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Abstract— In this paper, we apply Dirac structures and the
associated theory of implicit Lagrangian systems to electric
networks. We show how a Dirac structure on the flux linkage
phase space can be induced from a KCL (Kirchhoff Current
Law) constraint distribution on a configuration charge space
in analogy with mechanics. In this context, a notion of
implicit port–controlled Lagrangian systems is developed. As
a specific illustrative example, it is demonstrated that a one–
dimensional L-C transmission line can be formulated in the
context of implicit port–controlled Lagrangian systems, where
the transmission line may be regarded as an interconnected
system of a chain of constituent primitive modules, each of
which is given by an L-C circuit with external ports.

Keywords— Implicit Lagrangian systems, Dirac structures,
L-C transmission line

I. INTRODUCTION

The design of devices such as L-C transmission lines
for extremely wideband signal shaping has been highly
exquisite and hence sophisticated mathematical modeling
may be required for further developments; see, for instance,
[1]. In recent years, a notion of implicit Hamiltonian
systems was developed by [15], [4] and [2]. In this context,
interconnections of electric circuits, such as conservative
L-C circuits, were expressed using a Dirac structure and
then incorporated into the implicit Hamiltonian formalism.
In particular, the notion of an implicit port–controlled
Hamiltonian system was developed for electric circuits
with external ports, which are crucial in control design and
analysis. One can argue that conservative electric circuits
such as L-C circuits, are treated in a more fundamental way
from the Lagrangian viewpoint, although generally one
must deal with degenerate Lagrangians. Until recently, L-C
circuits have not been treated in the context of degenerate
Lagrangian systems (see [7]). For regular Lagrangian sys-
tems with control inputs, a notion of controlled Lagrangian
systems was developed by [5].

Recently, the notion of an implicit Lagrangian system,
that is, a Lagrangian analogue of implicit Hamiltonian
systems, has been developed by [18], where nonholonomic
mechanical systems and degenerate Lagrangian systems
such as L-C circuits can be systematically formulated.
In this context, use is made of the Dirac structure on
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the cotangent bundle, which is induced from a constraint
distribution. L-C circuits were shown to be expressible by
means of Pontryagin’s maximum principle by [12] and an
idea of implicit Lagrangian equations was developed by
[13], both of which are different from our notion of implicit
Lagrangian systems in the sense that they did not only
regard electric circuits as degenerate Lagrangian systems;
however, they did utilize a Dirac structure on a subbundle
of the tangent bundle of a configuration manifold, which is
consistent with Weinstein’s construction of Lie algebroids
(see [17]). In another context for Lagrangian systems, L-C
circuits were shown to fit into a Birkhoffian formalism by
[9].

In this paper, we investigate a Dirac structure induced
from KCL constraints in electric networks and develop
the idea of implicit port–controlled Lagrangian systems,
which is a Lagrangian analogue of implicit port–controlled
Hamiltonian systems. First, we give a brief review of how
a geometric setting of an electric circuit can be constructed
by analogy with mechanics, where the configuration space
of an electric circuit may be expressed as a charge space;
using this space, electric circuits can then be regarded as
a degenerate Lagrangian system. Second, we show that
an induced Dirac structure on the cotangent bundle of a
configuration space can be defined using a given KCL con-
straint and also that an electric circuit with external ports
can be formulated in the context of implicit port–controlled
Lagrangian systems by using the Lagrange–d’Alembert–
Pontryagin principle. As an example of degenerate La-
grangian systems in electric networks, we demonstrate
that dynamics of a one–dimensional L-C transmission line
can be formulated in the context of implicit Lagrangian
systems, where the transmission line can be modeled as
an interconnected system of constituent primitive modules,
each of which is an L-C circuit with external ports.

II. DIRAC STRUCTURES IN ELECTRIC CIRCUITS

A. Geometric Setting for Electric Circuits

We first consider a geometric setting for electric circuits
by analogy with mechanics. The configuration space W
(isomorphic to an open subset of Euclidean n-space, Rn)
for an electric circuit having n elements will be taken to
be charge space, where for a point q ∈ W , qi denotes
the charge associated with the i-th element (branch) of
the circuit. The tangent bundle TW , the analog of the
velocity phase space in mechanics, may be regarded as the
current phase space, whose local coordinates are denoted
by (qi, f i). On the other hand, the cotangent bundle T ∗W ,
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the analog of the momentum phase space in mechanics, can
be considered as the flux linkage phase space, whose local
coordinates are given by (qi, pi). Thus, f ∈ TqW indicates
the current, while p ∈ T ∗

q W denotes the flux linkage.

B. Dirac Structures Induced From KCL Constraints
For a given electric circuit graph (often called a topol-

ogy), Kirchhoff’s current law (KCL) may be written in
terms of a collection of one-forms ωa as

〈ωa, f〉 = 0, a = 1, ...,m < n.

In this condition, f = (f1, ..., fn) ∈ TqW indicates the
current associated with branches, and the one-forms ωa

are given by

ωa = ωa
k dqk, a = 1, ...,m; k = 1, ..., n,

where the coefficients ωa
k are ±1 and 0, as determined

by the given circuit. The set of all branch currents f =
(f1, ..., fn) that satisfy the KCL forms an (n − m)-
dimensional subspace ∆(q) of TqW defined by

∆(q) = {f ∈ TqW | 〈ωa, f〉 = 0, a = 1, ...,m},

which we call the KCL constraint space. Let ∆◦(q) ⊂
T ∗

q W be the annihilator of ∆(q), and suppose that it is
spanned by m one-forms ω1, ..., ωm.

Let TπW : TT ∗W → TW be the tangent map of the
cotangent bundle projection πW : T ∗W → W . Define the
distribution ∆T∗W on T ∗W by lifting the KCL constraint
distribution ∆ ⊂ TE:

∆T∗W := (TπW )−1(∆) ⊂ TT ∗W.

The annihilator of ∆T∗W , for each z = (q, p) ∈ T ∗W , is
of course given by

∆◦
T∗W (z) = {αz ∈ T ∗

z T ∗W | 〈αz, wz〉 = 0,

for all wz ∈ ∆T∗W (z)}.

Let Ω be the canonical symplectic structure on T ∗W and
Ω[ : TT ∗W → T ∗T ∗W be its associated bundle map.
Then, a Dirac structure D∆ on T ∗W , which is induced
from the KCL constraint distribution ∆ ⊂ TW , can be
defined, for each z = (q, p) ∈ T ∗W , by

D∆(z) = {(vz, αz) ∈ TzT
∗W × T ∗

z T ∗W | vz ∈ ∆T∗W (z),

and αz − Ω[(z) vz ∈ ∆◦
T∗W (z) }.

C. Local Expressions
Recall that the projection πW : T ∗W → W is locally

given by (q, p) 7→ q and its tangent map is TπW :
(q, p, q̇, ṗ) 7→ (q, q̇). Then, we can represent ∆T∗W in
coordinates as

∆T∗W
∼=
{
v(q,p) = (q, p, q̇, ṗ) | q ∈ W, q̇ ∈ ∆(q)

}
.

Let points in T ∗T ∗W be locally denoted by α(q,p) =
(q, p, α, w), where α is a covector and w is a vector, and
the annihilator of ∆T∗W is locally, given by

∆◦
T∗W

∼= {α(q,p) = (q, p, α, w) | q ∈ W, α ∈ ∆◦(q)
and w = 0}.

It follows from the local expression of the canonical
symplectic structure that, for vz = (q, p, q̇, ṗ),

Ω[(z) · vz = (q, p,−ṗ, q̇)

and also that αz − Ω[(z) · vz ∈ ∆◦
T∗W reads

(q, p, α + ṗ, w − q̇) ∈ ∆◦
T∗W ;

that is, α + ṗ ∈ ∆◦(q), and w − q̇ = 0.
Thus, the induced Dirac structure is given in local

representation by

D∆W
(z) ={((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆(q),

w = q̇, and α + ṗ ∈ ∆◦(q)}. (1)

III. IMPLICIT CONTROLLED LAGRANGIAN SYSTEMS

A. Dirac Differential of a Lagrangian

Let L : TW → R be a Lagrangian (possibly degener-
ate). The differential of L is the map

dL : TW → T ∗TW,

which is locally given by

dL =
(

q, f,
∂L
∂q

,
∂L
∂f

)
.

As in [18], the Dirac differential of the Lagrangian is the
map

DL : TW → T ∗T ∗W

defined by
DL = γW ◦ dL,

where γW = Ω[ ◦ (κW )−1 : T ∗TW → T ∗T ∗W , which is
locally given by

(q, δq, δp, p) 7→ (q, p,−δp, δq).

In the above, the map κW : TT ∗W → T ∗TW ;
(q, p, δq, δp) 7→ (q, δq, δp, p) is a symplectomorphism
preserving the symplectic structure on TT ∗W originally
developed by [14]. The Dirac differential of L is locally
given by

DL =
(

q,
∂L
∂f

,−∂L
∂q

, f

)
, (2)

where p is given by the Legendre transform

(q, p) =
(

q,
∂L
∂f

)
.

B. External Voltage Fields

In the analysis of electric networks, we often meet
circuits in which some ports are connected to external
elements or other systems. We show how such electric
circuits with external ports can be treated in the context
of implicit Lagrangian systems. Here we take the case
when the external ports are connected to external sources
of voltages.
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Let e : TW → T ∗W be an external voltage field. Recall
that an external force field induces a horizontal one–form
in mechanics (see [10]), and using the analogy

Force ↔ Voltage,

an external voltage field e : TW → T ∗W induces a
horizontal one-form ẽ on T ∗W by, for each z ∈ T ∗W ,

ẽ · wz = 〈e(f), TzπW (wz)〉,

where f ∈ TqW , wz ∈ TzT
∗W , and ẽ = π∗W e. In

coordinates, writing e : TW → T ∗W as

(q, f) 7→ (q, e(f)),

the horizontal one–form ẽ = π∗W e may be written as

ẽ = (q, p, e(f), 0). (3)

C. Implicit Port–Controlled Lagrangian Systems

Let X be a vector field on T ∗W . The condition for im-
plicit Lagrangian systems (L, e, ∆, X) for electric circuits
with external ports is given by, for each (q, p) ∈ T ∗W ,

(X(q, p),DL(q, f)− π∗W e(q, f)) ∈ D∆(q, p) (4)

together with (q, p) = FL(q, f). Thus, the curve
(q(t), f(t), p(t)), t1 ≤ t ≤ t2 in TW ⊕ T ∗W that
satisfies the condition (4) is a solution curve of the implicit
Lagrangian system (L, e, ∆, X).

The class of implicit Lagrangian system (L, e, ∆, X)
can be understood as a Lagrangian analogue of implicit
port–controlled Hamiltonian systems, and so we shall
call (L, e, ∆, X) an implicit port–controlled La-
grangian system.

Let us now develop the local expression for implicit
port–controlled Lagrangian systems.

Writing a vector filed X on T ∗W in coordinates as

X = (q, p, q̇, ṗ), (5)

if follows from equations (1)–(5) that

q̇ = f ∈ ∆(q),

ṗ− ∂L
∂q

− e(q, f) ∈ ∆◦(q),

p =
∂L
∂f

.

(6)

Using the one-forms ω1, ..., ωm that span a basis of the
annihilator ∆◦(q) at each q ∈ W ⊂ Rn, it follows that
equation (6) can be represented, in local coordinates, by(

q̇i

ṗi

)
=
(

0 1
−1 0

)( − ∂L
∂qi

f i

)

+
(

0
µa ωa

i (q) + ei(q, f)

)
,

pi =
∂L
∂f i

,

0 = ωa
i (q) f i,

(7)

where µa, a = 1, ...,m are the Lagrange multipliers.

IV. THE VARIATIONAL STRUCTURE

We next exhibit the variational structure of implicit
controlled Lagrangian systems by using the Lagrange–
d’Alembert–Pontryagin principle.

Recall that a system q : [t1, t2] → W is said to be
constrained if q̇(t) ∈ ∆(q(t)) for all t, t1 ≤ t ≤ t2,
and the motion q(t) of electric circuits with external ports
is constrained to the KCL subspace ∆(q(t)) ⊂ Tq(t)W .
Then, the Lagrange–d’Alembert–Pontryagin principle for
a curve (q(t), f(t), p(t)), t1 ≤ t ≤ t2 in TW ⊕ T ∗W is
represented by

δ

∫ t2

t1

{L(q(t), f(t)) + p(t) · (q̇(t)− f(t))} dt

+
∫ t2

t1

e(q(t), f(t)) · δq(t) dt = 0

for the chosen variation δq(t) ∈ ∆(q(t)) and with the
constraint q̇(t) ∈ ∆(q(t)). Keeping the endpoints of q(t)
fixed, we have

δ

∫ t2

t1

{L(q, f) + p · (q̇ − f)} dt

=
∫ t2

t1

{(
∂L
∂q

− ṗ

)
δq +

(
∂L
∂f

− p

)
δf + (q̇ − f)δp

}
dt.

Hence, the Lagrange–d’Alembert–Pontryagin principle is
denoted by∫ t2

t!

{(
∂L
∂q

− ṗ

)
δq +

(
∂L
∂f

− p

)
δf + (q̇ − f)δp

}
dt

+
∫ t2

t1

e(q, f) δq dt = 0

for the chosen variation δq(t) ∈ ∆(q(t)), for all δf(t) and
δp(t), and with q̇(t) ∈ ∆(q(t)).

The Lagrange–d’Alembert–Pontryagin principle gives
equation (6) for an L-C circuit with external ports, which
are, needless to say, also represented in local coordinates
by equation (7).

In the following, we shall demonstrate that the above
construction of implicit Lagrangian systems for electric
circuits with external ports can be applied to an illustrative
example of one–dimensional transmission lines, which is
a typical degenerate Lagrangian system.

V. ONE–DIMENSIONAL L-C TRANSMISSION LINES

A. One–dimensional L-C Transmission Line

Let us consider an electric network of one–dimensional
lossless transmission lines, which comprises of inductors
and capacitors illustrated in Fig.1. It is known that the one–
dimensional lossless transmission line has been designed
for extremely wideband signal shaping; see [1].
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Fig. 1. One Dimensional L-C Transmission Line

B. The Primitive Module of L-C Circuits
For the analysis of infinite one–dimensional L-C trans-

mission lines, focusing on the chain structure, we make use
of a model of primitive modules Zk = {Lk, Ck}, each
of which is an L-C circuit with external ports as shown
in Fig.2. Hence, the one–dimensional L-C transmission
line may be regarded as an infinite chain of Zk, where
Zk−1 may be the (k− 1)st adjacent module and Zk+1 the
(k + 1)st adjacent module. The configuration space Wk

Lk

I
k

V
k

Ck

Ik

Vk Zk-1

Ik

ICk

Zk+1 V k

VLk

C

L

Zk

Fig. 2. The Primitive Module of L-C Circuits

for the L-C circuit of the k-th module is given by an open
subset Wk of a 4–dimensional vector space R4. Let xk =
(q̄k, qCk

, qLk
, qk) ∈ Wk and fk = (Īk, ICk

, ILk
, Ik) ∈

Txk
Wk.

By using the idea of interconnecting primitive modules,
we can decentralize the dynamics of the original infinite
one–dimensional transmission line into the dynamics of the
k-th module Zk, together with the interconnections with
adjacent modules, which are given by

voltage: V̄k
∼= −Vk+1 and current: Īk

∼= Ik−1.

Then, we shall formulate dynamics of an L-C circuit
with external ports of the k-th module.

C. Kirchhoff’s Current Laws
Recall that KCL constraints for the current fk =

(Īk, ICk
, ILk

, Ik) ∈ Txk
Wk are given by a constraint

distribution ∆k ⊂ TWk such that, for each xk ∈ Wk,

∆k(xk) = {fk ∈ Txk
Wk | 〈ωa

k , fk〉 = 0, a = 1, 2}.

In the above, ωa
k denote covectors (or one-forms) repre-

sented, in coordinates, by

ωa
k =

4∑
i=1

ωa
ki dxi

k, a = 1, 2,

where we set xk = (x1
k, x2

k, x3
k, x4

k) = (q̄k, qCk
, qLk

, qk).
In the circuit of Fig. 2, the coefficients ωa

ki are given in
matrix representation by

ωa
ki =

(
−1 1 1 0
0 0 1 −1

)
.

Hence, the KCL constraints are given in coordinates by

−Īk + ICk
+ ILk

= 0,

ILk
− Ik = 0.

(8)

D. Degenerate Lagrangian and Primary Constraints

Let Tk : TWk → R be the magnetic energy of the k-th
module of the L-C transmission line, which is defined in
terms of the inductance Lk as

Tk(xk, fk) =
1
2
Lk (ILk

)2,

where we set fk = (f1
k , f2

k , f3
k , f4

k ) = (Īk, ICk
, ILk

, Ik).
Let Vk : Wk → R be the electric potential energy, which
is defined by capacitors Ck as

Vk(xk) =
1
2

(qCk
)2

Ck
.

Then, we can define the Lagrangian of the k-th module,
that is, Lk : TWk → R by

Lk(xk, fk) = Tk(xk, fk)− Vk(xk)

=
1
2
Lk (ILk

)2 − 1
2

(qCk
)2

Ck
.

(9)

It is obvious that the k-th Lagrangian Lk : TWk → R
given in equation (9) is degenerate since

det

[
∂2Lk

∂f i
k∂f j

k

]
= 0.

Meanwhile, the constraint flux linkage subspace
is defined by

Pk = FLk(∆k) ⊂ T ∗Wk,

where FLk : TWk → T ∗Wk denotes the Legendre
transform. In coordinates,

(xk, λk) = FLk(xk, fk) ∈ T ∗Wk,

which is expressed by

(q̄k, qCk
, qLk

, qk, p̄k, pCk
, pLk

, pk)

=
(

q̄k, qCk
, qLk

, qk,
∂L
∂Īk

,
∂L

∂ICk

,
∂L

∂ILk

,
∂L
∂Ik

)
,

where the current fk = (Īk, ICk
, ILk

, Ik) satisfies the KCL
constraints in equation (8). By direct computation, we get

pLk
= Lk ILk

, p̄k = pCk
= pk = 0.
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The constraints for the flux linkages, namely,

p̄k = pCk
= pk = 0

correspond to primary constraints in the sense of
Dirac, which form the constraint flux linkage subspace
Pk ⊂ T ∗Wk, and it immediately reads

(xk, λk) = (q̄k, qCk
, qLk

, qk, 0, 0, pLk
, 0) ∈ Pk ⊂ T ∗Wk.

E. External Voltage Fields

L-C circuits with external two-ports are connected to the
(k − 1)st and the (k + 1)st adjacent modules, where the
voltages Vk and V̄k associated to the external two-ports
may be regarded as an external voltage field, given by the
fiber-preserving map

ek : TWk → T ∗Wk

that is expressed locally by

ek = (q̄k, qCk
, qLk

, qk;Vk, 0, 0, V̄k).

Since ek : TWk → T ∗Wk induces a horizontal one–form
on T ∗Wk such that, for each zk = (xk, λk) ∈ T ∗Wk,

ẽk · wzk
= 〈ek(fk), Tzk

πWk
(wzk

)〉,

where fk ∈ Txk
Wk and wzk

∈ Tzk
T ∗Wk, one has

ẽk = π∗Wk
ek,

which is given in coordinates as

ẽ(q̄k, qCk
, qLk

, qk, 0, 0, pLk
, 0)

= (Vk, 0, 0, V̄k, 0, 0, 0, 0).
(10)

F. Implicit Port–Controlled Lagrangian Systems

A vector field Xk on T ∗Wk, defined at each point in
Pk, is expressed in coordinates by

Xk(q̄k, qCk
, qLk

, qk, 0, 0, pLk
, 0)

= ( ˙̄qk, q̇Ck
, q̇Lk

, q̇k, 0, 0, ṗLk
, 0) .

(11)

The differential of the Lagrangian Lk is locally given by

dLk(xk, fk) =
(

∂Lk

∂xk
,
∂Lk

∂fk

)
and it follows that

dL(q̄k, qCk
, qLk

, qk, Īk, ICk
, ILk

, ILk
)

=
(

0, 0, LkILk
, 0, 0,−qCk

Ck
, 0, 0

)
,

while the Dirac differential of Lk is given by

DLk(xk, fk) =
(
− ∂L

∂xk
, fk

)
,

which reads

DL(q̄k, qCk
, qLk

, qk, Īk, ICk
, ILk

, ILk
)

=
(

0,−qCk

Ck
, 0, 0, Īk, ICk

, ILk
, Ik

)
. (12)

The Dirac structure D∆k
on T ∗W induced from the KCL

constraint distribution ∆k can be expressed by, for each
zk = (xk, λk) ∈ T ∗Wk,

D∆k
(zk) = {((xk, λk, ẋk, λ̇k), (xk, λk, αk, wk)) |

ẋk ∈ ∆k(xk), wk = ẋk, and αk + λ̇k ∈ ∆◦
k(xk)}. (13)

Then, the condition of implicit port–controlled Lagrangian
systems is given by

(X(xk, λk),DL(xk, fk)− π∗W e(xk, fk)) ∈ D∆(xk, λk),

which holds for each (xk, fk) ∈ ∆ ⊂ TW and with
(xk, λk) = FL(xk, fk).

It follows from equations (10)–(13) that dynamics of the
L-C transmission line can be expressed, in coordinates, in
the context of implicit port–controlled Lagrangian systems
(L, e, ∆, X) as

˙̄qk = Īk, q̇Ck
= ICk

, q̇Lk
= ILk

, q̇k = Ik,

µ1 = −Vk, µ1 = −qCk

Ck
, µ2 = V̄k,

ṗLk
= −µ1 + µ2

together with the Legendre transform pk = Lk ILk
, and

with the KCL constraints

Īk = ICk
+ ILk

, ILk
= Ik.

VI. THE ONE–DIMENSIONAL TRANSMISSION LINE AS
AN INTERCONNECTED SYSTEM

A. Interconnection between the Adjacent Modules

So far, we have derived equations of motion for the k-th
primitive module of the one–dimensional transmission line.
Then, in order to formulate dynamics of the original one–
dimensional transmission line, we consider the following
condition of the interconnection between the adjacent
modules Zk and Zk+1:

V̄k = −Vk+1, Īk+1 = Ik,

which satisfy the so–called power invariance or Tel-
legen’s theorem (see, for instance, [6]):

〈V̄k, Ik〉+ 〈Vk+1, Īk+1〉 = 0.

It is known that Tellegen’s theorem can be incorporated
into a Dirac structure (see [18]).

B. Interconnected Systems of L-C Circuits

By considering the interconnection between the ad-
jacent modules, we can obtain dynamics of the one–
dimensional L-C transmission line by the following im-
plicit differential–algebraic equations:

q̇k−1 = Ik−1, q̇Ck
= ICk

, q̇Lk
= ILk

, q̇k = Ik,

µ1 = −Vk, µ1 = −qCk

Ck
, µ2 = −Vk+1,

ṗLk
= −µ1 + µ2,

pLk
= Lk ILk

,

Ik−1 = ICk
+ ILk

, ILk
= Ik.
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Eliminating unnecessary multipliers, it follows that dynam-
ics of the interconnected system can be given by

q̇Ck
= Ik−1 − Ik,

ṗLk
= Vk − Vk+1,

(14)

where Ik = L−1
k pLk

denotes the current of the k-th
inductor and Vk = C−1

k qCk
the voltage of the k-th

capacitor.
By eliminating qCk

and pLk
in equation (14), we obtain

the dynamics of the one–dimensional L-C transmission
line:

Ck
dVk(t)

dt
= Ik−1(t)− Ik(t),

Lk
dIk(t)

dt
= Vk(t)− Vk+1(t),

(15)

which are the well–known form (see, for instance, [1]).
Meanwhile, by eliminating Vk and Ik in equation (14),

we can also obtain the form

q̇Ck
= L−1

k−1 pLk−1 − L−1
k pLk

,

ṗLk
= C−1

k qCk
− C−1

k+1qCk+1 ,

which are a Hamiltonian form that is equivalent with
equation (15).

VII. CONCLUSIONS

In this paper, we have studied electric networks, fo-
cusing upon a one–dimensional L-C transmission line,
regarded as a degenerate Lagrangian system, in the context
of Dirac structures and implicit Lagrangian systems.

We first showed how a Dirac structure can be induced
from KCL constraints and also showed how the dynamics
of electric circuits with external ports can be formulated in
the context of implicit Lagrangian systems and the newly
developed notion of implicit port–controlled Lagrangian
systems.

Second, we illustrated the theory of implicit port–
controlled Lagrangian systems using the example of a one–
dimensional L-C transmission line. We took the point of
view of a model of an L-C circuit with external ports that
is a constituent primitive module of the transmission line
and illustrated how the primitive modules can be intercon-
nected using implicit port–controlled Lagrangian systems.
The one–dimensional transmission line is thus represented
as an interconnected system of the primitive modules and
we demonstrated that dynamics of the interconnected L-
C circuits with external ports can reconstruct the original
dynamics of the one–dimensional transmission line in the
context of the implicit port–controlled Lagrangian systems.
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