impact of various

technologies on marine life in coastal zones.
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