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Abstract— The method of controlled Lagrangians for discrete
mechanical systems is extended to include potential shaping in
order to achieve complete state-space asymptotic stabilization.
New terms in the controlled shape equation that are necessary
for matching in the discrete context are introduced. The theory
is illustrated with the problem of stabilization of the cart-
pendulum system on an incline. We also discuss digital and
model predictive control.

I. INTRODUCTION

The method of controlled Lagrangians for stabilization
of relative equilibria (steady state motions) originated in
Bloch, Leonard, and Marsden [4] and was then developed in
Auckly [1], Bloch, Leonard, and Marsden [5], [6], [7], Bloch,
Chang, Leonard, and Marsden [8], and Hamberg [11], [12].
A similar approach for Hamiltonian controlled systems was
introduced and further studied in the work of Blankenstein,
Ortega, van der Schaft, Maschke, Spong, and their collabora-
tors (see, e.g., [18] and related references). The two methods
were shown to be equivalent in [9] and a nonholonomic
version was developed in [20], [21], and [2].

According to the method of controlled Lagrangians, the
original controlled system is represented as a new, un-
controlled Lagrangian system for a controlled Lagrangian,
a modification of the original Lagrangian. The controlled
Lagrangian is designed so that its associated energy has
a maximum or minimum at the (relative) equilibrium to
be stabilized. The time-invariant feedback control law is
obtained by requiring that the new and old systems of
equations of motion are equivalent. To obtain asymptotic
stabilization, dissipation-emulating terms are added to the
control input.

The method of controlled Lagrangians for discrete me-
chanical systems was introduced in Bloch, Leok, Marsden,
and Zenkov [3]. In the present paper this formalism is further
developed to include potential shaping which is used for
complete state-space stabilization of equilibria. This study is
motivated by the recent development of structure-preserving
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algorithms for numerical simulation of controlled systems.
In particular, as the closed loop dynamics of a controlled
Lagrangian system is itself Lagrangian, it is natural to
adopt a variational discretization that exhibits good long-time
numerical stability.

We carry out the matching procedure explicitly for discrete
systems with two degrees of freedom and prove that we
can asymptotically stabilize the equilibria of interest. The
theoretical analysis is validated by simulating the discrete
cart-pendulum system on an incline. When dissipation is
added, the inverted pendulum configuration is asymptotically
stabilized, as predicted. We then use the discrete controlled
dynamics to construct a real-time model predictive controller
with piecewise constant control inputs. This serves to illus-
trate how discrete mechanics can be naturally applied to yield
digital controllers for mechanical systems.

The paper is organized as follows: In Sections II and III
we review discrete mechanics and the method of controlled
Lagrangians for stabilization of equilibria of mechanical sys-
tems. The discrete version of the potential shaping procedure
and related stability analysis are discussed in Sections IV
and V. The theory is illustrated with the discrete cart-
pendulum system. Simulations and the construction of the
digital controller are presented in Sections VI and VII.

In a future publication we intend to treat discrete systems
with nonabelian symmetries as well as systems with non-
holonomic constraints.

II. AN OVERVIEW OF DISCRETE MECHANICS

A discrete analogue of Lagrangian mechanics can be
obtained by considering a discretization of the Hamilton
principle; this approach underlies the construction of varia-
tional integrators. See Marsden and West [17], and references
therein, for a more detailed discussion of discrete mechanics.

A key notion is that of the discrete Lagrangian, which is
amap L? : Q x Q — R that approximates the action integral
along an exact solution of the Euler-Lagrange equations
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joining the configurations g, qx+1 € Q,

ext
q€C([0,R],Q

h
/ L(q,q)dt, (1
)Jo

where C([0, h], Q) is the space of curves ¢ : [0, h] — @ with
q(0) = gk, q(h) = gx+1, and ext denotes extremum.

In the discrete setting, the action integral of Lagrangian
mechanics is replaced by an action sum

LYqr, qey1) ~

N-1
Sd(‘]Oana Q) = Z Ld(‘]ka‘]k+1)a
k=0

where ¢, € @, kK = 0,1,..., N, is a finite sequence in
the configuration space. The equations are obtained by the
discrete Hamilton principle, which extremizes the discrete
action given fixed endpoints ¢y and ¢ . Taking the extremum
over qi,...,qn—1 gives the discrete Euler—Lagrange equa-
tions

D1 L% (qr, qrs1) + D2 L% (qu—1,qx) = 0,

for k =1,..., N —1. This implicitly defines the update map
D:QxQ— Q xQ, where ®(qx—1,qx) = (¢k, qr+1) and
Q<@ replaces the phase space T'Q) of Lagrangian mechanics.

Since we are concerned with control, we need to consider
the effect of external forces on Lagrangian systems. In the
context of discrete mechanics, this is addressed by introduc-
ing the discrete Lagrange—d’Alembert principle (see Kane,
Marsden, Ortiz, and West [14]), which states that

n—1 n—1

0 Z L (@, Q1) + Z Fe (@, Q1) + (6qk, 0qr11) =0
k=0 k=0

for all variations dq of g that vanish at the endpoints.
Here, q denotes the vector of positions (qo,q1,.--,qN),
and dq = (dqo,0q1,-..,0qn), where dgq;, € T, Q. The
discrete one-form F'? on () x Q) approximates the impulse
integral between the points q; and qx41, just as the discrete
Lagrangian L? approximates the action integral. We define
the maps F, F : Q x Q — T*Q by the relations

Fi (g0, q1) 0q1 := F* (g0, q1) - (0,0q1),
F (g0, q1) 6g0 :== F* (g0, q1) - (g0, 0) .

The discrete Lagrange—d’Alembert principle may then be
rewritten as

n—1

5 L (g, qrr1)
k=0
n—1

+ > [P (qk are1) 6ak + FS (qi, grsr) 6qrsn] =0
k=0

for all variations dq of g that vanish at the endpoints. This is
equivalent to the forced discrete Euler—Lagrange equations

DiL% (qr, qrs1) + DL (qh—1, q)
+ F{ (qr, qrs1) + FS (qr—1,qx) = 0.
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III. MATCHING AND CONTROLLED LAGRANGIANS

In the controlled Lagrangian approach, one considers a
mechanical system with an uncontrolled (free) Lagrangian
equal to kinetic energy minus potential energy. In the sim-
plest setting, we modify the kinetic energy to produce a new
controlled Lagrangian which describes the dynamics of the
controlled closed-loop system. The method is extended by
the incorporation of potential shaping in [8].

Suppose our system has configuration space () and a Lie
group G acts freely and properly on Q. It is useful to keep in
mind the case in which @@ = S x G with G acting only on the
second factor by the left group multiplication. For example,
for the inverted planar pendulum on a cart, Q = S x R with
G =R, the group of reals under addition (corresponding to
translations of the cart).

Our goal is to control the variables lying in the shape
space /G using controls that act directly on the variables
lying in G.! For kinetic shaping, the controlled Lagrangian
is constructed to be G-invariant, thus providing modified or
controlled conservation laws. In this paper, we assume that
G is an abelian group.

The key modification of the Lagrangian involves changing
the kinetic energy metric g(-, -). The tangent space to @) can
be split into a sum of horizontal and vertical parts defined as
follows: For each tangent vector v, to () at a point ¢ € @), we
can write a unique decomposition v, = Hor v,+Ver vy, such
that the vertical part is tangent to the orbits of the G-action
and the horizontal part is metric-orthogonal to the vertical
space, i.e., it is uniquely defined by the identity

9(vg, wq) = g(Hor vg, Hor wy) + g(Ver vg, Verwgy)  (2)

with v, and w, arbitrary tangent vectors to () at the point
q € . This choice of horizontal space coincides with
that given by the mechanical connection; see, for example,
Marsden [15].

For the kinetic energy of our controlled Lagrangian, we
use a modified version of the right-hand side of equation (2).
The potential energy remains unchanged. The modification
consists of three ingredients:

1) a new choice of horizontal space, denoted Hor.,
2) a change g — g, of the metric on horizontal vectors,
3) a change g — g, of the metric on vertical vectors.

Let £p denote the infinitesimal generator corresponding to
& € g, where g is the Lie algebra of G (see Marsden [15]
or Marsden and Ratiu [16]). Thus, for each £ € g, {g is a
vector field on the configuration manifold @) and its value at
a point ¢ € @ is denoted £(q).

Definition 1: Let T be a Lie-algebra-valued horizontal
one-form on Q); that is, a one-form that annihilates vertical
vectors. The T-horizontal space at q € () consists of tangent
vectors to Q at q of the form Hor v, := Hor v,—[7(v)]o(q),
which also defines vy — Hor,v,, the T-horizontal pro-
Jjection. The T-vertical projection operator is defined by
Ver, v, := Verv, + [7(v)]o(q)-

I'The shape space is S in the case Q@ = S x G.
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Definition 2: Given g,,g, and T, the associated con-
trolled Lagrangian L., , is given by a modified kinetic
minus the given potential energy, namely

Lr,6,(vq) = 3190 (Horrvg, Horvg)
+ g,(Ver,vg, Verrvg)| — V(q).

The equations corresponding to this Lagrangian will be
our closed-loop equations. The new terms appearing in those
equations corresponding to the directly controlled variables
are interpreted as control inputs. The modifications to the
Lagrangian are chosen so that no new terms appear in the
equations corresponding to the variables that are not directly
controlled. We refer to this process as matching.

Once the form of the control law is derived using the
controlled Lagrangian, the closed-loop stability of an equi-
librium can be determined by energy methods, using any
available freedom in the choice of 7, g, and g,,.

We can extend the method of controlled Lagrangians to the
class of Lagrangian mechanical systems with potential en-
ergy that may break symmetry, i.e., we still have a symmetry
group G for the kinetic energy of the system but we now have
a potential energy V (x®,0%) that need not be G-invariant
(see [8]). Further, we consider a modification to the potential
energy that also breaks symmetry in the group variables. Let
the potential energy for the controlled Lagrangian be defined
as

V(z®,0) + Ve (z%,0%),

where V. is the modification—to be determined—that de-
pends on a new real parameter €.

For many systems it is sufficient to use the so-called
simplified matching conditions [8]. For potential shaping in
the setting where the simplified matching conditions hold we
take g, = pg., where p is a scalar constant. The controlled
Lagrangian takes the form

Lrope(v) = Lrg(v) = Ve(2%,0%) + 5(p — 1)
Yab (9‘1 + (9" Gac + T(‘i)ia) (9b +(9""gpa + Tg)iﬁ) :
where
Lro(v) = L(z®,&7,6%,6% + 783%) + %Ugubrgrﬁbj:aabﬁ.

This has sufficient generality to handle many examples of
interest.

A basic example treated in earlier papers in the smooth
setting is the pendulum on a cart. Let s denote the position
of the cart on the s-axis, ¢ denote the angle of the pendulum
with the upright vertical, and v denote the elevation angle of
the incline, as in Figure 1. The configuration space for this
system is Q = S x G = S! x R, with the first factor being
the pendulum angle ¢ and the second factor being the cart
position s. The velocity phase space, T'Q, has coordinates
(¢, 8, ¢, $). The length of the pendulum is [, the mass of the
pendulum is m and that of the cart is M.

The symmetry group G of the kinetic energy of the
pendulum-cart system is that of translation in the s variable,
so G =R.

ThB10.2

Fig. 1. The pendulum on a cart going down an inclined plane under gravity.
The control force is in the direction s, the overall motion of the cart.

IV. DISCRETE POTENTIAL SHAPING

For simplicity, we consider systems with one shape and
one group degree of freedom. We further assume that
the configuration space () is the direct product of a one-
dimensional shape space S and a one-dimensional Lie group
G. The continuous-time Lagrangian L : T'Q — R and the
form 7 are

L(¢, 5,0, 35) = (ad*+2B(¢)ds+75%)—Vi(¢)—Va(s) (3)

and

T=k(¢)p with k()= _B@).
oy
This Lagrangian (3) satisfies the simplified matching condi-
tions of [8].
The continuous-time controlled Lagrangian L, .,
T@ — R becomes

Lrope(®,5,6,8) = L(¢, 8,d, 5+ k(d)d) + $0v(k($)d)?
+3p =176+ (0 — DE(9)8)* + Vals) — Vely), @)

where
?1 /1 -1
y=s-| (—p)mz)dz,
.Y \o p

the function V. (y) is arbitrary, and (¢., s.) is the equilibrium
of interest. As in Bloch, Chang, Leonard, and Marsden [8],
the kinetic energies in (3) and (4) are G-invariant.

For the cart-pendulum system, «, 5(¢), v, Vi(¢), and
Va(s) are a = mi?, B(¢) = mlcos(¢p — ), v = M +m,
Vi(¢) = —mglcos ¢, and Va(s) = —~ygssine. Note that
oy — B2(9) > .

In discretizing the method of controlled Lagrangians, we
combine formulae (1), (3), and (4). In the rest of this paper,
we will adopt the notations

qk + Qk+1

Tet1/2= "5 Agqk = qr+1 — G-

This allows us to construct a second-order accurate discrete
Lagrangian and discrete controlled Lagrangian as

Lqr, @rt1) = hL(qrr1/2, Agr/h),
Lﬁ,a’p’e (qka Qk+1) = hLT,O’,p,E (Qk+1/27 AQk/h)> (5)
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with g, = ((,Zsk, Sk).
The discrete dynamics is governed by the equations

OL gk, qr+1) ~ OL(qr—1,qx)

—0, 6
a0 6 ©
d d
OL gk, qrr1) | OL%(qr—1,qr) _ . )
Osy, Osy,

where uy, is the control input.
The dynamics associated with (5) is amended by the term
wy, in the discrete shape equation:

oL? , , (e, qr1)  OLY ., (qre—1,qx)

= wg, 8
901 7 oo
oL? , oL? 1,
T,U,p,s(qk Qk+1> + ‘r,a,p,s(qk 1 qk) —0. (9)
8sk 6Sk-

This term wy is important for matching systems (6), (7)
and (8), (9). The presence of the terms wy, represents an
interesting (but manageable) departure from the continuous
theory. Let

Jk = p’y(ASk/h - ((T - 1)k(¢k+%)A¢k/h)

The following statement is proved by a straightforward
calculation:

Theorem 3: The dynamics (6), (7) is equivalent to the
dynamics (8), (9) if and only if uyx and wy, are given by

h
Uk = =3 {Vz/(sk+%) + V2/(Slc7%)}

h’ / !
+ g [V rey) + VGsisy)

YAGRK(Prt1/2) — YAPE—1k(Pr—1/2)
+ 3 ,

(10
and

wi= (1= 0+ 2) (W) =00+ 5V )

h
+k(Pp_1) [WPJk-—l + 5‘4(%—%)}

— K (911 3) Ak = K (64— 3) o181 ).
Remark. The terms wy, vanish when 3(¢) = const as they
become proportional to the left-hand side of equation (9).

V. STABILIZATION OF THE DISCRETE CONTROLLED
SYSTEM

The stability analysis in this paper is done by means of an
analysis of the spectrum of the linearized discrete equations.
We assume that the equilibrium to be stabilized is (¢, sx) =
(0,0).

Theorem 4: The equilibrium (¢, si) = (0,0) of equa-
tions (8) and (9) is spectrally stable if

~ B*0)
ay — 3%(0)
Proof: The linearized discrete equations are

<o<0, p<0, and VI(0)<0.(11)

oLe , , (arsqrevr) 0L, (qk—1,qk)

—0, (12
9o 961 (12
oL , oL 1,
T,a,p,&(qk Qk+1) T,O’,p,E(qk 1 qk?) _ 0’ (13)
sy, Osy,
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where £¢ ,  _(qr,qr+1) is the quadratic approximation of
LY, . at the equilibrium (i.e., 3(¢), Vi(¢), and V.(y) in
L?, . are replaced by (3(0), 3V/"(0)¢%, and $V/(0)y?,
respectively). Note the absence of the term wy in equa-
tion (12).

The linearized dynamics preserves the quadratic approxi-
mation of the discrete energy

ayo® = 3(0)*(o = 1)(p(o —
2vo2h
+ kamk + ;—ZAsi

h h
+ §V1H(0)¢i+% + 5‘/;”(0)552

k+1°
x:3_|_<p_1_1)6(0)¢
p o) v

Since V{/(0) is negative, the equilibrium (¢, sx) = (0,0)
of equations (12) and (13) is stable if the function (14)
is negative-definite. The latter requirement is equivalent to
conditions (11). The spectrum of the linearized discrete
dynamics in this case belongs to the unit circle. ]

SRLI

(14)

where

Remarks. Spectral stability in this situation is not suffi-
cient to conclude nonlinear stability. The stability conditions
(11) are identical to the stability conditions of the corre-
sponding continuous-time system.

Following [8], we now modify the control input (10) by
adding the discrete dissipation-emulating term

- D(Ayg—1 + Ayg)
h
in order to achieve the asymptotic stabilization of the equi-
librium (¢, si) = (0,0). In the above, D is a constant. The
linearized discrete dynamics becomes

5)

oLe , , (ak,aru1)  OLE, , (qe-1,qx)

0o, 0Pk
(p -1 1) B(0) D(Azp—1 + Axy)
=- -= . 16
p o y h
aﬁg,o’,p,s(qu Qk+1) a‘cg,a,p,s(Qkfla Qk)
8sk 8Sk
_ _D(Aﬁck_l —|—A$k). a7

h
Theorem 5: The equilibrium (¢, si;) = (0,0) of equa-
tions (16) and (17) is asymptotically stable if conditions (11)
are satisfied and D is positive.
Proof: ~ Multiplying equations (16) and (17) by
(Adg—1 + Ady)/2 and (Asg_1 + Asy)/2, respectively, we
obtain

Dh

Eppi1=Ep_11 + e (

A(Ekfl + Amk 2
h h ’
where E}, ;41 is the quadratic approximation of the discrete
energy (14). Recall that Ej ;41 is negative-definite. It is

possible to show that, in some neighborhood of (¢, sx) =
(0,0), the quantity Axy_1 + Az #£ 0 along a solution of
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equations (16) and (17) unless this solution is the equilibrium
(¢x,sx) = (0,0). Therefore, Ej ;41 increases along non-
equilibrium solutions of (16) and (17). Since equations (16)
and (17) are linear, this is only possible if the spectrum of
(16) and (17) is inside the open unit disk, which implies
asymptotic stability of the equilibrium of both linear system
(16) and (17) and nonlinear system (6) and (7) with discrete
dissipation-emulating term (15) added to uy. ]

VI. SIMULATIONS

Simulating the discrete behavior of the controlled Lagran-
gian system involves viewing equations (6) and (9) as an
implict update map ® : (gx—2,9xk-1) — (qx—1,9x). This
presupposes that the initial conditions are given in the form
(go,q1); however it is generally preferable to specify the
initial conditions as (go, §o). This is achieved by solving the
boundary condition

872(%’%) + D1L%q0, 1) + Fi'(q0,q1) = 0
for ¢;. Once the initial conditions are expressed in the form
(go,q1), the discrete evolution can be obtained using the
implicit update map .

In Figure 2, we present a MATLAB simulation of discrete
controlled dynamics of the cart-pendulum system in the
absence of dissipation.

¢ [rad]
o

s[m]
o

-4
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
tfs] tls]

do/dt [rad/s]
ds/dt [m/s]

0.5 1

-1 -0.5 0
¢ [rad]

Fig. 2. Discrete controlled dynamics without dissipation. The discrete
controlled system stabilizes the motion about the equilibrium; since there
is no dissipation, the oscillations are sustained.

Here, h = 0.05sec, m = 0.14kg, M = 0.44kg, | =
0.215m, and ¢ = § radians. Our goal is to regulate the cart
at s = 0 and the pendulum at ¢ = 0. The control gains
are chosen to be x = 20, p = —0.02, and ¢ = 0.00001.
It is worth noting that the discrete dynamics remain bounded
near the desired equilibrium, and this behavior persists even
for significantly longer simulation runs involving 10° time-
steps. The exceptional stability of the discrete controlled

trajectory can presumably be understood in terms of the
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bounded energy oscillations characteristic of symplectic and
variational integrators.

When dissipation is added, we obtain an asymptotically
stabilizing control law, as illustrated in Figure 3. This is
consistent with the stability analysis of Section V.

0.6 3

0.4 2
= 02 —

8 E 4
s 9 *

-0.2 0

04 -1

50 100 150 200 0 50 100 150 200
t[s] t[s]

2 4

1 2
g @

£y = 0
k] o
S 3

-1 -2

-2 -4

-04 -0.2 0 0.2 0.4 0.6 -1 0 1 2 3
¢ [rad] s[m]

Fig. 3. Discrete controlled dynamics with dissipation. Here the oscillations
die out and the cart converges to the desired point s = 0.

VII. MODEL PREDICTIVE CONTROLLER

We now explore the use of the forced discrete Euler—
Lagrange equations as the model in a real-time model
predictive controller, with piecewise constant control forces.
Algorithm 1 below describes the details of the procedure.

Algorithm 1 DIGITAL CONTROLLER ( ¢(-), Ty, h )

qo < sense ¢(0)

q1 < sense q(h)

32 < solve Dy L%(qo,q1) + D1L%(q1,32) =0

33 < solve Dy L% (q1, 32) + D1 L2, G3) + F{ (G2, @3) = 0
iy — u (B i)

actuate u = uy /o for t € [2h, 3h]

g2 < sense ¢(2h)

33 < solve D2 L%(q1, q2)+D1L% (g2, 33) + Fi(¢2,33) = 0
q4 < solve Dng(QQ, ds) + DlLd(q;g, da)

P (g2, @) + FiH(@3,4a) = 0
qs—g(u’ (14;%)

U341/2 < U (
actuate u = ug, /o for t € [3h,4h]
for k=4to (Ty/h—1) do
qr—1 + sense g((k —1)h)
T — solve Dy L (qi—2, qr—1) + D1 L (qi—1, Qi)
+Fg (qr—2, qe—1) + F'(qe-1,qx) = 0
Trt1 — solve Do L% (qi_1,qx) + D1 LGy, Grs1)
+F(qe-1,qk) + F(Gr, Grr1) = 0
Upy1/2 & U qr«+;1k+17 qw-};tlk
actuate u = uy 1/, for t € [kh, (k + 1)h]
end for
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The digital controller uses the position information it
senses for t = —2h, —h to estimate the positions at t =0, h
during the time interval ¢ = [—h,0]. This allows it to
compute a symmetric finite difference approximation to the
continuous control force u(¢, s, d,$) at ¢ = h/2 using the
approximation

_ <¢0+¢1 S0+ 51 ¢1— o 81—80)
U2 = U )

2 7 2 7 h 7 h

where the overbar indicates that the position variable is
being estimated by the numerical model. This control is then
applied as a constant control input for the time interval [0, h].
This algorithm can be implemented in real-time if the two
forward solves can be computed within the time interval h.

The initialization of the discrete controller is somewhat
involved, since the system is unforced during the time
interval [0, 2h] while the controller senses the initial states,
and computes the appropriate control forces.

The numerical simulation of the digital controller is shown
in Figure 4. We see that the system is asymptotically stabi-
lized in both the ¢ and s variables.

0.6 5

0.4 4
= 0.2 .3
8 E
= »

10 20 30 40 50 0 10 20 30 40 50
t[s] tis]
0.06 1.5
0.04 1
Q) )
B £
= 002 5 05
g 3
g °
0 0
-0.02 -05
04 -02 0 02 04 06 0 1 2 3 4 5
¢ [rad] s[m]
Fig. 4. The discrete real-time piecewise constant model predictive

controller stabilizes ¢ and s to zero.

VIII. CONCLUSIONS

In this paper we have introduced potential shaping tech-
niques for discrete systems and have shown that these lead
to an effective numerical implementation for stabilization in
the case of the discrete cart-pendulum model. The method in
this paper is related to other discrete methods in control that
have a long history; recent papers that use discrete mechanics
in the context of optimal control and celestial navigation
are [10], [13], and [19]. The full theory of discrete controlled
Lagrangians will be developed in a forthcoming paper.
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