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Abstract

Part I of this paper introduced the notion of implicit Lagrangian systems and their
geometric structure was explored in the context of Dirac structures. In this part,
we develop the variational structure of implicit Lagrangian systems. Specifically, we
show that the implicit Euler-Lagrange equations can be formulated using an extended
variational principle of Hamilton called the Hamilton-Pontryagin principle. This vari-
ational formulation incorporates, in a natural way, the generalized Legendre transfor-
mation, which enables one to treat degenerate Lagrangian systems. The definition of
this generalized Legendre transformation makes use of natural maps between iterated
tangent and cotangent spaces. Then, we develop an extension of the classical Lagrange-
d’Alembert principle called the Lagrange-d’Alembert-Pontryagin principle for implicit
Lagrangian systems with constraints and external forces. A particularly interesting
case is that of nonholonomic mechanical systems that can have both constraints and
external forces. In addition, we define a constrained Dirac structure on the constraint
momentum space, namely the image of the Legendre transformation (which, in the
degenerate case, need not equal the whole cotangent bundle). We construct an im-
plicit constrained Lagrangian system associated with this constrained Dirac structure
by making use of an Ehresmann connection. Two examples, namely a vertical rolling
disk on a plane and an L-C circuit are given to illustrate the results.
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1 Introduction

In the present Part II of this paper, we continue to develop the framework of implicit La-
grangian systems and their geometry in the context of Dirac structures, which was begun
in Part I. This part focuses on the variational structure of implicit Lagrangian systems. An
algebraic theory of Dirac structures associated with formal variational calculus is contained
in the work of Dorfman [1987, 1993] in the Hamiltonian framework of integrable evolution
equations. However, it has not been clear how Dirac structures are interrelated with im-
plicit mechanical systems, whether Lagrangian or Hamiltonian, in the context of variational
principles. In other words, there has been a gap between Dirac structures and variational
principles in mechanics. In conjunction with Dirac’s theory of constraints, we remark that
Dirac started off with Hamilton’s principle with the aim of investigating degenerate La-
grangian systems, although in the end, he did not focus on the Lagrangian formulation but
rather developed the notion of a constrained Poisson structure, or the “Dirac bracket” (see,
for instance, Dirac [1964]; Marsden and Ratiu [1986]).

Needless to say, in mechanics, Hamilton’s principle is employed to formulate the Euler-
Lagrange equations on the Lagrangian side, while Hamilton’s phase space principle may
be used to derive Hamilton’s equations on the Hamiltonian side. As is well known, both
formalisms, in the case that a given Lagrangian is hyperregular, are equivalent via the Leg-
endre transformation (see Abraham and Marsden [1978]; Marsden and Ratiu [1999]). In the
case that a Lagrangian is degenerate, we need a specific treatment to deal with constraints
due to the degeneracy, as in Dirac’s theory of constraints. For such degenerate Lagrangian
systems, Weinstein [38] noted that a Dirac structure on a Lie algebroid may be induced
from a Poisson structure on the dual bundle of the Lie algebroid. He also considered the
case in which a Lie algebroid is given by the tangent bundle. L—C circuits have not been
treated so far in the context of degenerated Lagrangian systems (see, for instance, Chua and
McPherson [1974]). A variational principle for L-C circuits was developed using Pontrya-
gin’s maximum principle by Moreau and Aeyels [2001] and an idea of implicit Lagrangian
systems was developed by Moreau and van der Schaft [2002]. Both of these are different from
our notion of implicit Lagrangian systems in the sense that they utilized a Dirac structure
on a subbundle of the tangent bundle of a configuration manifold, consistent with Wein-
stein’s idea [38]. Furthermore, mechanical systems with nonholonomic constraints have been
widely studied (see, for instance, Vershik and Faddeev [1981]; Bates and Sniatycki [1993]),
specifically, from the viewpoint of symmetry and reduction by Bloch, Krishnaprasad, Mars-
den, and Murray [1996], where the Lagrange-d’Alembert principle played an essential role
in formulating the equations of motion and, in addition, the system viewed in terms of a
constrained Lagrangian was formulated using an Ehresmann connection. On the Hamilto-
nian side, constrained Hamiltonian systems were developed from the viewpoint of Poisson
structures by van der Schaft and Maschke [1994] and then, a notion of implicit Hamiltonian
systems was developed in the context of Dirac structures by van der Schaft and Maschke
[1995] and van der Schaft [1998] (see also Blankenstein [2000]). Nonconservative systems
with external forces that appeared in servomechanisms were also illustrated in the context
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of the constrained Hamiltonian systems by Marle [1998]. The equivalence of the Lagrangian
and Hamiltonian formalisms for nonholonomic mechanical systems was demonstrated by
Koon and Marsden [1997, 1998] together with their intrinsic expressions. As for the details
on nonholonomic mechanics and control, refer also to Bloch [2003]; Cendra, Marsden, and
Ratiu [2001].

As in Part I, an implicit Lagrangian system, whose Lagrangian may be degenerate, can
be defined by using a Dirac structure on 7% that is induced from a constraint distribution
Ag C TQ. To carry this out, Part I utilized natural symplectomorphisms between the
spaces TT*Q, T*TQ, and T*T*@Q. We also developed the Dirac differential of a Lagrangian,
which amongst other things, incorporated the Legendre transformation into the context
of induced Dirac structures. This procedure is consistent with the idea of a generalized
Legendre transformation, which was originally developed by Tulczyjew [1974] (see also, for
instance Cendra, Holm, Hoyle and Marsden [1998]). In the present Part II, we establish
some basic links between variational principles on the one hand and Dirac structures and
implicit Lagrangian systems, including the generalized Legendre transform, on the other.

Another important issue that is relevant with the present paper is Pontryagin’s maxi-
mum principle in optimal control developed by Pontryagin, Boltyanskii, Gamkrelidze and
Mishchenko [1962]. Tt goes without saying that Pontryagin’s maximum principle is the ma-
chinery that gives necessary conditions for solutions of optimal control problems; we remark
that a coordinate-free version of the maximum principle was given by Sussmann [1998].

The Hamilton-Pontryagin principle. One of the main goals in this Part II is to provide
a link between variational structures, induced Dirac structures, and implicit Lagrangian
systems. To do this, we shall develop an extended variational principle called the Hamilton-
Pontryagin principle.

The variational principle of Hamilton for classical holonomic mechanical systems is given
by the stationary condition of the action functional for a Lagrangian L such that

ta
5/ L(q,v)dt =0,

t1

which is subject to the second-order condition ¢ = v and with the endpoints of ¢(t) fixed.
Regarding the second-order condition ¢ = v as a kinematic constraint, we introduce the
momentum variable p as a Lagrange multiplier for this constraint, and then we rewrite
Hamilton’s principle as

5/tQ{L(q,v)+p~(q'—v)}dt:O. (1.1)

We will call this form of the basic variational principle of holonomic mechanics the Hamzlton-
Pontryagin principle because of its close relation with the classical Pontryagin principle’.
This principle is also closely related to, what in elasticity theory is called the Hu-Washizu
principle (see, for instance, Marsden and Hughes [1983] and Washizu [1982]) that is so im-
portant in the discontinuous Galerkin method. In the form (1.1), this principle seems to be
due to Livens [1919], and it also appears in Pars [1965], Section 26.2.

The Hamilton-Pontryagin principle in equation (1.1) may also be stated in the following
equivalent form, by introducing an extended, or generalized, energy E(q,v,p) = p-v—L(q,v),
so that

to
6/ (p-d— E(g,v,p)}dt = 0.
ty

1We thank Matt West, Tom Hughes, and David Gao for helpful comments on this principle.
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Note that the Hamilton-Pontryagin variational principle gives us the second-order condition,
the Legendre transformation, and the Euler-Lagrange equations:

. oL . 0L
q=", p:%7 p:% (12)

While this is a special case of the system that we wish to develop, it does provide a point of
view for generalizing this procedure to the case of implicit Lagrangian systems. Note that
this equation (1.2) includes the case of degenerate Lagrangians, and that these equations
may be implicit in the sense that the Euler-Lagrange equations could be “hidden”. Of
course the degenerate case of this problem and its transformation to the Hamiltonian side
were the subject of the important work of Dirac [1950]. For these reasons, we refer to
equations (1.2) as the implicit Fuler—Lagrange equations.

Consistent with the above discussion of the Hamilton-Pontryagin principle, for the gen-
eral case in which a constraint distribution Ag C T'Q is given, we will show how to formulate
an implicit Lagrangian system (L, Ag, X) associated with a Lagrangian L and a partial vec-
tor field X : TQ & T*Q — TT*(Q in terms of an extended Lagrange-d’Alembert principle
that will be called the Lagrange-d’Alembert-Pontryagin principle.

Furthermore, we shall develop a constrained Dirac structure on the constraint momentum
space P =FL(Ag) C T*Q, as well as the implicit constrained Lagrangian system associated
with a constrained Lagrangian L. = L|Ag in the variational context.

Outline of the Paper. Part II of the paper is constructed as follows. In §2, we give a
brief review of the generalized Legendre transformation, which makes use of iterated tan-
gent and cotangent bundles. In §3, the Hamilton-Pontryagin principle and the associated
implicit Fuler-Lagrange equations are developed in detail along with the geometry of iter-
ated tangent and cotangent spaces. Extending this analysis to the case of nonholonomic
constrained systems, it is shown that more general implicit Lagrangian systems can be intrin-
sically formulated in terms of the Lagrange-d’Alembert-Pontryagin principle. Furthermore,
we also elucidate implicit Hamiltonian systems in the variational context for the case of
regular Lagrangians. In §4, we demonstrate that nonholonomic systems with external force
fields can be incorporated into the framework of implicit Lagrangian systems by employing
the Lagrange-d’Alembert-Pontryagin principle with external forces. In §5, we develop the
constrained Dirac structure Dp that is induced on the constraint momentum space P by
utilizing an Ehresmann connection; and we construct an implicit constrained Lagrangian
system (L., Ag, Xp) associated with the constrained Lagrangian L. and the constrained
partial vector field Xp on P in the variational context. In §6, the two examples, namely a
vertical rolling disk on a plane and an L-C circuit are illustrated in the context of implicit
constrained Lagrangian systems. In §7, concluding remarks and future directions are given.

Summary of Main Results.

e The Hamilton-Pontryagin principle for holonomic but possibly degenerate Lagrangians,
and its relation to implicit Lagrangian systems and Dirac structures on the cotangent
bundle are developed.

e Using the geometry of iterated tangent and cotangent bundles and the Pontryagin
bundle, we develop the intrinsic form of implicit Lagrangian systems in the variational
context. Intrinsic implicit Hamiltonian systems are also developed.

e Nonholonomic systems with external force fields that appear in controlled mechanical
systems such as robots are developed in the context of implicit Lagrangian systems
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and we show that the equations of motion of such systems can be formulated in terms
of the Lagrange-d’Alembert-Pontryagin principle.

e We construct a constrained Dirac structure on the constraint momentum space and
show how an implicit constrained Lagrangian system can be formulated using an Ehres-
mann connection in the variational context.

e Two examples are presented. A vertical rolling disk illustrates implicit nonholonomic
constrained Lagrangian systems. An L—-C circuit is presented as a typical example of
a constrained system with a degenerate Lagrangian.

2 The Generalized Legendre Transform

As illustrated in Part I, the spaces TT*Q, T*T'Q, T*T*(Q are interrelated with each other by
two symplectomorphisms kg : TT*Q — T*T'() and QO TT*Q — T*T*Q, which play essen-
tial roles in the construction of the generalized Legendre transformation originally developed
by Tulczyjew [1974]. In this section, we shall review the generalized Legendre transforma-
tion before going into the variational framework of implicit Lagrangian systems. As to the
details and required mathematical ingredients for the generalized Legendre transform, refer,
for instance, to Cendra, Holm, Hoyle and Marsden [1998]; Weinstein [1977, 1971]; Abraham
and Marsden [1978] and Tulczyjew and Urbanski [1999]. The link between tangent Dirac
structures and the spaces TT*Q and T*TQ was investigated by Courant [1990b].

Symplectic Structure on T7T*Q. Let ) be a manifold, T'Q) the tangent bundle and 7@
the cotangent bundle of Q. Let ¢, (¢,0q) and (g, p) be local coordinates for @, TQ and T*Q
respectively. Let (g, dq, dp, p), (¢, p, dq, dp) and (g, p, —dp, dq) be local coordinates for T*T'Q,
TT*Q and T*T*Q) respectively. Let mg : T*Q — @Q; (¢,p) — ¢ be the cotangent projection
and Tmg : TT*Q — TQ; (q,p,0q,0p) — (g,9q), be the tangent map of 7. Furthermore,
mrq : T"TQ — TQ; (q,9q,0p,p) — (q,6q) and 77-q : TT*Q — T*Q; (¢, p,dq,6p) — (¢, p).
In Part I, we showed that there is a natural diffeomorphism

kg TT"Q — T7TQ;  (q,p,0q,0p) — (q,6q,6p,p)
that is determined by how it intertwines the two sets of maps:
mrgokg =Tng and 7w'okg = Trq.

In the above, we recall the projection 7! : T*TQ — T*Q; (q,dq,p, p) — (q,p) is defined, for
ay, € Ty TQ and u,4 € T,Q, such that <ﬂ'1(avq),uq> = <avq,ver(uq,vq)>, where ver(ug, vq)
is the vertical lift of u, along v,.

On the other hand, the map Q° : TT*Q — T*T*Q; (q,p,dq,6p) — (q,p,—6p,dq) is
the natural diffeomorphism associated with the canonical symplectic structure Q on T*Q.
Recall that the manifold T7T*@Q is the symplectic manifold with a particular symplectic form
Q77+ that can be defined by the two distinct but intrinsic one-forms:

A = (kQ)*Or+1g = dpdg + pddq,
X = ()" Oq-p-q = —dpdq + dq dp,

where ©7«7¢ is the canonical one-form on 7*7T'Q) and ©7-«7-+¢ is the canonical one-form on
T*T*Q. Recall also that the symplectic form Q77+g is defined by

Qrr-g = —dA =dy = dg A dop + dég A dp.

Let us see how the Lagrangian and Hamiltonian may be interrelated with each other
throughout the symplectic structure Qpz«g.
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Lagrangian Constraints. Let L be a Lagrangian on Ag C T'Q). The symplectic manifold
(TT*Q, Qprr+g = —dA) is defined by the quadruple (TT*Q, TQ,Trq, A) and the set

N={zeTT*Q |Trg(z) € Ag, A\y(w) = (dL(Tmg(z)), T,Trg(w))
for all w € T,(TT*Q) such that T,Tmq(w) € Trry2)Aq} (2.1)

is a Lagrangian submanifold of (TT*Q, Qrr-g = —d\) with %dim TT*Q, where the sub-
manifold
AQ = TWQ(N) cTqQ

is the constraint distribution on @ called a Lagrangian constraint. Hence, the Lagrangian
L is a generating function of N, since N C TT*Q is the graph of (kg)~'(dL).

Hamiltonian Constraints. Let H be a Hamiltonian on P C T*@Q and the symplectic
manifold (TT*Q, Qrr-¢g = dx) is defined by the quadruple (I'T*Q, T*Q, 7r+q, x). The set

N={x e TT"Q |1r-q(x) € P, Xo(w) = (dH (17+¢(2)), TeTr-@(w))
for all w € T, (TT* Q) such that T, 7r-q(w) € Ty, ()P} (2.2)

TT*Q

is a Lagrangian submanifold of (TT*Q, Qrr+g = dx) with %dim TT*Q, where the subman-
ifold
P = TT*Q(N) C T*Q

is the constraint momentum space called a Hamiltonian constraint. Similarly, the Hamilto-
nian H is a generating function of N, because N C TT*Q is the graph of (Q°)~!(dH).

Symplectomorphism and the Momentum Function. Consider the identity map,
which we can regard as a symplectomorphism ¢ : (P, = TT*Q,Qp, = —d)\) — (P, =
TT*Q,p, = dx), and it follows

50* QPQ = QPU

since P, = P,, and, as we have seen in Part I, Qp, = Qp, . The graph of the symplectomor-
phism ¢ is a submanifold of P; x P», which is denoted by

F(QD) CP1 XPQ.

Let i, : I'(¢) — Py x P5 be the inclusion and let m; : P x P, — P; be the canonical
projection. Define

wzw’f Qpl —W; sz
=71 (—d\) — w5dx.

Since ¢ is symplectic, it follows that

isw = (mID(9)" (2, -~ 9" p,)
= (m|T())"(~dA - g"dy)
=0.

In the above, 7 o iy, is the projection restricted to I'(¢) and w3 04, = ¢ o m on I'(p). So,
we can write w = —df where § = A@ x = nf A+ m5x. Clearly, I'(¢) is a maximally isotropic
submanifold with half of the dimension of P| x P, =TT*Q x TT*Q.
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Letting ¥ : TT*Q — TT*Q x TT*Q be the diagonal map, we have the one-form ¥*0
on TT*Q, which is represented, by using local coordinates (g, dq), (¢,p) and (g, p, dq, op) for
TQ, T*Q and TT*Q, as

U0 =0"Adx) = A+ ¢ x
= (0pdq + pddq) + (—0pdq + 6q dp)
=pddq + dqdp
=d(p-dq)
=d(G o prr-q),
where we recall from Part I that the map prr-g : TT*Q — TQ®T*Q is given in coordinates
by (q,p,dq,0p) — (g,0q,p). We shall also need the function G defined on the Pontryagin

bundle TQ & T*Q that simply pairs an element of T,Q) with that of T;Q; it is given in local
coordinates by

G(q,0q,p) = p - dq,

which we shall call the momentum function.

The Generalized Legendre Transform. There are two different ways of realizing the
submanifold N in TT*@Q, as shown in equations (2.1) and (2.2), as graphs of one-forms on
TQ and T*@ and the passage between them implies the Legendre transformation. This
procedure is called the generalized Legendre transform, which enables us to treat the case
in which a given Lagrangian is degenerate.

The generalized Legendre transformation is the procedure to obtain a submanifold K
of the Pontryagin bundle TQ @ T*Q from the submanifold N of TT*(Q associated with
(TT*Q,TQ,Trg, ) and with a Lagrangian L (possibly degenerate) on Ag C T'Q) as in
equation (2.1). This can be understood by the passage of the identity symplectomorphism

(V2R (TT*Q,QTT*Q = —d>\) — (TT*Q,QTT*Q = dX)
Let Tmg X Tp+q : TT*Q x TT*Q — T'Q x T*(Q and define the map
(Trg X Q) oW : TT*Q — TQ x TQ.
We can define the submanifold /C by the image of N by the map (T'rg X 77-g) 0¥ such that
K= (TWQ X TT*Q) o W(N) cTQ xT*Q,

which is to be the graph of the Legendre transform FL : TQ — T*(@Q with respect to a
constraint distribution Ag = T'rg(N) C T'Q. Define the generalized energy E on TQ&T*Q,
using local coordinates (q,v), (¢,p) and (g,v,p) for TQ, T*Q and T'Q & T*Q and pryp :
TQaT"Q — TQ, by
E(Qa Uap) = G(Q7 ’U,p) - L(prTQ(Qa ’U,p))
=p-v— L(g,v).
In fact, the submanifold K may be given by
K={(¢qg,v,p) €eTQ®T*Q| (¢g,v) € Ag C TQ is a stationary point of
E(q,v,p) for each (¢,p) € T*Q},
which is eventually represented by
oL

= {<q’v’p) €TQaT Q| (q,v) € Ag, p:av}.
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3 The Variational Framework

In this section, we illustrate the variational framework of implicit Lagrangian systems. First,
we show implicit FEuler-Lagrange equations can be formulated by using an extended vari-
ational principle of Hamilton called the Hamilton-Pontryagin principle, which we develop
by inspiring from Pontryagin’s maximum principle (see Pontryagin, Boltyanskii, Gamkre-
lidze and Mishchenko [1962]). This variational principle naturally includes the generalized
Legendre transformation. Second, we investigate an implicit Lagrangian system by develop-
ing an extended Lagrange-d’Alembert principle called the Lagrange-d’Alembert-Pontryagin
principle together with its intrinsic expression. Then, we show the variational link between
an implicit Lagrangian system and the induced Dirac structure on T*@). Third, in the case
where a given Lagrangian L is hyperregular, a Hamiltonian H is well defined by the usual
Legendre transformation. Then, we also show how an implicit Hamiltonian system that is
defined by an induced Dirac structure on T*(Q can be naturally associated with an extension
of Hamilton’s phase space principle that we call the Hamilton-d’Alembert principle in phase
space.

Variational Principle of Hamilton. Before going into an extended variational principle
of Hamilton, we shall review the variational principle of Hamilton.

Let L be a Lagrangian on T'Q and ¢(t), t; <t < t5 be a curve in the manifold Q. Define
the path space from ¢ to g2 by

Clqi, g2, [t1,t2]) = {q: [t1,t2] = Q | q(t1) = q1, q(t2) = ¢2}

and the map called the action functional & : C(q1, g2, [t1,2]) — R by
to
S(alt) = [ L), d(v) dr.
t1
The variation of the action functional &(g(t)) at ¢(¢) in direction of dq(t) is
ta

dS(q(t)) - 6g(t) =0 | L(q(t),4(t)) dt

t1

2 /9L oL )

/t1 (3(1 1 dq 1
_-/752 aj_iai 5 _Ar_ai 5
~ ), \oq “dtaq) °1 " aq

In the above, ¢ denotes dq/dt and we employ 6¢ = d(dq)/dt. When ¢(t) is a critical point
of the action functional &, that is, d&(q(t)) - dq(t) = 0 for all dq(t) € T, C(q1, g2, [t1,t2]),
the curve ¢(t) satisfies, keeping the endpoints fixed, the Euler-Lagrange equations

to

t1

dor_or
dt 8¢  9q°

The Hamilton-Pontryagin Principle. We shall illustrate implicit Euler-Lagrange equa-
tions can be formulated by an extended variational principle of Hamilton, which we call the
Hamilton-Pontryagin principle, that incorporates the second-order condition v = ¢ into the
action functional for a Lagrangian as a kinematical constraint. This variational principle
naturally includes the generalized Legendre transform.
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Proposition 3.1. Let q, (q,v) and (q,p) be local coordinates respectively for @Q, TQ and
T*Q. Let (q,v,p) be local coordinates for the Pontryagin bundle TQ®T*Q. Let L : TQ — R
be a Lagrangian (possibly degenerate). Consider the action functional defined by

ta

{L(g(t),v(®)) + p(t) (4(t) —v(t))} dt = /t 2 {p(t) - 4(t) — E(q(t),v(t),p(t))} dt.

t1

In the above, as previously illustrated, E is the generalized energy on TQ & T*Q given by

E(vivp) = G(qa 'U,p) - L(q,’l})
=p-v— L(gv),

where G(q,v,p) = p - v is the momentum function. Keeping the endpoints of q(t) fized
whereas the endpoints of v(t) and p(t) are allowed to be free, the stationary condition for
the action functional implies

. . 0L OL
q=", p_67q7 p_%a (31)

which we shall call the implicit Euler-Lagrange equations.

Proof. The variation of the action functional is given by

to

5 | A, 0) +p(0) @0~ vE))} de
- 5/t 2{p(t) -G(t) — E(q(t), v(t), p(t)) }dt

t1

OE . OF ta (3:2)

—/t2 poq+aop— Lsq— 985 L5 gt 4 ps
_t1 poq -+ qop 3qq 6UU (9pp pqt1

(. OF . OE OF
= [ (a5 ) o+ (=5 )oa- oo farswoe]

b2 oL oL
:/ (G—v)op+ | —p+ = |dqg+ | —p+ 5 | dvpdt +pdg
t dq v

where (6q, 6v,0p) € T{(q,0,p)(TQ@®T*Q). Keeping the endpoints of ¢(t) fixed, that is, q(t1) =
g1 and ¢(t2) = go, the stationary condition for the action functional for all (dgq,dv,dp)
provides equation (3.1). [ |

ta

to

b
t1

Notice that the Hamilton-Pontryagin principle naturally includes the Legendre transform
and also that equation (3.1) is nothing but the local expression of an implicit Lagrangian
system (L, Ag, X) for the case in which Ag = T'Q, as shown in Part I.

The Intrinsic Form of Implicit Euler-Lagrange Equations. We shall develop the
intrinsic form of the implicit Euler-Lagrange equations in the context of the Hamilton-
Pontryagin principle.

Consider the following maps
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prrq: TT°Q = TQ & T"Q
prrg : TQ&TQ — TQ
pryg : TQETQ — T7Q
rroer-q : T(TQ®T'Q) — TQ& T*Q.

Recall that the map prr-¢ : TT*Q — TQ ©T*() is given in coordinates by (g, p, dq, op) —
(g,dq,p), while the other maps are self explanatory. Define the path space of curves z(t) =
(q(t),v(t),p(t)), t1 <t <t in TQ @ T*Q by

C(q1,q2, [t1,t2]) = {(q,v,p) : [t1,t2] = TQ&T"Q|
pro(q(t), v(t1),p(t1)) = a1, prgla(te),v(t2), p(t2)) = g2},

where prg : TQ & T*Q — Q.
The action functional on C(q1, g2, [t1,t2]) of curves z(t) = (q(t), v(t),p(t)), t1 < t < to
in TQ & T*Q is represented by

t

" {L(g(t), v(6) + p(t) - () — v(t)} dt

t1

= 2 {p(t) - 4(t) = E(q(t),v(t),p(t))} dt

= | {Glprr-q o Tpry-q(x(t),i(t)) — E(rrqer-q(a(t), &(1))} dt, (3-3)
t1
where #(t) denotes the time derivative of xz(t), Tprr.g : T(TQ © T*Q) — TT*Q is the
tangent map of pry.g and then prr-g o Tprp.g : T(TQ ®T*Q) — TQ & T*Q.

Let us call equation (3.3) the Hamilton-Pontryagin integral.

Tangent Bundle of the Pontryagin Bundle. Let 7g : TQ — @ be the tangent pro-
jection and mg : T*Q — @ be the cotangent projection. The tangent space of Q) © T*Q
at a point (q,v,p), that is, T(g, ) (TQ & T*Q) is the subset of T, TQ @© T,, T*Q consisting
of vectors that project to the same point of T'Q; that is,

T1q(q,v,q4,9) = Tmg(q,p,4,p),

where the tangent map T'rg : TTQ — T'Q is given in coordinates by (¢,v,q,v) — (g,q) and

the tangent map Tmg : TT*Q — T'Q is given in coordinates by (¢, p, ¢,p) — (¢,¢). Thus,

tangent vectors of the Pontryagin bundle in coordinates have a base point (¢,v,p) and a

vector part (¢,v,p). That is, the ¢ piece for the two tangent vectors of TQ and T*Q agree.
There are two different maps from T(TQ ® T*Q) to TQ @& T*Q; namely,

TTQeT*Q - T(TQ @ T*Q) - TQ 2] T*Qa (qv v, P, Qv va) = ((]7 U7p)7
PTT*Q ° TprT*Q : T(TQ S T*Q) —-TQ® T*Qa (Q7 v, D, 4, U7p) e (qa (25p)7
where we recall that the map prrg : TT*Q — TQ & T*Q is given by (¢,p,4,p) — (¢,4,p).
The map T'prp.q is the tangent of the projection map prp.q : TQ & T7Q — T*Q and is
given by (q,v,p,q,,p) — (¢,p, 4, p)-
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Proposition 3.2. Let Q" : TT*Q — T*T*Q be the bundle map associated with the canonical
symplectic structure 2 on T*Q and Or-g be the canonical one-form on T*Q. Let x =
(Q)* Or+7+g be the induced one-form on TT*Q), where Op«r-qg is the canonical one-form
on T*T*Q. Then, the variation of the Hamilton-Pontryagin integral in equation (3.3) is
represented by

5/tZ{L(Q(t)vv(t)ﬂp(t)'(d(t)*v(t))} dt

=0 [ {p(t)- ) - B(a(o),0(t), p()) } dt

ty

5 [ {Glorr-a o Torraq(@.8) - Blrrasr-a(e.i)

ty

/tlt2 {GT*T*Q (Qb Tpry-g(z, x)) T’ (T(w’j;)(TprT*Q)(w)) (3-4)

—dFE (TTQGBT*Q($7 .’L‘)) . T(m’:b)TTQ@T*Q(w)}dt
12

+ GT*Q(prT*Q [¢] (TTQ@T*Q)(xvi)) . (T’TT*Q oT (TprT*Q) (w))
t1

to
= / {(Torrg) x(@,8) = (rrqer-q)*dB(z, @) b - w dt
ty

to

+ 01+ (pryeg © (Trger-@)(@,4)) - (T1r+q o T (Tpry.q) (w))
t1

In the above, (z,%) € T(TQ O T*Q), w € T(4:»)T(TQ ®T*Q), and
T(Tprp.q) : TT(TQ®T* Q) — T(TT"Q),

where T(;c,i’) (TprT*Q)(w) € TTprT*Q(;c,j:) (TT*Q)

Proof. Let us check, by using local coordinates, that equation (3.4) is the intrinsic repre-
sentation of equation (3.2). Let (gq,v),(q,p) and (g,v,p) be local coordinates for TQ,T*Q
and TQ & T*Q.

First, by using the two different maps 7rger+q : T(TQ & T*Q) — TQ & T*(Q and
prr+Q © Tprpeg + T(TQ © T*Q) — TQ & T*Q, for each z = (q,v,p) € TQ & T*Q, one
obtains

pr7+Q © TPrpey(2,2) = pr7-g © TPr7: 0 (45 v, P, G, D, D)
= PTT*Q ° ((I7pa qvp)
=(¢,4,p) €TQ DT Q,

while

TTQ@T*Q(xv x) = TTQ@T*Q(Q) v, p, q.7 U7p)
=(¢v,p) €TQ®T"Q,

where (z,%) = (¢,v,p,q,0,p). Since the momentum function G on TQ & T*Q is locally
given by
G(pTT*Q o TprT*Q('ra x)) = G(Q7 Q7p)
=p- q-v
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it reads, using local coordinates,

to (2

0 G(prr-qQ o Tproeg(®, &) dt =6 G(q,q,p)dt
t1 tl
ta
=5 / (p-q) dt
t1
ta
:/ (pdgq+dpq) dt

ty
to

ta
z/ (—p6q+5p4) dt+pdq| . (3.5)

ty t1

Second, let us check the terms concerning with the canonical one-forms Or-7+¢g in
equation (3.4) by using local coordinates. From the map Q° o Tprp.g : T(TQ ® T*Q) —
T*T*Q, we can easily see that

@T*T*Q(Qb : TPTT*Q(%@) = Or-7-Q(¢; p, =P, q)
= —pdq + qdp,

where Tpry.q(z, &) = (¢,p,¢,p) and then 2o Tprr.g(z, &) = (¢,p, —p,q). Furthermore,
we can write w € T, ) T(TQ © T*Q) in coordinates as

w = (q7/U7p7 q.7/l.)7p7 5(1’ 51}75177 5(j7 57"}’ 51'))7
and it follows that
T(m,a:) (TprT*Q) (’LU) = T(:E,x) (TprT*Q) (qa v, P, (17 7.]’].% 5617 5U7 5277 6Q7 5/07 5]9)
= (¢,p, 4, 04, 6p, 64, p)
and then
(TV(Zb o T(:L’,z) (TprT*Q)) (U)) = TQb <Qap7 q'7p7 6Q7 6pa 6q7 6]))
= (qap7 =P, 4, 56]7 5p7 _5p7 5(])7
where T(Tpry.g) : TT(TQ © T*Q) — T(TT*Q) and T @ T(TT*Q) — T(T*T*Q).
Therefore, noting x = (2°)* O7-7+q, we have
@T*T*Q(Qb © TPTT*Q(%J'?)) ) (TQb © T(m,a‘v)(TprT*Q)(w)) = (TPTT*Q)*X(%J'U) tw
= —pdq+ ¢bp. (3.6)
As to the term associated with the canonical one-form ©¢-¢ in equation (3.4), by em-

ploying the map pry.q o (TrQer-q) : T(TQ & T*Q) — T*Q, we can obtain

preg © (Trqer-q) (%, &) = pro-g © (Trar+Q) (4, v, p, 4, 0, )
= pry-q(q,v,p)
= (¢,p),

and then

O1+q(pro-g © (TrQer-Q) (%, %)) = O1+¢ (¢,p)
=pdg.
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Recall 7p+g : TT*Q — T*Q and Trr+g : T(TT*Q) — TT*Q, and it follows that
GT*Q(prT*Q [¢] (TTQ@T*Q)(xyi)) . (T’TT*Q oT (TprT*Q) (w)) = p(;q, (37)
where the map T'rr«g o T (TprT*Q) TT(TQ®T*Q) — TT*Q is locally indicated by
TTT*Q © T(TprT*Q) (w) = TTT*Q oT (TprT*Q) (q, v, D, 47 i),pv 5qa 5Ua 5p7 5(]3 6U, 5]7)
- TTT*Q(Q7p7 Qap7 5qa 6p7 6Q7 5p)
= (¢, p,dq,0p).

From equations (3.5)—(3.7), we can easily check the following relation holds:

to

6 [ G(prr-q o Tpryg(x,d))dt
t1

ta
= / @T*T*Q(Qb Tpry.g(w,i)) - (TQb 0 T(ai)(Tpryeg)(w)) dt
t1

ta

+ O1+q (pryeg © (Trger-@)(@,4)) - (T1r-q o T (Tpry.q) (w))
ty

12
— [ @) xied) wds
t

1 .

+ @T*Q(prT*Q o (Troer-Q)(z, x)) . (TTT*Q oT (TprT*Q) (w)) (3.8)

ty
Third, let us check the terms relating to F on TQ @& T*Q in equation (3.4). Since the
local representation of F is given by
E(TTQGBT*Q(xa J?)) = E(Q7 Uap)
=p-v-—= L(q,U),
one can directly compute the differential of E in local coordinates such that

dE(rrqer-q(z, &) = dE(q,v,p)
_OE, OE,  OE

oL oL
= —a—qdq+ ( - 81}) dv + v dp.

Recall the map Trrger-g : TT(TQ & T*Q) — T(TQ & T*Q) is locally represented by

T(m,i)TTQ@T*Q(w) = T(a:,i)TTQ@T*Q(Qa v, p, q.a i}a p? 5q7 (S’U, (;p? 5q7 5/0’ (Sp)
= (q,v,p,6q,6v,6p),

and hence it follows

dE(trQer-q(z, %)) - T(e.s)TTQar@(W) = (TTQar+@) "dE(z, 1) - w

= —aiéq + (p — 35) ov + v op. (3.9)

Thus, by equations (3.8) and (3.9), it reads that equation (3.4) is the intrinsic representation
of equation (3.2). |
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Proposition 3.3. A curve z(t) = (q(t),v(t),p(t)), t1 < t < ty in TQ & T*Q joining
pro(z(t)) = @1 and prg(z(t2)) = g2 satisfies

(Tpre-@)"x(x(t), £(t)) = (TrQer-@) dE(2(t), &(t)), (3.10)
if and only if x(t) is a stationary point of the Hamilton-Pontryagin integral in equation
Proof. The stationary condition of the Hamilton-Pontryagin integral is given by

to

o t {L(q(®),v(t)) +p(t) - (4(t) —v(t))} dt

=5 [ ol - dt) — Eat) v(t). plt))} dt

t1

ta
=5 [ {Glorr-o o Torr-gfe.) - Blrrgsr-ole.) } de
t1
to

= {(TprT*Q)*X(x,dc) - (TTQ@T*Q)*dE(x,j:)} ~w dt
ty

to

+ 07+ (pryeg © (TrQar-@) (¢, %)) - (Trr+q o T (Tpre-g) (w))

ty

= O’
which satisfies for all w € T(, ;)T (TQ ® T*(Q). Since the endpoints of ¢(t) are fixed, one has

to

=pdq
t1

=0.

to
Or-q(pre-g © (Trer-q)(x, &) - (TTr+q o T (Tpryeg) (w))

t1

Thus, we obtain equation (3.10). |

Needless to say, equation (3.10) is the intrinsic expression of equation (3.1), and so we
shall call equation (3.10) the intrinsic implicit Euler-Lagrange equations, which are
equivalent with an implicit Lagrangian system (L, Ag, X) for the case in which Ag =TQ.

The Lagrange-d’Alembert-Pontryagin Principle. Next, we shall investigate an im-
plicit Lagrangian system for the case in which a regular constraint distribution is given.
To do this, we introduce an extended Lagrange-d’Alembert principle called the Lagrange-
d’Alembert-Pontryagin principle.

Let L be a Lagrangian on 7'Q) and Ag C T'Q) be a constraint distribution on ). Define
a generalized energy F(q,v,p) = p-v— L(g,v) on TQ ® T*Q. Keeping the endpoints of ¢(t)
fixed, the Lagrange-d’Alembert- Pontryagin principle is expressed by

ta

[ Ltate). o) +p(0) - (0 - o) e
.y / (1) - () — Blalt). v(t), p(t)} dt

/:{(gsp)gﬁ (gf;p)(;er((j(v)(;p}dt

:O7

(3.11)
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where we choose a variation (dq(t), dv(¢), dp(t)) of the curve (¢(t),v(t),p(t)), t1 <t < t5in
TQ & T*Q such that d¢(t) € Ag(q(t)) and with the constraint v(t) € Ag(g(t)). Hence, the
Lagrange-d’Alembert-Pontryagin principle is represented by

t2 oL . oL .
[ () () omfame

which is equivalent to the equation
oL oL
— —plé — —plé j—v)ép=20 3.12
(8(1 p) q+<3v p) v+ (¢ —v)dp (3.12)
for all variations dq(t) € Ag(q(t)), for arbitrary op(¢) and dv(t), and with the constraint

u(t) € Aq(g(t))-

Proposition 3.4. Let a distribution Ag be locally denoted by A(q) C R™ at each g € U C
R™. The Lagrange-d’Alembert-Pontryagin principle for a curve (q(t),v(t),p(t)) provides
equations of motion, in coordinates, such that

oL 0L

g=veAlg), p——4—€Aq), p=go

% (3.13)

Proof. From equation (3.12), we obtain the second-order condition ¢ = v, the Legendre
transform p = 9L/0v, the equations of motion p — dL/9dq € A° and with the constraints
v € A(q). Thus, we obtain equation (3.13). |

Notice that, as shown in Part I, equation (3.13) is the local expression of an implicit
Lagrangian system.

Constraint Distributions. We shall define constraint distributions for the intrinsic ex-
pression of the Lagrange-d’Alembert-Pontryagin principle.

Consider a regular constraint distribution Ag on Q. Let prg : TQ © T*Q — Q and
Tprg : T(TQ®T*Q) — TQ. Let Trar-q : T(TQ & T*Q) — TQ & T*Q and TTrQer-q
TT(TQT*Q) - T(TQ & T*Q).

Define the submanifold K C TQ @& T*Q by

0
K= {on e7QaT°Q| (10) € dg, p= ] (314

and also define the distribution B on TQ & T*Q by
B=(Tprg) "(Aq) CT(TQaT*Q).
Let C be the restriction of B to IC; that is,
C=BNTKCT(TQaT*Q).

In the above, we assume that C is a regular distribution on K. Furthermore, note that
Tprg o TtrQer-q : TT(TQ ® T*Q) — T'Q and define the distribution F on T(TQ © T*Q)
by
-1 «
F = (TpI'Q e} TTTQ@T*Q) (AQ) C TT(TQ S T Q)
Let G be defined by the restriction of F to C as
G=FNTCCTT(TQaT*Q), (3.15)

where we assume G is a regular distribution on C.
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The Intrinsic Lagrange-d’Alembert-Pontryagin Equations. We can intrinsically
represent the Lagrange-d’Alembert-Pontryagin principle for a curve x(t) = (¢(t), v(t),p(t)),
t1 <t <tyin TQ ® T*Q, with the endpoints of ¢(t) fixed, by

5/t {L{g(t). (1) + p() - (at) — v(t))} dt

=46 {p(t) -q(t) — E(q(t), U(t),p(t))} dt
— 5/ 2{G(pTT*Q o Tprp.q(x, #)) — E(TTQ@T*Q(QC@))} dt (3.16)

ty
to
- / {(Tpry.g)*x(2, &) = (TrQer+@) dE(x, @)} - wdt
ty
=0

which holds for all w = (q,v,p,q,v,p, dq,0v,6p, 64, 60,0p) € G(z,7) C T(m»T(TQ & T Q).

Proposition 3.5. The Lagrange-d’Alembert- Pontryagin principle is equivalent to the equa-
tion

(Tpre-q) " x(x(t), £(t)) - w(t) = (TrQar-Q) dE(x(t), £(t)) - w(t) (3.17)
for all w € G(x(t),&(t)).

Proof. Note that equation (3.16) is the intrinsic expression of equation (3.11). From equa-
tion (3.16), it is obvious that we obtain equation (3.17), which is the intrinsic expression of
equation (3.13). [ |

Notice that we have derived (3.17) from the variational viewpoint, and that the result is
consistent with the geometry of the generalized Legendre transform that we studied in §2.

The Intrinsic Implicit Lagrangian Systems. Let X : TQ®T*Q — TT*Q be a partial
vector field on T*(Q); that is, a map that assigns to a point z = (vq,pq) € TQ & T*Q, a
vector in T, T™@Q; we write X in local representation as

X(z) = (¢:p.4:p),
where ¢ and p are functions of z = (g, v, p).

Define the wvertical lift of the partial vector field X (z) = (¢,p, ¢,p) to be the vector
field X on TQ & T*Q whose value at = (g, v, p) is given (in local representation) by

X(.’E) = (qavapaq'70ap)-

By an integral curve of X we mean a curve (¢(t),v(t),p(t)) € TQ & T*Q such that for
each t, we have

X(x) = (q7p7 q}ﬁ)?

where (¢,p) = pry.g(z). Notice that the following algebraic relation holds:

X(2) = Tppry- (X (2)).
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Proposition 3.6. Let X : TQ®T*Q — TT*Q be a partial vector field and X be its vertical
Lift. If an integral curve x(t) = (q(t),v(t),p(t)) € TQ ® T*Q of X satisfies

(Tpry.) (X (2(1)) - w(t) = (Troer+q) dE(X (x(t))) - w(t) (3.18)
for all variations w(t) € G(X (x(t))) C T3 T (TQOT*Q), then, it satisfies the Lagrange-
d’Alembert-Pontryagin equation in (3.13).
Proof. Since (q(t),v(t),p(t)) is an integral curve of the partial vector field X : TQOT*Q —
TT*Q, we have

X(z) = (a,p,¢:p)-

By construction, the vertical lift of X at each x = (g, v, p), takes the value

X (x) = (g,v,p,4,0,p).

On the left-hand side of equation (3.18), recall that y is the one-form on 7T7*(Q induced
from the canonical one-form ©r«7+g on T*T*(Q as x = (Qb)*GT*T*Q, which is given, in
coordinates (q, p, —0p, §q), for T*T*Q by

X = —opdq + dq dp,
and
(Tpry-q)*x = —dpdq + éq dp
is the pulled-back one-form on T(TQ®T*Q) by the tangent map Tpry.q : T(TQOT*Q) —
TT*Q) of the projection pry.g : TQ & T*Q — T*Q. Then, we have
(Tprr-)*X(X(x)) = —pdg + ¢ dp.
Further, the variation w(t) € G(X (x(t))) may be locally denoted by
w = (q’v’p7q'7 07p7éq7 6U’ 6p) 5q’70’ 6p')7
and hence it follows that the left-hand side of equation (3.18) is locally denoted by

(Tprr-q) x(X(2)) - w = —pdg + 4 5p. (3.19)
On the other hand, as to the right-hand side of equation (3.18), we have
_0E oF oF

(rroer-@) "dE(X (z)) = % dq + 2~ dv + % dp

oL oL
= (—&]) dg + (p_@v> dv + v dp.
)

Hence, the right-hand side of equation (3.18) is given, in coordinates, by

(rroer-0) dE(X (z)) - w = (?3];) oq + <p - ?;) v + v 6p. (3.20)

From equations (3.19) and (3.20), it follows

oL oL .
(aq—p)éq—&-(av—p)&H-(q—v)&p—O

for all variations dq € Ag(g) and for all dp and dv, together with v € Ag(q).

Thus, we obtain the local expression of an implicit Lagrangian system that is given by
oL oL

) — — € Aj(q), =—

P~ % ola) p=4

which is the Lagrange-d’Alembert-Pontryagin equation (3.13). |

q=v € Aqg(qg),
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Remarks. Let us rewrite equation (3.18) using the partial vector field X : TQ & T*Q —
TT*Q. Associated with the partial vector field X (q,v,p) = (q,p,q,p) and its vertical lift
X, recall that the algebraic equation

X(2) = Trpry (X (@)
holds for each x = (g, v,p) and recall also that
TrQar-Q(X () = z.
Then, equation (3.18) can be equivalently restated as
(X (@) - Tg o (Torr-0)(w) = dE(@) - Ty ) (rrger-o)(w). (3.21)

In coordinates, equation (3.21) may be given by

OL oL
—pdg+q¢op=|——5) ¢+ (p— =) Sv+vdp (3.22)
dq v

for all variations dq € Ag(g), for all ép and dv, and with v € Ag(qg).

In fact, we can check this directly by computations. Since
x(X(x)) = —pdq +qdp
and
T ) (Trrr-)(w) = Tig,0,p,4,0.5) (TPrre ) (84, 6v, 6p, 64, 0,0p)
= (¢,p, 4, p,6q,0p, 64, 0p),
the left-hand side of equation (3.21) is given by
(X (@) - Tg ) (Torr- ) (w) = —pda + o,

while we have

oL oL
dE(z) = <8q) dq + <p - 811) dv+vdp

and
T)?(.,c) (TTQ@T*Q) (’U)) = T(q,’v,p,q,o,z')) (TTQGBT*Q)((L v, P, q.a 0) p7 6qa 6Ua 6p, 6qa 07 6p)
= (¢, v, p, 0, 6v, op).
Then, the right-hand side of equation (3.21) is locally denoted by

oL oL
Hence, we obtain equation (3.22), from which it follows that

oL . oL .
(8(]—p)éq—&-(av—p)év—k(q—v)ép—o

holds for all variations dg € Ag(q), for all dp and dv, and with v € Ag(g). Thus, we obtain
equation (3.13).

Let us call equation (3.18), or equivalently, equation (3.21) the intrinsic implicit
Lagrangian system.
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Variational Link with Dirac Structures. Next, we shall see the variational link of
an implicit Lagrangian systems (L, Ag, X) with the induced Dirac structure Da,, on T*Q,
where X is the partial vector field defined.

Recall from Part I that Da,, is defined, for each z € T*Q,

D, (2) = {(uz, o) € TLT*Q x T)T*Q | uz, € Ar+g(2), and
az(w,) = Qa, (uz,w,) forall w, € Ar-q(2)}, (3.23)
where Ar-q = (Tmg) ' (Ag) and Q4 is the restriction of the canonical symplectic form
Q on T*Q to AT*Q

As to the variational link of implicit Lagrangian systems, we have the following propo-
sition.

Proposition 3.7. If a curve xz(t) = (q(t),v(t),p(t)) is a solution curve of the intrinsic
implicit Lagrangian system associated with equation (3.18), then, it satisfies, for each v(t) €

Aqla(t),
(X(q(t), v(t), p(t), DL(q(t), v(t))) € Dag(q(t), p(t)), (3.24)

where pa (t) = FL(q(t),v(t)) and (q(t),v(t),p(t)) is an integral curve of the partial vector
field X.

Proof. It is logically obvious that the above proposition holds; however, we shall prove this
by direct computations.

Let us rewrite the left-hand side of equation (3.18). Recall the one-form x on T7*(Q is
defined by x = (2°)*Or-1+q, and we have

(Tprr@)* X(X(2)) - w = X(Tprrq(X(2))) - T (o TPrr- g (w)
= 071 (X 0 Tpryg(X(2))) - TR (T, (TPre-g) (w)). (3.25)

Recall also that the canonical one-form on T*T*(Q is defined by
Or-1:q(e) - V = (o, Trr-q(V)),

where o € T*T*Q, V € To,(T*T*Q), mr+q : T*T*Q — T*Q is the canonical projection and
Trreg : TT*T*Q — TT*Q. Using local coordinates z = (q,v,p), equation (3.25) reads
that

=0 Tpry.o(X(z)) - T7rT*Q(TQb 0Tk (Tpre.q) (w))

= —pdq+ ¢op. (3.26)

In the above, the vertical lift of X is given, using local coordinates, by X (z) = (¢, v,p, ¢,0,p)
and henFe Qb o TprT*Q().((as)).: Q(q,p,d,p) = (¢,p, —p,q), and further, noting that w =
(¢:v,p,4,0,p,0q, 0v,dp, 44,0, dp),
Tﬂ—T*Q (TQb © T)}(g;) (TprT*Q) (’U))) = Tﬂ'T*Q(Qan _pa qv 6Q7 5p7 _5]97 5(])
= (q,p,0q, 0p).
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On the other hand, the right-hand side of equation (3.18) is locally expressed by

(Troer-q)" dE(X(z)) - w = dE (TTQGBT*Q()?@C))) T @) TreerQ(w)

= dE(z) - Tg(,yTroer-Q(w)

OF oF OF 0 0 0]

oL OL
= <_8q> oq + (p— 81}) dv+vdp

where T)?(I)TTQ@T*Q(UJ) = (¢,v,p,dq,0v,0p) € C(x) and TTQ@T*Q(X(JT)) = x. For each
point = = (q,v,p) € K, one has

Hence, using the projection pry.g : TQ & T*Q — T*Q and its tangent map Tpry.q :
TTQaT* Q) — T(T*Q), it follows that

(TTQ@T*Q)* dE(X(z))-w=dE (z) |TprT*Q(z)T*Q Tpry.q (T)}(I)TTQEBT*Q(QU))

OF OF 0 0
= <dq+ dp) . (5 = +5p)
q p q p

B) B) 75 B)
oL
=|—-——=—1]9¢ op. 3.27
( 8q> q+vdp (3.27)
In the above, the restriction of dE (z) : T,(TQ © T*Q) — R to Torp ()T @ is given by

OL
dE (x) ‘TprT*Q(-’”)T*Q = (_aq> dq + ’Udp7

where pry.o(z) = (¢,p = OL/0v).

Recall that the Dirac differential of a Lagrangian, that is, ®L : TT*Q — T*T*Q is
defined by using the diffeomorphism vg = Do (kg)™': T*TQ — T*T*Q, as shown in Part
I, and is given by

DL =g odl

(0 oL
- q’av’ aq?v N

Recall also that pryg : TQ @ T*Q — TQ is given in coordinates by pryq(r) = (¢,v), and
it reads

dE (z) ‘TprT*QmT*Q: DL (prTQ(a:)) (3.28)
From equations (3.18) and (3.25)—(3.28), we have
ok (TPYT*Q(X(@)) : T7TT*Q(TQb T3 (Tpry-q) (w))
=dE(2) |1,,. o T*Q Ty (Tg(wTreer(w))
=DL (pryg(z)) - TprT*Q(T)?(x)TTQ@TxQ(w)). (3.29)
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Notice that there exists the identity

T7rT*Q(TQb oT (TprT*Q)) =Tprr.g o T'TrQer+Q,
and we set
u=Trrq(T o T3 () (Tpry-g) (w))
= Tprrq (T (o) TrQerQ(W))
= (g,p, g, 0p). (3.30)
From equations (3.29) and (3.30), it follows that equation (3.18) can be restated as
@ (X (q(t), v(t), p(t))) - u(t) = DL(g(t), v(t)) - u(t)
for all u(t) € Az-q(py)(t)), where A = (Tmg) '(Ag) C TT*Q. In other words, a
curve (q(t),v(t)) € Ag(q(t)) satisfies
Qag (X (a(t),v(t),p(t)), u(t)) = DL(q(t), v(t)) - u(t), (3.31)

for all u(t) € Ar«q(pew)(t)), where pyuy(t) = FL(q(t),v(t)) and (q(t),v(t),p(t)) is the
integral curve in P = FL(Ag) of the partial vector field X : TQ & T*Q — TT*Q.

As shown in equation (3.23), the set of Ap-g and the skew-symmetric bilinear form
Qa, defines an induced Dirac structure Da, on T*(Q). Then, needless to say, equation
(3.31) represents the condition of an implicit Lagrangian system (L, Ag, X) associated with
the induced Dirac structure Da,, on T*Q; that is,

(X,@L) S DAQ

together with the Legendre transform P = FL(Ag). [ |

Remarks. It follows from equation (3.28), equation (3.24) can be also denoted by, for
each (¢,v) € Ag,

(X(q,v,p),dE(q,v,p)|1, ,,7+@) € Dag(¢;p), (3.32)

where (g,p) = FL(g,v) and the restriction dE(q,v,p)|r,, ,,7+¢ is understood in the sense
that T7T*@ is naturally included in T(T'Q ® T*@). Hence, the condition for an implicit
Lagrangian system (L, Aq, X ), namely, (X,DL) € Da,,, can be restated as

(X,dE|r,71+q) € Dag
together with the Legendre transform P = FL(Ag).
We can summarize the results obtained so far in the following theorem.

Theorem 3.8. Let L be a Lagrangian on T'Q (possibly degenerate) and Agq be a constraint
distribution on Q. Let X : TQ & T*Q — TT*Q be a partial vector field on T*Q, which
assigns to each point x = (q,v,p) € TQ®T*Q a vector X (x) = (q,p,¢,p) in T, T*Q, where
G and p are functions of x = (q,v,p). Denote by x(t) = (q(t),v(t),p(t)), t1 <t < ta, a curve
in TQ & T*Q. The following statements are equivalent:

(a) z(t) satisfies the Lagrange-d’Alembert-Pontryagin principle in equation (3.16);

(b) x(t) is a solution curve of the intrinsic implicit Lagrangian system, which is denoted
by equation (3.18);

(c) x(t) satisfies the condition of an implicit Lagrangian system (L, Ag, X), which is given
in equation (3.24).



3 The Variational Framework 22

Hamilton’s Phase Space Principle. If a given Lagrangian is hyperregular, then, a hy-
perregular Hamiltonian is well defined on the cotangent bundle via the Legendre transform.
Hence, we can also develop an implicit Hamiltonian system for the hyperregular case in
terms of the induced Dirac structure on the cotangent bundle. Before going into the con-
struction of implicit Hamiltonian systems, we first show how intrinsic Hamilton’s equations
can be developed in the context of Hamilton’s phase space principle.

Let L be a hyperregular Lagrangian on T'Q). Define the energy E on T'Q), by employing
local coordinates (g, v) for T'Q, such that

oL
E(vi) = % "U—L(q,’l]).

Since the Legendre transform FL : TQ — T*@Q is diffeomorphism, a hyperregular Hamilto-
nian H can be defined on T*Q such that

H=FEo(FL)™".
Then, define the path space of curves z(t) = (q(t),p(t)), t1 <t <ty in T*Q as

S(q1,q2, [t1,t2]) = {2z = (¢, p) = [tr, 2] = T7Q |
mQ(2(t1)) = 1, mQ(2(t2)) = g2},

where g : T*Q — @ and also define the action functional on the path space S(q1, g2, [t1, t2])
of curves z(t) = (q(t),p(t)), t1 <t <ty by

/t2 {p(t) - 4(t) — H(q(t),p(t))} dt, (3.33)

which is called the Poincaré-Cartan integral.

Proposition 3.9. Keeping the endpoints q(t1) and q(t2) of q(t) fized whereas p(t1) and
p(t2) of p(t) are allowed to be free, the stationary condition for the Poincaré-Cartan integral
in equation (3.33) gives Hamilton’s equations

. _OH . 0H

-7t = 3.34
Q=% P 34 (3.34)
Proof. The variation of the Poincaré-Cartan integral is locally represented by
ta
6 [ Ap(t)-q(t) — H(q(t),p(t))} di
t1
t2 oH oH
= op g 0G— —0d0q— —dp | dt .
/t1 (pqﬂ?q 2020 B p> (3.35)

t2 OH OH b2
L) o s
4 dp Oq

Keeping the endpoints (1) and ¢(t2) of ¢(t) fixed, the stationary condition for the Poincaré-
Cartan integral gives Hamilton’s equations in equation (3.34). |

t1

The Intrinsic Form of Hamiltonian’s Equations Let us demonstrate the intrinsic
expression for Hamilton’s phase space principle in the following.
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Proposition 3.10. Let ©7-g be the canonical one-form on T*Q and O TT*Q — T*T*Q
be the bundle map associated with the canonical symplectic form Q. Let ©p-p-g be the
canonical one-form on T*T*Q. Let Tp-q : TT*Q — T*Q be the tangent projection and
prr+q  TT*Q — TQ & T*Q be the projection. Denote by H, a hyperreqular Hamiltonian
on T*Q. Let G(q,v,p) = p-v be the momentum function on TQ ® T*Q, where (q,v,p) €
TQ®T*Q. The variation of the Poincaré-Cartan integral in equation (3.33) is represented
by
12

5 [ Ap(t)-q(t) — H(q(t),p(t))} dt

ty

—5 / {Glorra(s2) - Hirrolz,2))} dt

= / : {@T*T*Q(QZ(,Q)) ST (w) —dH (17+¢(%,2)) - TTT*Q(’LU)} dt (3.36)

ty
to

+ Orq(1r+Q(2, 2)) - TTr+ (W)

t1
to

2 {X(2,2) = (17-@)"dH (2, 2)} - wdt + Or (172 (2, 2)) - T+ (W)

ta

)
t1

where z = (q,p) € T*Q, ¢ = dz/dt € T.T*Q and w € T, »)(TT*Q).

Proof. Let us check that equation (3.36) is the intrinsic representation of equation (3.35).
Recall that the one-form x on T7T™(Q is defined by the canonical one-form ©p«7+g on T*1T™Q
such that

X = () Orer-q.

Since (z, 2) € TT*Q is locally denoted by (¢, p, ¢, p), we have
x(2,2) = —pdgq + qdp € T(, ,(TT*Q).
Then, noting TQ" : T(TT*Q) — T(T*T*Q), the following relation holds:
Orer-((2)) - TQ (w) = x(2,2) - w
= —pdg+qdp
for all 2 € T.7*Q and w = (q,p, 4, p, 0q, 0p, 6¢,0p) € T »(TT*Q).
On the other hand, recall that the canonical one-form ©pp-¢ is defined such that
Orr-(Q(2)) - TQ (w) = QL(2) - Trp-o(TX (w)), (3.37)

where g : T*T*Q — T*Q is the cotangent projection, Q°(2) = (q,p, —p,q) € T*T*Q
and Tﬂ'T*Q(TQb(w)) = (¢,p,dq,0p) € TT*Q.
The differential of the Hamiltonian dH : T*Q — T*T*(Q is locally denoted by

oH oH
dq’ dp )’
By the projection T'rp+g : T(TT*Q) — TT*Q, we have

dfd = (q,p,

TTT*Q(w> = TTT*Q(qapa q'7p7 5q7 5;0, 6q7 6]9)
= (q,p,dq,p).
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Hence, it follows that, for all z € T*Q and for all w € T(, ) TT*Q,

dH(r7+q(2,2)) - Trr-q(w) = (Tr+@)"dH (2, 2) - w

OH OH
= —dq+ — Ip. 3.38
ag 24t 5, % (3.38)
Furthermore, we have the local expression
Orq(rr-g(z, 2)) - Tr-g(w) = pdq. (3.39)

From equations (3.37) to (3.39), it immediately reads that equation (3.36) is the intrinsic
representation of equation (3.35). [ |

Remarks. Recall that 6 = A @ x is the one-form on TT*Q x TT*@ and also that U*0 =
d(G o prr+q) using the diagonal map ¥ : TT*Q — TT*Q x TT*Q. Then, the following
relation is satisfied, for each z € T*(Q),

ta

ta
1) G(pTT*Q(Z,i))dt = / dG(pTT*Q(Z,é)) ~TpTT*Q(w) dt

tl tl

to
:/ U l(z,2) - wdt

t1

= /t 2{9T*T*Q(QZ(Z')) ST (w) + Opero(rg(2, 2)) - Tho(w)} dt

ta
_ / Or-1-0(Q(2)) - T (w) dt
ty
d ("
t1
to ta
B / Or-1-q(Q(2)) - T (w) dt + Or+q(Tr+0(2, ) - Trreg(w)
t1 ty
Using local coordinates z = (¢,p) € T*Q, 2 = (¢,p) € T.T*Q, and w = (dq, dp, dq, 0p) €
T, (TT*Q), it is easy to check the above relation:

t2 t2

| Glgqp)dt=6[ (p-q) dt

t1 t1

(2
=/ (pdq+qop)dt
ty

to
= [ {(-pdq+qdp)+ (pdq+pdsq)} dt
t1

ta

to d
:/ (—p5q+(jép)dt+— poqdt
t1 dt t1

ta

ta
:/ (—p5q+¢15p) dt +pdq

t1

t1

Proposition 3.11. Keeping the endpoints mq(z(t1)) = q(t1) and wg(z(t2)) = q(t2) of the
curve mq(2(t)) = q(t) fized, the stationary condition for the Poincaré-Cartan integral in
equation (3.36) provides intrinsic Hamilton’s equations such that, for each z = (q,p) €
Q,

N2 2) = (rreq) dH (. 2), (3.40)
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Proof. The stationary condition of the Poincaré-Cartan integral is given by

ta

6 [ Ap@®)-4(t) — H(q(t),p(t))} dt

ty

—5 / {Glorrale,2) — Hirrg(= £)} di

t2 ta

= | x(z2) = (7r@)"dH (2, 2)} - wdt + Or-q (1 (2, 2)) - T (w)

t1 t1

for all w € T, :(TT*Q). Keeping the endpoints of ¢(t) fixed, we can obtain the intrinsic
Hamilton’s equations in equation (3.40). |

Implicit Hamiltonian Systems. Let us illustrate an implicit Hamiltonian system for
the case in which a hyperregular Hamiltonian is given on the cotangent bundle and with a
constraint distribution on a configuration manifold.

Definition 3.12. Let H be a hyperregular Hamiltonian on T*Q and Ag C TQ be a con-
straint distribution on Q. Let X be a vector field on T*Q and 2 be the canonical symplectic
form on T*Q. Let D, be the induced Dirac structure on T*Q defined by equation (5.23).

Then, an implicit Hamiltonian system is the triple (H,Ag,X) that satisfies, for
each point z € T*Q,
(X(2),dH(z)) € Da,(2),

that is
(X,dH) € Da,,-

Definition 3.13. A solution curve of an implicit Hamiltonian system (H,Aq,X) is a
curve (q(t),p(t)), t1 <t <tg, in T*Q such that the curve (q(t),p(t)) is an integral curve of
X.

Proposition 3.14. Using local coordinates (q,p) for T*Q, it follows from the condition
(X,dH) € Da,, that the local expression for an implicit Hamiltonian system is given by

OH oH
=2 2 e A° 41
=5 € Ag), p+ 94 € A°(q), (3.41)

where the distribution Ag is locally denoted by A(g) C R™ at each g € U C R™.

Proof. Recall the local expression for the canonical symplectic form is given by

Q ((Qap7 ulaal)a (Q7pa u27a2)) = <O[2,’LL1> - <O[1,U2> ’

and the condition for an implicit Hamiltonian system (H,Ag,X) is given by, for each
(¢.p) € T7Q,
(X(q,p),dH(q,p)) € Dag(q,p)-

Using local expressions X (q,p) = (¢,p) and dH(q,p) = (0H/dq, 0H/0p), it follows that

(5 50) + (5kop) = om.d) — 550

for all g € A(g), for all dp, and with ¢ € A(g). Thus, we obtain equation (3.41). |

Notice that equation (3.41) is the local expression for an implicit Hamiltonian sys-
tem.
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The Hamilton-d’Alembert Principle in Phase Space. We now show how to obtain
an tmplicit Hamiltonian system in the context of a generalization of Hamilton’s phase space
principle that we refer to as the Hamilton-d’Alembert principle in phase space.

The Hamilton-d’Alembert principle in phase space for a curve (q(t),p(t)), t1 <
t <ty, in T*(Q is given by

ta

5 [ Ap(t)-4(t) — H(q(t),p(t))} dt =0, (3.42)

ty

and with ¢(¢) € A(q(t)). The variation of the left-hand side in equation (3.42) is locally
given, keeping the endpoints of ¢(t) fixed, by

5 / " () - () — H(g(t), p(t)} dt

b2 8H> ( 8H> }
= i——— ) op+|(—p—==)dqy dt,
/t 1 { (q ap P P 34 q

where we choose a variation dq(t) of curves ¢(¢) such that dq(t) € A(g(t)).

Note that in the case of regular Lagrangians, if one starts with the Lagrange-d’Alembert-
Pontryagin principle, and optimizes first over v, then one arrives at the Hamilton-d’Alembert
principle in phase space.

(3.43)

Proposition 3.15. The Hamilton-d’Alembert principle in phase space for a curve (q(t),p(t)),
t1 <t <tg, in T*Q gives the implicit Hamiltonian systems in equation (3.41).

Proof. From equation (3.43), the Hamilton-d’Alembert principle in phase space is equiva-

lent to oH 5H
i——— ) ép+(-p——-=)bg=0
(q 310) p+<p 3Q> I

for all 5q € A(q), for all ép, and with ¢ € A(g). Thus, we obtain equation (3.41). [ |

Coordinate Representation. Suppose that the dimension of A(g) is n — m at each
point g. Let A°(q) be the annihilator of A(q) spanned by m one-forms w!,...,w™, and it
follows that equation (3.41) can be represented, in coordinates, by employing the Lagrange

multipliers pg, a = 1,...,m such that

(2)=C% ) (5 ) (),

OH
0=w;(q) ap;’

where we use the local expression w® = wj' dg*.

Constraint Distributions. Let Ag C T'Q be a constraint distribution on ). Define the
distribution on T*@Q by
Ar-q = (T1Q) ' (Ag) C TT*Q,

where 1o : T*Q — Q and Tmg : TT*Q — TQ. Let P be defined by the image of Ag under
the Legendre transformation FL : TQ — T*@Q, that is, P = FL(Ag) C T*Q and let Ap be
the restriction of Ap«g to P such that

Ap = AT*Q NTP C TT*Q,
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where we assume Ap is a regular distribution on P. Define the distribution on T7*Q by
7= (TTI'Q o TTT*Q)il(AQ) C T(TT*Q),

where Tpp-g : T(TT*Q) — TT*Q and hence T'mg o rpr+g : T(TT*Q) — T'Q. Let J be the
restriction of Z to Ap such that

J =INTAp C T(TT*Q),

where J is assumed to be a regular distribution on Ap.

Intrinsic Implicit Hamiltonian Systems. Let us see how the intrinsic implicit Hamil-
tonian system is related to the Hamilton-d’Alembert principle in phase space.

Proposition 3.16. The Hamilton-d’Alembert principle in phase space for a curve z(t) =
(q(t),p(t)), t1 <t < tg, in T*Q is intrinsically represented, keeping the endpoints of q(t)
fixed, by

5 / () - 4(t) — H(q(),p(1)} dt

=5 [ (Clorrae. 1) ~ HOro(=,2) di )

to
= | {x(2,2) = (7r+¢)"dH(2, %)} - wdt
t1
=0
for a chosen variation w = (q,p, 4, p, 0q,0p,0¢,0p) € J(2,2) C T, »(TT*Q).

Then, the intrinsic Hamilton-d’Alembert principle in phase space is equivalent to the
equations

X(z,2) - w = (tp+q)*"dH(z,2) - w (3.45)
for all variations w € J(z, 2).

Proof. From equation (3.36), it is apparent that equation (3.44) is the intrinsic expression
of the Hamilton-d’Alembert principle in phase space. Thus, we obtain equation (3.45). W

Proposition 3.17. Let z(t), t; <t < ta, be the integral curve of a vector field X on T*Q.
If 2(t) is a solution curve of the Hamilton-d’Alembert principle, then it satisfies

V(X)) 0 = () AH(X(2)) - w (3.46)
for allw € J(X(z)).

Proof. Since z(t) is the integral curve of X, we have z = X(z). By substituting this into
equation (3.45), we can obtain equation (3.46). ]

Proposition 3.18. If a curve z(t) = (q(t),p(t)), t1 < t < to is an integral curve of the
vector field X associated with equation (3.46), then, it satisfies the condition of an implicit
Hamiltonian system (H,Ag, X), namely,

(X(2(t)), dH(2(t))) € Dag (2(1)), (3.47)

where Da, (2) is the induced Dirac structure on T*Q.
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Proof. It is logically obvious that the above proposition holds; however, we shall prove this
by direct computations in coordinates.

Recall that the one-form y is defined, by using the map Q° : TT*Q — T*T*Q, such that
X = (2°)*Or.r-@, and the left-hand side of equation (3.46) can be restated as, for each

z=(q,p) € T*Q,
X(X(2)) - w = () Or-1+0(X(2)) - w
— O (@ (X(2)) - TR (w)
= —pdq+ ¢op (3.48)
for all w = (q,p, ¢, p,8q,0p,0¢,0p) € J(X(2)), where X(2) = (¢,p,4,p), ¥ (X(2)) =

(q,p,—p,q) and TQ*(w) = (¢, p, —p, 4, 6q, op, —0p, 3¢). Recall also that the canonical one-
form ©p«7-g on T*T*Q is defined by

Or-1-q(a) -V = (a, Trr-q(V))
for all € T*T*Q and V € T, (T*T*Q). So, it follows
Or-1Q((X(2))) - T (w) = V(X (2)) - Trr- (T (w))
= —pdq+ qop, (3.49)
where one can easily check
Trp-q(TQ (w)) = (Trr- o TX) (4, p, 4, b, 64, 6p, 4, 6p)
= TT(-T*Q(qJQa _pa Q; 5(17 5]7, _6p7 5(1)
= (¢,p,6q, dp).
From equations (3.48) and (3.49), it reads
X(X(2)) - w = (X (2)) - Trre(TX (w)). (3.50)
On the other hand, the right-hand side of equation (3.46) is locally expressed by

(17+@) "dH (X (2)) - w = dH (17- (X (2))) - Tx(2) (1) ()

OH OH
= — —0p. .51
aq6q+ 8p(5p (3.51)

Noting the identity
T(TT*Q) = TWT*Q o TQb,

we can set
u = Tx () (Tr-qQ)(w)
= Trpeg o TQ (w) (3.52)
= (q,p, 0q,0p).

From equations (3.50) to (3.52), an integral curve z(t) = (¢(t),p(t)), t1 <t < tg, of the
vector field X on T*(Q satisfies

(X (2(1))) - ult) = dH (2(1)) - u(t)

for all u(t) = (d¢(t),dp(t)) € Ar«g(2(t)). This equation indicates the condition for an
implicit Hamiltonian system (H,Aq, X) associated with the induced Dirac structure Da,,

on T*(@), namely,
(X, dH) S DAQ-
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Thus, we shall call equation (3.46) the intrinsic implicit Hamiltonian system.

We can summarize the obtained results in the following theorem:

Theorem 3.19. Let H be a hyperregular Hamiltonian on T*Q and Ag be a given distri-
bution on Q. Denote by X a vector field on T*Q. Let z(t) = (q(t),p(t)), t1 < t < ta, be a
curve in T*Q. The following statements are equivalent:

(a) z(t) satisfies the Hamilton-d’Alembert principle in phase space in equation (3.44);

(b) z(¢) is a solution curve of the intrinsic implicit Hamiltonian system, which is repre-
sented by equation (3.46);

(c) z(t) satisfies the condition of an implicit Hamiltonian system (H,Aqg,X), which is
given by equation (3.47).

4 Nonholonomic Systems with External Forces

In this section, we demonstrate that nonholonomic mechanical systems with external forces
can be naturally incorporated into the context of implicit Lagrangian systems by employing
the Lagrange-d’Alembert-Pontryagin principle. Needless to say, nonholonomic mechanical
systems have been widely investigated from the viewpoint of geometric mechanics in con-
junction with the analysis of stability and control problems (see, for instance, Zenkov, Bloch,
and Marsden [1998]; Bloch [2003]). In particular, what is developed in this section will be
quite useful in the analysis of interconnected systems, and are also relevant to controlled
Lagrangian systems (see Bloch, Leonard, and Marsden [2000]; Bloch, Chang, Leonard, and
Marsden [2001]).

External Force Fields. Consider a mechanical system with an external force field and
let @ be a configuration manifold. Let mg : T*Q — @ be the cotangent projection. Recall
that an external force field F' : TQQ — T*Q is a fiber-preserving map over the identity,
which induces the horizontal one-form F’ on T*(Q as

F'(z) - u= (F(v), T.mq(u),

where z € T/ Q, v € TyQ and u € T.T*Q. Further, using the projection pry.q : TQ®T*Q —

T*@Q, the horizontal one-form F’ on T*@Q can be lifted as the horizontal one-form F on
TQ & T*Q such that, for x € TQ ® T*Q,

F(z)- W = F'(pry. (@) - Toprpe (W),

where W € T,(TQ & T*Q).

The Lagrange-d’Alembert-Pontryagin Principle. Consider kinematic constraints that
are given by a constraint distribution Ag on @, which is locally represented by A(g) C R”
at each ¢ € U C R™. We assume the dimension of A(g) is n — m at each point ¢ and let
A°(q) be the annihilator of A(q) spanned by m one-forms w?, ..., w™.

Recall that the motion of the mechanical system c : [t1, t2] — @ is said to be constrained
if ¢(t) € Ag(e(t)) for all t, t1 <t < ty. Further, the distribution Ag is not involutive in
general; that is, [X(q), Y (¢)] ¢ A(g) for any two vector fields X, Y on @ with values in Ag.

Let L be a (possibly degenerate) Lagrangian on T'Q) and let F' : TQ — T*(Q be an external
force field. The Lagrange-d’Alembert-Pontryagin principle for a curve (q(t), v(t), p(t)), t1 <
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t <to,in TQ ®T*(Q is represented by

t1

5[”{u«wwu»+p@-@@»—mw»dv+/2F@axmor6«wﬁ

=5 [0 0 - Ba®.00.00) de+ [ Fao.00) saar Y

tl tl

=0

for a given variation dq(t) € A(g(t)) and with the constraint v(t) € A(q(t)). Keeping the
endpoints of ¢(t) fixed, we have

to

d t {L(g,v) +p-(¢d—v)}dt

t1

:/tltz{(gj-p)éq—k<g§—p>5v+(tj—v)5p}dt.

Hence, the Lagrange-d’Alembert-Pontryagin principle is represented by

2 (/0L oL t2
/ {(—p’) dq + (—p) §v+((j—v)§p} dt + F(q,v)dqdt =0 (4.2)
t1 8(1 a'U th

for a chosen variation dq(t) € A(q(t)), for all jv(t) and dp(t), and with v(t) € A(q(t)).

Proposition 4.1. The Lagrange-d’Alembert- Pontryagin principle gives the local expression
of equations of motion for nonholonomic mechanical systems with external forces such that

oL oL

i=veA), p- - Flav)er (), p="S"

> (4.3)

Proof. From equation (4.2), it reads
oL oL
<8q P+ (q,v))éq—&-(av p)&H—(q v) op = 0,

which is satisfied for a given variation dq(t) € A(q(t)), for all dv(t) and dp(t), and with the
constraint v(t) € A(q(t)). Thus, we obtain equation (4.3). |

Coordinate Representation. Recall the one-forms w?,...,w™ span a basis of the anni-
hilator A°(q) at each ¢ € U C R", and it follows that equation (4.3) can be represented, in
coordinates, by employing the Lagrange multipliers p,, a = 1, ..., m, as follows:

(- (L) )

_ oL
pi= 55 |
0 =wi(q)v",

where we employ the local expression w?® = w¢ dg'.
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Intrinsic Formulation. Denote by Ag C T'Q a constraint distribution. Let K C TQ &
T*@ be the submanifold defined in equation (3.14) and G C TT(TQ & T*Q) be the regular
distribution defined by equation (3.15). Let F': TQ — T*@ be an external force field and F
on TQ & T*Q be the horizontal one-form. The Lagrange-d’Alembert-Pontryagin principle
for a curve z(t) = (¢(t),v(t),p(t)) in TQ & T*Q is intrinsically represented by
to to
6 t {L(q(t),v(t)) +p(t) - (4(t) —v(t))} di + /t F(q(t),v(t)) - 6q(t) dt
1 1
to

=6 [ A{p(®)-q(t) = E(q(t),v(t),p(t))} dt + / 2 F(q(t),v(t)) - 6q(t) dt

t1 tl

= 5/t 2{G(pTT*Q o Tpry.g(x(t), 4(t))) — E(trQer-q(x(t), j:(t)))} dt
i / F(rrour-a(a(t).#1) - Trrger-o(w(®)) dt (44)

= / 2{(TprT*Q)*X(fE(t),i“(t)) — (Trqer+Q) dE(x(t), () } - w(t) dt

+/t 2 (Troer-q)" F(x(t), #(t)) - w(t) dt
=0,

which is satisfied for all variations w = (q,v,p,q,v,p, dq,0v,dp,dq,00,0p) € G(x,&) C
T2,s)T(TQ © T*Q) and with the endpoints of ¢(t) fixed. Using the projections prg :
TQ®T*Q — Q and mrger-g : T(TQ & T*Q) — TQ & T*Q with their tangent maps, it
follows that (T'prg o Trrer-q)(w) = (¢,dq) € Aq.

Proposition 4.2. The Lagrange-d’Alembert-Pontryagin principle in equation (4.4) for a
curve z(t) in TQ®T*Q induces the intrinsic Lagrange-d’Alembert- Pontryagin equa-
tion with external forces as

(Torpg) x(a(t), #(t)) - w(t)
= (rrqur-q)" (AE( (), #(1)) — Fla(t), #(1))) - w(t) (45)
for all w(t) € G(x(t), (t)).

Proof. Recall that the variation of the Hamilton-Pontryagin integral is given in equation
(3.4) and recall also that the external force field F : TQ — T*Q induces the horizontal

one-form F on TQ & T*Q, and it is apparent that equation (4.4) is the intrinsic expression
for equation (4.1). Thus, we can obtain equation (4.5). ]

Proposition 4.3. Let X : TQ ®T*Q — TT*Q be a partial vector field on T*Q, and let X
be the vertical lift of X. If a curve x(t) = (q(t),v(t),p(t)), t1 <t <ty in TQO®T*Q satisfies

(Tprr @) X(X (@) - w(t) = (rrqer-q)* (AB(X (@(t) = F(X(@(1)))) - w(®),
or equivalently,
XX (2(0) - T () (Torr-) (w(1))
= (dB(@(t) = F(a(t)) - Tx (o (rroer-a)(w(®).  (46)
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for all variations w(t) € G(X (x(t))) such that (q(t),v(t),p(t)) is an integral curve of X,
then, it satisfies the intrinsic Lagrange-d’Alembert-Pontryagin equation with external forces
in equation (4.5).

Proof. We shall illustrate that equation (4.6) induces the Lagrange-d’Alembert-Pontryagin
equations with external forces in equation (4.5) by direct computations using local coordi-
nates.

Recall that the vertical lift of X (q,v,p) = (q,p,q,p) is represented, in local representa-
tion, by X(q,v,p) = (¢q,v,p,4,0,p), and also that the horizontal one-form F on TQ&T*Q is
defined by lifting the horizontal one-form F’ on T*@Q such that, for z = (¢,v,p) € TQ®T*Q,

(Trer@) F(X(x)) - w = Flrroaro(X(x)) - Ty, Treero(w)
=F (prT*Q(x)) . szrT*Q(TX(I)TTQQ}T*Q(w))

for all w = (q,v,p,q,0,p, dq, dv,d0p,84,0,dp) € Q()N((w)) In the above, the horizontal one-
form F’ is induced from the external force field F' : TQ — T*(Q, and it follows

F' (prp-q(x)) 'TacprT*Q(T)?(x)TTQ@T*Q(w))
= (Forro(@)): Tyrye g 2)70(Tobrr- 0Ty o0 (w)) )

= <F<Q7 U), T(q,p)ﬂ-Q (qa D, 6q7 6p)>
= F(q,v)dq,

where (g, p) = prT*Q(x)a (q,v) = prTQ(I) and (q,p,dq,dp) = TxprT*Q(Tg(z)TTQ@T*Q(w))-
Therefore, one has
(Trqar@) F(X(2)) - w = F(rrqerq(X(x)) - Tg(mreerq(w)
= F'(q,v) g

and hence, in view of the proof of Proposition 3.6, the coordinate expression of equation
(4.6) may be given by

0L

N oL
_p6q+q6p_ <_6q_F(q7U)) 6Q+( _8v> 6U+’U5p

Then, it follows that
oL . oL .
<8q —p+F(q,v)) oq + <8v —p) v+ (¢g—v)dp=0

is satisfied for a given variation dq(t) € A(q(¢)), for all dv(t) and dp(t), and with the
constraint v(t) € A(q(t)).

Thus, we can obtain equation (4.3), which is the local expression of the intrinsic Lagrange-
d’Alembert-Pontryagin equations with external forces in equation (4.5). ]

Proposition 4.4. If a curve z(t) = (q(t),v(t),p(t)) is solution curve of equation (4.6),
then, it satisfies the condition of an implicit Lagrangian system for nonholonomic systems
with external forces (L, F, Ag, X) such that, for each (q(t),v(t)) € Ag(q(t)),

(X(q(t), v(t), (1)), DL(q(t), v(t)) — 7 F(q(t),v(t))) € Dag (q(t), p(t)), (4.7)

where (q(t),p(t)) = FL(q(t),v(t)) and (q(t),v(t),p(t)) is an integral curve of the partial
vector field X : TQ & T*Q — TT*Q and DL : TQ — T*T*Q is the Dirac differential of L,
7qQ : T7Q — Q and Da,, is the induced Dirac structure defined in equation (5.23).
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Proof. In view of Proposition 3.7, it suffices to check the terms of the external force field
in equations (4.6) and (4.7). As previously shown, the horizontal one-form F on TQ & T*Q
is induced from the external force field F': TQ) — T*(@ such that, for each x € TQ & T*Q,

(Treer@)"F (X (2)) - w = F(rrqer-q(X(x)) - Tg(mroerq(w)

= (F(orro(@)); Tyrye (270 (Tobr7- (T o0 (w))) )
=75 F(vg) -

for all w € G(X(z)), where vy = prrg(r) € Ag(g) and u = TmprT*Q(Tg(m)TTQ@T*Q(w)) €
Ar-q(prr-g(2)).

In combination with the proof of Proposition 3.7, it follows that a curve (g(t),v(t)),
t;1 <t <ty, in Ag satisfies

Qag (X (q(t), v(t), p(t)), u(t)) = (DL(q(t), v(t)) — gy Fla(t), v(1))) - u(t),

where (q(t),p(t)) = FL(q(t),v(t)), u(t) = (q(t), p(t),0q(t),0p(t)), and Qa,, is the restriction
of the canonical symplectic form €2 to Ap«g. This can be restated by the condition of an
implicit Lagrangian system (L, F', Ag, X); that is, for each v(t) € Ag(q(t)),

(X(q(®),v(t), p(t), DL(q(t), v(t)) — mg F(q(t),v(t))) € Dag(q(t), p(t)),

where p(t) = FL(q(t), v(t)) and (q(t),v(t), p(t)) is an integral curve of X. Thus, we can check
that a solution curve x(t) = (q(t),v(t),p(t)) of equation (4.6) satisfies the condition of an
implicit Lagrangian system for nonholonomic systems with external forces (L, F, Ag, X). N

Thus, it follows from Proposition 4.4 that equation (4.6) is the intrinsic expression of
an implicit Lagrangian system for nonholonomic systems with external forces, which we
shall call an intrinsic implicit Lagrangian system for nonholonomic systems with
external forces.

We can summarize the results obtained so far in the following theorem.

Theorem 4.5. Consider a Lagrangian L on TQ (possibly degenerate) and with a given
distribution Ag on Q. Let F': TQ — T*Q be an external force field. Let X : TQ @ T*Q —
TT*Q be a partial vector field on T*Q and let x(t) = (q(t),v(t),p(t)), t1 <t <ty be a curve
i TQ & T*Q. The following statements are equivalent:
(a) x(t) satisfies the Lagrange-d’Alembert-Pontryagin principle in equation (4.5);
(b) z(t) is a solution curve of the intrinsic implicit Lagrangian system, which is given by
equation (4.6);
(c) z(t) satisfies the condition of an implicit Lagrangian system for nonholonomic systems
with external forces (L, F,Ag, X), which is given in equation (4.7).

5 Implicit Constrained Lagrangian Systems
In this section, we investigate a constrained Dirac structure Dp on the constraint momentum

space P = FL(Ag) C T*Q by using an Ehresmann connection and we also develop an
implicit constrained Lagrangian system associated with Dp.
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Ehresmann Connections. We briefly review an Ehresmann connection associated with
nonholonomic mechanical systems; for details, refer to Koon and Marsden [1998] and Bloch
[2003].

Assume that there is a bundle structure with a projection 7 :  — R for our space Q;
that is, there exists another manifold R called the base. We call the kernel of T;m at any
point ¢ € Q the vertical space denoted by V.

Recall that an Ehresmann connection A is a vertical vector-valued one-form on ), which
satisfies

1. Ay : T,Q — V, is a linear map at each point p € @,
2. Ais a projection : A(v,y) = vy, for all v, € V.

Thus, we can split the tangent space at ¢ such that T,Q = H, ® Vy, where H, = Ker A, is
the horizontal space at q.

Let Ag C TQ be a constraint distribution, which is locally given by
Ag(q) ={v, € T,Q | (W vy) =0, a=1,...,m},

where w® are m independent one-forms that form the basis for the annihilator Ag, C T*Q.
Let us choose an Ehresmann connection A in such a way that H, = Ag(g). In other words,
we assume that the connection is chosen such that the constraints are written as A -v, = 0.

Using the bundle coordinates ¢ = (r,s) € R"™™ x R™, the coordinate representation of
7 is just projection onto the factor r, and the connection A can be locally expressed by a
vector-valued differential form w® as

0

A=wrl
Y 9sa’

w(q) =ds® + Al (r,s)dr*, a=1,..m; a=1,..,n—m.

Let

1o}
vg = u” ore +of 0s%

be an element of 7;,Q. Then,
w(vg) = w* + Au®

and

A(vg) = (w® + AGu)

Osa’

Horizontal Lift. Given an Ehresmann connection A, a point ¢ € @ and a vector v, € T, R
tangent to the base at a point r = m(q) € R, we can define the horizontal lift of v, to be
the unique vector v/ in H, that projects to v, under T,r. If we have a vector X, € T,Q,
we shall write its vertical part as

ver X, = A(q) - X,
and we shall also write its horizontal part as
hor X, = X, — A(q) - X,.

In coordinates, the vertical projection is the map (u®,w®) — (0,w® + A%u®), while the
horizontal projection is the map (u®,w®) — (u®, —A%u®).
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The Lagrange-d’Alembert-Pontryagin Principle. Let L be a (possibly degenerate)
Lagrangian on T'Q). Define a generalized energy E by E(q,v,p) = p-v — L(q,v) using
local coordinates (g, v,p) for TQ @ T*Q. Recall that the Lagrange-d’Alembert-Pontryagin
principle is given by

to

d t {L(g,v) +p-(¢d—v)} dt

=4 {p-q¢—E(q,v,p)} dt

t1

Bpror N\, (9L o
_/m {<aqi_pi> 00" + (avz‘ _pi> 6v* + (4 —U)(Spi}dt

=0

for chosen variations dq*(t) € Aq(q(t)), with the endpoints of g(t) fixed and with the
constraint w*(q)-v, = 0. Hence, the Lagrange-d’ Alembert-Pontryagin principle is equivalent
to the equation

OL , OL . ‘ .
[ .i 5 2 - — 5 X3 3t X3 6 i — ,
(6(11 p> q+(avl p> v'+ (¢ —v")dp; =0
for all §¢°(t) € Ag(q(t)) that satisfy, in coordinates ¢* = (r®, s%),
05 + Ag, or* =0,

where the distribution Ag is denoted, in coordinates, by

0 . 0
AQ—span{ara—Aa 83“}'

Since the kinematic constraints are given by w?(q) - v, = w® + A%u® = 0, the Lagrange-
d’Alembert-Pontryagin principle may be restated by

W (0L . oL o oL o
(ot () = (35 -0 o+ ()

oL
+ ( — pa> dw® 4+ (7Y —u®) dpa + (8% —w?*) dp, =0

ow?

for all 7 and for all 6v* = (6u®, sw?) and dp; = (dpa, dps). Then, equations of motion are
given, in coordinates, by

T,Oé — ua’
ST (5.1)
R Y )’
pa 67“0‘ - (6% pa 33‘1 bl
and with the Legendre transformation
oL oL
v = —, .= —. 5.2
p ou® p ow® (5.2)

Note that equations of motion in equations (5.1) and the Legendre transformation in
equation (5.2) are to be combined with the kinematic constraints

w® = —AS u®. (5.3)
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The Constrained Lagrangian. Define the constrained Lagrangian L. on Ag C T'Q by
L.(q,v) = L(q,horv) for (¢,v) € TQ. By substituting equation (5.3) into the Lagrangian L
on T'Q), we can obtain, in local coordinates,

LC(Tavsav ua) = L(,,,a’sa’ uav —AZ(’/‘, S)UQ)

and define
- OL.
Pa =
ou®
_L .0 o)
T Que * Qwe’

which is equivalent with
Pa = Pa — AZ Pa

in view of equation (5.2). By computations, it follows that

oL, OL  OL (aAg 5)

ore — gre Juwa \ Ire

0A%
_aL_pa< ﬁuﬂ>a

ore ore
OL. OL OL (aA% 6)

0s? st Owe \ 9s°

oL AL 4
- 0s _pa<8s“u )

Substituting equations (5.4) and (5.5) into equation (5.1) together with the kinematic con-
straints in equation (5.3), we can eventually obtain the implicit Lagrange-d’Alembert
equations of motion for the constrained Lagrangian L. as

7Y = u®,

§% = —Aj uP,

~  OL. p» OLc b (5.6)
Pa = Gra agsb ~ Poasts

0L

Po= 5

where

(o3
orB  fra @ Psa B 9ga
is the curvature of the Ehresmann connection A.

b 9AL 0AY b
Kgﬁ _ aAa B a B Al 0A

Remarks. The curvature of the Ehresmann connection A is the vertical valued two-form
on () defined by its action on two vector fields Y and Z on @ such that

K(Y,Z) = —A([horY, horZ]),

where the bracket on the right-hand side is the Jacobi-Lie bracket of vector fields.

Recall the identity for the exterior derivative da of a one-form « on a manifold @ acting
on two vector fields Y, Z is

(do)[Y, 2] = Y([(a(2)] = Z[a(Y)] = Y Z]).
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This identity indicates that one can evaluate, in coordinates, the curvature by writing the
connection as a one-form w® by computing its exterior derivative (component by component)
and restricting the result to horizontal vectors, that is, to the constraint distribution. Then,
one has

K(Y,Z) = dw’(horY, horZ)%7
S

where the local expression for the curvature is denoted by

K'Y, Z)= Kb,y zP.

Proposition 5.1. Let dw® be the exterior derivative of w®. The Lagrange-d’Alembert-
Pontryagin principle for the constrained Lagrangian L. may be written as

5{Lc(ro‘, s u®) + po (¢ — uo‘)} = dwb(v,ér), (5.7)

which provides the equations of motion in equation (5.6).

Proof. The left-hand side of equation (5.7) is

a La S (L _ aLC_ aaLC_;V @
5{LC(T 8%, u%) + pa (7 —u )}_{87““ A% e pa}&“

+ (G = ) 6 4 5 = w7

while the direct computation using properties of differential forms shows that
dwb(v,-) = Kgﬁ u® dre,

It follows that

Lf LC ~ Lc ~ . ~
{8 - — A2 9 - —pa} ore + (8 —pa> U+ (1 — u*)dpy

ore 0s ou”

for all 7%, du® and dp,. Combining with the kinematic constraints, we obtain equation
(5.6). |

Remarks. The constrained energy E. may be defined by
Eo(r, s, u%, pa) = pa u® — Le(r®, s, u®)

and then, the Lagrange-d’Alembert-Pontryagin principle in equation (5.7) can be restated
as the equivalent form

6{ﬁa 7 — E.(rv, s, uo‘,ﬁa)} =y dwb(v, or).

Restriction of a Dirac Structure. Before going into the construction of a constrained
Dirac structure, we briefly discuss the restriction of a Dirac structure on a manifold to its
submanifold.

Let M be a manifold and let N be a submanifold of M. Recall the definition of a
Dirac structure on a manifold M; that is, a subbundle Dy, C TM & T* M is called a Dirac
structure if for every fiber Dys(z) C T M x T:M, x € M, one has Dy (x) = Di;(z), where

Dj‘J(x) ={(vg,az) € TeM X TiM | (Qg, vg) + {0, T) = 0, for all (0, &) € Dar(x)}.
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Now, let Dj; be a Dirac structure on M. Define amap o : TN X T*M — TN X T*N as
follows: For each y € N, let o(y) : TyN x Ty M — T, N x Ty N be defined by

a(y)(vy, ay) = (vy, ay|TyN),

where v, € TyN, o, € T7M, and ay|TyN denotes the restriction of the covector ay, to the
subspace T, IN. This map o is a vector bundle projection.

Assume that Dy (y) N (T, N x T;; M) has constant dimension for each y € N, namely, it
is a vector subbundle of TN x T*M. Define the subbundle Dy C TN & T*N by, for each
y €N,

Dy (y) = o(y) (Dae(y) 0 (T,N x T; M)).

Proposition 5.2. The subbundle Dy CTN @ T*N is a Dirac structure on N.

Proof. Let us check Dy (y) = Dx(y) for each y € N. It is obvious that Dy (y) C Dy (y) for
y € N. Then, let us check Dy (y) C Dn(y) for y € N. Suppose that (wy, 3,) € D (y) C
TyN x TyN. So, we have (ay,w,) + (8,,vy) = 0 for all (v,,a,) € Dn(y). Then, there
exists a; € T,y M such that (vy,ay) = o(y)(vy, ) € Dn(y), where (v, a;) € Dy(y) and
oy | TyN = a,. Therefore, we have (ay,wy) + (By,vy) = <a’y,wy> + <ﬁ;,vy> = 0 for all
(vy, ) € Dr(y), where 3, is an arbitrary extension of 3, to T, M and v, € T, N. Hence,
one obtains

1
(wy, B) € (Dar(y) N (T,N x T;M)) " = Dii(y) + (T,N x T; M)*
=Du(y) + ({0} x T,N®).

Then, there exists v, € T, N° C T, M such that (w,, 3, +7,) € D (y). Noting o(y)(wy, B, +
vy) = (wy, (B, + ) | TyN) = (wy, By) € Dn(y), it follows Dy(y) C Dn(y) fory e N. W
We call the Dirac structure Dy the restriction of a Dirac structure Dy; to N.
Remarks. Proposition 5.2 was originally developed by Courant [1990a]; we follow the

exposition in Blankenstein and Ratiu [2004].

Proposition 5.3. Let Dy be constructed as in Proposition 5.2 and let v : N — M denote
the inclusion map. Then, (w, ) is a local section of Dy if and only if there exists a local
section (v,a) of Dps such that Trow = vor and t*a = 3. In other words, a Dirac structure
Dy on N is represented by, for each y € N,

Dn(y) = {(wy, By) € TyN x Ty N | thereis a (Vu(y)s u(y)) € Dar(e(y))

such that Trow =vo: and *a = §}.

Proof. As demonstrated in Part I, given a distribution A; on M and a two-form §2 on M,
there exists a Dirac structure Dy C TM @ T*M on a manifold M, whose fiber is defined
by, for each x € M,

Dy(x) = {(vgy ) € Ty M x Ti M | v, € Apg(x) and
a (V) = Qa,, () (vg,v)) for all v, € Ap(z)},

where QAM =0 |AM><AM'
Define a distribution Ay on N by restricting Ay; to N such that

Ay =TNnN Ay,
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where we assume Ay to be a regular distribution. By construction, we can define the
restricted Dirac structure Dy on N such that, for each y € N,

D (y) = o(y) (Dar(u(w)) N (TyN x Ty, M)
= {(wy, By) € T,N x TN | w, € An(y) and
By(wy,) = Qay (y) (wy, wy) for all wy, € An(y)},
where = t*a, Qay =" Qa,,, Tt-w=vorand Tt -w =2 o ]

Constrained Dirac Structures. Let L be a Lagrangian on 7'Q and Ag C T'Q a con-
straint distribution. Let mg : T*Q — @ be the cotangent projection. Recall that an induced
Dirac structure Da, on T*Q is defined such that, for each 2 € T*Q,

Dag(2) = {(ve, o) € T T*QXTT*Q | v, € Ap-q(2) and
o (v)) = Qa, (2)(vz,v)) for all v, € Ap-g(2)},
where Ap.q = (Trg) ' (Ag) and Q4a,, is the restriction of the canonical symplectic struc-
ture Q on T Q to Ar«q.
Our initial goal is to define a Dirac structure on the constraint momentum space P =
FL(Ag) C T*Q. To do this purpose, we define a regular distribution on P by restricting

Ar+«g to P such that
Ap=TPnN ATxQ.

Letting ¢ : P — T*(@Q be the inclusion, we can define a constrained Dirac structure on
P =FL(Ag) C T*Q by the subbundle Dp C TP & T*P, whose fiber is given such that, for
each y € P,
Dp(y) = {(wy, By) € TyP x T, P | wy, € Ap(y) and
By(wy) = Qap (y)(wy, w)) for all wy, € Ap(y)},

where § = t*a, Qa, = " Qag, Te-w =vorand Te-w' = v' o1 It goes without saying
that Dp is the restriction of the induced Dirac structure Da,.

It is obvious that the constrained Dirac structure Dp may be restated as follows: for
each y € P,

Dp(y) = {(vy, ) € TyP x T/ P [ vy € Ap(y) and
b o
ay — Qp(y) -vy € Ap(y)},

where A% is the annihilator of Ap and Q% : TP — T*P is the bundle map associated with
the skew-symmetric bilinear form Qp = Q|rpxrp.

We can also construct the constrained Dirac structure by employing the canonical Poisson
structure. Recall that the canonical Poisson tensor B : T*T*Q x T*T*@Q — R is defined by,
for any smooth function F,G on T*Q),

B(dF,dG) = Q(Xp, Xg)
= (dF, B'dG)
= {F,G},

where X and X are vector fields on T*Q, BY : T*T*Q — TT*(Q is the associated bundle
map, and {, } is the Poisson bracket. Further, B?D : T* P — TP is the associated bundle map
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of the contravariant antisymmetric two-tensor Bp = Blp«pxp-p. Let A} = QED(A p) C
T*P be the codistribution and (A%)° be its annihilator, and then the constrained Dirac
structure on P is defined by, for each y € P,

Dp(y) = {(vy,ay) € T,P x T; P | a, € A}p(y) and
vy — Bh(y) oy € (Ap)°()}- (5.8)

A Local Representation Using an Ehresmann Connection. Let us construct a local
representation of a constrained Dirac structure using an Ehresmann connection to represent
the set Dp given in (5.8). Needless to say, T*Q is naturally equipped with the canonical
Poisson bracket {, } or the Poisson structure B : T*T*Q x T*T*@Q — R such that, for each
(¢.p) € T°Q,

{F,G}(q,p) = B(q,p)(dF(q,p),dG(q,p))
= (dF(q,p), B*(q,p) dG(q,p)) -

In the above, F,G are smooth functions on 7*@Q and the canonical Poisson bracket is
represented, in local coordinates (¢*, p;) for T*Q, by

OFT QFT oo
= ﬁ 4q
{F.G}(q:p): ( o7 )B (¢,p) ( o |

Op;

where
s - (o) B )= (5 0

As previously illustrated, we choose an Ehresmann connection A such that H, = Ag(q),
where the constraint distribution Ag is spanned by a set of m independent one-forms, which
is given, in local coordinates ¢* = (r®, s%) for @, by

w® =ds* + A%(r, s)dr®.

Define the new coordinates (¢, p;) = (r%,s%, Pa,Pa) for T*Q, as in van der Schaft and
Maschke [1994] and Koon and Marsden [1998], by

a

ﬁa = Pa — Aapay

with some choice of complementary coordinates p,. We then employ the induced coordinates
(¢", Pa) = (r, 5%, pa) for P.

In this context, the bundle map Bjﬁ; : T*P — TP associated with Bp = Blp«pxr+p
can be constructed, using local coordinates (q*, Py ) for P, by computing {¢*,¢’}, {¢*, Pa},
{Pa,Pp}; one finds that

{qlaqj} = Oa {rﬁaﬁ(x} = 61[;7 {Sb7ﬁa} = _Agu {ﬁaaﬁﬁ} = - gﬁpb

Hence, it follows that

0 0 59
Bh(g;p)=| 0 0 —Az |, (5.9)
-85 (AT —mKl,
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where 0F is Kronecker’s delta and Blﬁg(q, D) is the (2n — m) x (2n — m) truncated matrix

representation of the bundle map ng :T*P — TP, for each (¢*, p,) € P. This bundle map
defines the bracket {, } p on the constrained submanifold P such that

dq" " Opa

e
{Fp,Gp}p(q,p) := <8Fg aa@) Bg:(%@ ( 08(;1; > (5.10)

OPa
for smooth functions Fp,Gp on P.

Thus, we can construct the constrained Dirac structure Dp in the form of (5.8).

Remarks. In equation (5.9), notice that the curvature K 5 measures the failure of the
constraint distribution to be an integrable bundle and then, after restricting all terms to P,
the term —py Kgg should be understood as —(pp) p Kgﬂ. However, we write it as —py Kgﬁ

for simplicity. Needless to say, p, = OL/0w® holds and the Poisson bracket {, } p in equation
(5.10) does not satisfy the Jacobi identity when the distribution is nonholonomic.

The Constrained Partial Vector Field. Let Ag C T'Q) be a constraint distribution
and P = FL(Ag) C T*Q. Let V be the vector subbundle of Tp(T*(Q) defined, for each
peTyQ, by

Vier) = {vert(n,p) Ine AE)(Q)} .

In the above, Tp(T*Q) is the restriction of the tangent bundle of T(T*Q) to the constraint
momentum space P and vert(n, p) is the vertical lift of n € T;Q with respect to p € T;Q7
which is described in coordinates as

vert(n, p) = (q,p,0,n).

Marle [1998] shows that the vector subbundle Tp(T*Q) is a direct sum of the vector sub-
bundles TP and V:
Tp(T*Q)=TPa V.

In this context, the restriction of a partial vector field X : TQ & T*Q — TT*Q on T*(Q to
the subbundle Ag @ P C TQ © T*Q, that is, X|a,qp splits into a sum

X|ager = Xp + Xv, (5.11)

where Xp : Ag @ P — TP is the constrained partial vector field on the constraint
momentum space P that is tangent to P and Xy is a smooth section of the subbundle V,
whose negative is called the constraint force field.

In conjunction with the above construction, refer also to Bloch [2003], §5.8.

Implicit Constrained Lagrangian Systems. We now develop the notion of an implicit
constrained Lagrangian system in the context of the constrained Dirac structure.

Let L : TQ) — R be a Lagrangian and let Ag C T'Q be a constraint distribution. The
constraint momentum space P C T*Q is defined as P = FL(Ag). Let L. be the constrained
Lagrangian on Ag defined by L. = L|Ag. Let Dp be the constrained Dirac structure
defined by the restriction of the induced Dirac structure Da, on T%Q to P. Denote by
X:TQo®T*Q — TT*Q a partial vector field on 7@, and denote by Xp : Ag ® P — TP
the constrained partial vector field on P given in equation (5.11).
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Definition 5.4. Recall that the Dirac differential of L can be regarded as a function on
Trru)(T*Q) for each u € Ag(q) such that D L(u) : Trrw)(T*Q) — R, and let us define the
Dirac differential of the constrained Lagrangian by, for each u € Ag(q),

DL.(u) = DL(u)|TP,

where DLc(u) : Trr,, ()P — R.

Then, an tmplicit constrained Lagrangian system is a triple (L., Ag, Xp), which
satisfies the condition, for each u € Ag(q),

(XP(%U’@’@LC(%U)) € DP(Qvﬁ)7 (5'12)

where py = FL.(q,u) is the partial Legendre transformation.

Remarks. As shown below, the coordinate expression for L., in fact, depends only on
derivatives of L.

Coordinate Representation. Suppose that the constraint distribution Aq is denoted
by, in coordinates ¢ = (r%, s%) for @, by

w(q) =ds® + Al (r,s)dr®, a=1,...m; a=1,..,n—m,

where w® indicate m-independent one-forms that consist of the basis of the annihilator of
Ag and an Ehresmann connection A is chosen such that H, = Ag(q). The constrained
Lagrangian L. = L|Ag is given, in coordinates, by

and it follows that

ar. - <ra,sa . 0L, 0L, 6Lc>

u
U7 9ra’ 9sa’ Que

Hence, we obtain the Dirac differential of L. as

oL oL oL
— a a TTC c c e
DL, = (r , 8%, Suc’ e’ Baa’ ) (5.13)
and with
0L
Pa = ECh

Let Xp : Ag @ P — TP be the constrained partial vector field, which is denoted, by
using coordinates (g, u, p) = (r®, s%, u®, po) for Ag @ P, such that

XP(TaaSav ua7ﬁa) = (favs.av ﬁa) (514)

Recall that the skew-symmetric bundle map ng : T*P — TP can be constructed, by
using the Ehresmann connection associated with the constraints, as in equation (5.9), and
recall also that the constrained Dirac structure on P can be defined such that, for each

y=1(q,p) € P,
Dp(y) = {(wy, ay) € T, P x T;P | ay € Ab(y),

5.15
wy — Bh(y) ay € (A3)°(y) ). (>49)
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Since an implicit constrained Lagrangian system is a triple (L., Ag, Xp) that satisfies
the condition, for each u € Ag(q),

(XP(q7uam7 9LC(Q7U)) S DP(qamv

where p, = FL.(¢q,u) € P, it reads from equations (5.9) and (5.13)—(5.15) that the coordi-
nate expression of the implicit constrained Lagrangian system (L., Ag, Xp) may be given,
using coordinates (g, u, p) = (1, s%, u®, p,) for Ag & P, by

o 0 0 oF — 5
s l=10 0 —Ag — 9L (5.16)
Pa -85 (AT —py KL, uf

and with the partial Legendre transform p, = dL./0u®.

Needless to say, equation (5.16) is equivalent with the implicit Lagrange-d’Alembert
equation in (5.6).

Definition 5.5. A solution curve of the implicit constrained Lagrangian system (L., Ag,
Xp) is a curve (q(t),u(t),p(t)), t1 < t < ty such that pgy(t) = FLc(q(t),u(t)) and
(q(t),u(t),p(t)) is an integral curve in P of Xp, where u(t) € Ag(q(t)).

We can summarize the results so far in the following theorem.

Theorem 5.6. Consider a Lagrangian L (possibly degenerate) on TQ and with a constraint
distribution Ag on Q. Let P = FL(Ag) be the constraint momentum space. Let L. =
L|Ag be the constrained Lagrangian and Dp be the constrained Dirac structure on P.
Let Xp : Ag & P — TP be the constrained partial vector field on P. Denote by T(t) =
(q(t),u(t),p(t)), t1 <t < ta, a curve in Ag & P. Then, the following statements are
equivalent:

(a) Z(t) satisfies the implicit Lagrange-d’Alembert equations in equation (5.6);
(b) Z(t) is a solution curve of the Lagrange-d’Alembert-Pontryagin principle in equation
(5.7);

(c) Z(t) satisfies the condition of an implicit constrained Lagrangian system (Le, Ag, Xp)
in equation (5.12).

6 Examples

In this section, we demonstrate the implicit constrained Lagrangian system together with
two examples. Namely, we illustrate the same examples of a vertical rolling disk on a plane
and an L-C circuit as in Part I, for this purpose.

Example: The Vertical Rolling Disk. Consider a vertical rolling disk on the zy-plane.
Recall the configuration space of the system is denoted by Q@ = R? x S! x S!, whose
coordinates are given by ¢ = (x,y,0, ), where z,y indicate the position of the contact
point of the disk, 6 the rotation angle of the disk and ¢ the orientation of the disk. Recall
the Lagrangian is given by

1 1 1
L(x7y50a907vxavyvv(9,vcp) = §m(v§ + ’Uj) + 5[115 + iJvi
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In the above, m indicates the mass, and I and J the moment of inertia. Recall also the
constraints are given by the constraint distribution Ag C T'Q such that, for each g € @,

Ag(g) = {vg € T,Q | (w*(q),vq) =0, a=1,2},
where vy = (vg, vy, Vg, v,) and the one-forms w® are given by
w! =dx — R (cos @) db,
w? =dy — R (sing) db,

where R denotes radius of the disk.

Let us choose a bundle structure m :  — R such that the base R is to be S! x S!

parameterized by 6 and ¢ together with the projection to R, that is, (r!,r?s!,s?) =

0,0,2,y) — (r',r?) = (6,¢). Then, the Ehresmann connection can be constructed by

0 0

Y hsa

The components of the Ehresmann connection are given by

A w(q) = ds® + A% (r, s)dre.
Al = —R(cosp), A? = —R(siny)

and the remaining components are zero.

As in equation (5.9), the bundle map B?D :T*P — TP is locally denoted by

0 0 0 0 1 0
0 0 0 0 0 1
§ _ 0 0 0 0 R (cos p) 0
Bprs,p) = o 0 0 R(sing) 0 :
—1 0 | —R(cosy) —R(sinyp) 0 py K2y
0 -1 0 0 Kb, 0

and the components of the curvature K is given by
Ki,=—K;, = Rsing, Kj,=—K3 =—Rcosp.
Thus, the constrained Dirac structure Dp on P can be defined as in equation (5.15).

Meanwhile, the constrained Lagrangian L.(r%,s* u®) = L(r®,s®* u®, —A%(r,s)u®) is
given by

1 1
Lc(e,go,x,y,vg,v¢) = 5 (mR2 + I) ’Ug + iJvi,

where (r®,s% u®) = (0, ¢, x,y, vg,v,). Then, the differential of L. is locally expressed by

dL.(0, ¢, 7,y,vp,v,) = (aLC oL, OL. dL. 0L, BLC>

0 D Dx’ By Ow vy
- (0, 0,0, 0, (mR?+ 1) vp, JW)
and hence the Dirac differential of L, is locally denoted by
OL. OL. OL. OJL.
06 9 or oy’ ”9’”“’)
= (0,0,0,0, v, v,),

DLC(evsoaxayv v97U<p) = <
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and with the partial Legendre transform

0L, ,
= = I

Peo 8’09 (mR + )’Uav

~ oL,

Dy = o0, = Ju,.

Since (r%,s%, u®, pa) = (0,¢,2,y, vg,v,, Dy, P,) are local coordinates for Ag & P, the
constrained partial vector field Xp : Ag @ P — T'P is locally denoted by

XP(97§03‘Tay7 v97vtpaﬁ97ﬁtp) = (é,c,b,i,y, ﬁea’ﬁ@)'

Hence, we obtain the coordinate representation of the implicit constrained Lagrangian sys-
tem (L¢, Ag, Xp) such that

o 0 0 0 0 1 0 0

¥ 0 0 0 0 0 1 0

& | o o 0 0 R (cos p) 0 0

Y - 0 0 0 0 R (sinp) 0 o |’
Do —1 0 | —R(cosp) —R(sinyp) 0 o KYy "

kS 0 -1 0 0 —Dp KSI 0 o

pgp 'U‘P

where py = (mR2 + I) vg and p, = Jv,.
By computations, it follows that

Do =y Kip v,
= {mvz (Rsinp) —muy (Rcoscp)} Uy
= {m (Rcosy) (Rsinp) vy —m (Rsing) (Rcosp)vg} v,
=0,

P, =—po K5 ve
= {mfuac (Rsin ) — muv, (R cos cp)} vg
= {m (Rcosy) (Rsinp)vg —m (Rsinp) (Rcosp)vg} vy
=0,

where p, = (pg, py) are given by

oL
Pr = g, = Ms = mR(cosp) vy,
oL
Py = — =muvy, =m R (siny) vy.
Yy 6’Uy Y

Thus, we obtain the equations of motion in the context of implicit constrained Lagrangian
systems as

921}0) LP:UW 59:0, 54/;:07
Do = (mR2 —l—I) Vg, Dy = JUy.
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Example: L-C Circuits. Let us consider the same example of an L-C circuit as illus-
trated in Part I in the context of implicit constrained Lagrangian systems.

Recall that the configuration space E = R*, whose element denotes the charge ¢ and its
local coordinates are given by (qr,qcy,qc,,qcs) and recall also that the KCL constraints
form a constraint subspace called the constraint KCL space A C T'E, which is defined, for
each g € F/, by

Ay={feT,E|(w* f)=0,a=1,2}.

Note that f = (fr, fo, fo,, fos) € T4E denotes the current vector and w® indicate inde-
pendent covectors (or one-forms), which form the basis for the annihilator Ay C T E and
are given, in coordinates, by

wl = _qu + dq02a

w? = —dge, + dgo, — dgo,.

Therefore, the KCL constraints for currents f = (fr, fc,, fc,, fo,) € TyE are represented,
in coordinates, by

_fL+f02:O7
7fcl+fc27f03:0'

Choose a bundle structure 7 : E — R such that the base R is to be R? parameterized
by (r',72) = (qc,,qc,) together with the projection to R, that is,
(Tlv T27 517 52) = (q027 qcs,4qL, QCl) — (Tla TQ) = (qCQ7qC3)7

where we choose an Ehresmann connection in such a way that H, = A,. The connection

A is described, in local coordinates ¢ = (r!,r?, s, s?) = (qo,, 904,91, 90, ) for E =R* by a

vertical valued one-form w® such that

0
A:w“a—, w? =ds® + Aldr®, a=1,2, a=1,2,
Sll

where the components of A are locally represented by

e (-1 0
Aa_(l 1).

Therefore, the KCL constraints may be rewritten as
f=-A3 f%,

that is, in matrix representation,

fo\_ _ (-1 0\ (fe
fer -1 1) \Je,)~
As in Part I, recall that the Lagrangian £ on TFE is locally given by

1 1(gc,)*  1(gc,)®  1(gey)?
— 2L 2_ - 1 _ = 2 _ 3 .
L=3L{) ~3 Cy 2 O, 2 Cs

Hence, we have the equations of motion

oL oL
bo — 7o = Ao (Pa— )
Pa™ Gpa o (p 83“)
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which may be denoted, in matrix form, by

po, + 6 _(_1 _1> PL
P, + 5= 0 1) \pe,+)°

The flux linkages p = (pa,Pa) = (Pcys Py, PL, Py ) are defined by

ook
Pa=gra Pa= gro

and it reads
pc, =0, pcy =0, pr =L fr, pc, = 0.
Note that the constraint flux linkage space is defined by

P =FL(A) CT*E,

where the distribution A C T'FE is represented, in coordinates, by

0 . 0
A:span{(%a —Aaasa}.

Define the new coordinates (7%, s%, py, Da) for T*E such that

ﬁa = Pa *Ag‘pa

with some choice of complementary coordinates p,. Hence, we employ the induced coordi-
nates (r%,s% pa) = (4c,, 4C3, 4L+ 4Cy > POy Do) for P

The bundle map Bﬁ: : T*P — TP associated with the constrained Poisson struc-
ture Bp on P can be constructed by computing {q’,¢’} = 0, {r?,pa} = 0%, {s°, 00} =
—AZ, {Pa, D3} = 0 such that

0o 0 43
Bh(e.pa)=| 0 0  —Aj
=y (AT 0

Since the KCL constraints are holonomic, the curvature K z s of the Ehresmann connection

A does not appear in Blu)(q, Do), and it immediately reads that the Jacobi identity holds.

As previously mentioned, the set of B}ﬁD and A% defines the Dirac structure Dp C
TP @ T*P on P, whose fiber is given, for each y € P, by

Dp(y) = {(vy, ay) € T, P x ,pr | oy € Ap(y)
and v, — B} (y) ay € (A5) ()}
The constrained Lagrangian for the L-C circuit may be constructed as
Le(r®, s, f7) = L(r", 8% [, —AG 7)
and we obtain

1 1(ge)? 1 (qe,)? 1 (gc,)?
*CC(qc'zangaqLanUfCQ?sz):§L(f02)2_§(qgl) _i(qgg) _5(q83) .
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Then, it follows from the partial Legendre transformation that

oL oL
Po, 8f02 fC27 Pcs 8f03 07

which exactly correspond to the equality of the base points. By using local coordinates
(r*, s, £ pa) = (4cs, 905, 4L, 904 s feu, foys Do, 0) for A@ P, the constrained partial vector
field Xp : A® P — TP can be denoted as

XP(ravsa» fa,ﬁa) = (7.1&7 5‘1’5&),
= (Qsza (nga (jLa QCU5C2 5 O) )
while the Dirac differential of L. is given by
0L, 855’ f“)

33‘CC(TOL?SG7 fa) = <_ o’ 9

qu qc'3 qu
= ,0, y 5 .
( CQ ) C3 Cl sz ng)

Then, the L-C circuit can be expressed as an implicit constrained Lagrangian system,
since the triple (L., A, Xp) satisfies the condition

(XPa:D[’C) c DP7

which is represented, in coordinates, by using the bundle map Blﬁg(q, D) as

_ 9L,
e 0 0 35 or?
sol= o 0w || s
Hence, we obtain
qcz 4cy
. 0 o]0 o011 o0 qi
4Cs 0 0|0 o010 1 o
ic | | 0o oo o1 o0 0
do, 0 0|0 o011 -1 e, ’
- -1 0|-1 =-1]0 o0
Pe, 0 —1/0 10 0 fes
0 fo,

where po, = L fc, holds. Furthermore, we can eliminate the components associated with
the current ¢, of the inductor L, and it reads

5 qc.
qc =2
. 0 0 01 0 -
405 0 0 o010 1 T
7 _ q
qc, = 0 0 0 |1 1 C%l
= ~1 0 -1]0 o0

Pe, 0 -1 1]0 0 fes

0 fes
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Thus, the reduced equations of motion of the L-C circuit are derived in the context of the
implicit constrained Lagrangian system as follows:

qclzfcz_fc37 quzfczu qusz';w

s g, qc. ~
= — — = L
De, O Gy Des fcas

0=

_QC?, qu
C3 * Ci'

Remarks. Note that the original Lagrangian £(q’, f*) and the constrained Lagrangian
L.(r®, s f*) are independent of ¢r,, which implies g7, might be a "secret” variable that is
related to symmetries.

7 Conclusions

Part T showed that a constrained distribution on a manifold together with the canonical
two-form induces a Dirac structure on the cotangent bundle. It was shown that some basic
examples, such as KCL and KVL constraints in electric circuits, interconnections, as well as
nonholonomic constraints, naturally fit into this context. Utilizing the symplectomorphisms
between the iterated tangent and cotangent bundles, Part I also developed the notion of an
implicit Lagrangian system (L, Ag, X) in this context.

In Part II of the paper, we established the link between variational structures and im-
plicit Lagrangian systems in mechanics. To do this, use was made of an extension of the
variational principle of Hamilton, called the Hamilton-Pontryagin principle, which, in the
case Ag = TQ leads to a set of equations that naturally includes the Legendre trans-
formation as well as the Euler-Lagrange equations themselves. For the case of a general
constraint distribution Ag C T'Q), we showed that an implicit Lagrangian system can be
derived from a generalization of the Hamilton-Pontryagin principle, namely an extended
Lagrange-d’Alembert principle called the Lagrange-d’Alembert-Pontryagin principle. We
also proposed a generalization of Hamilton’s phase space principle called the Hamilton-
d’Alembert principle in phase space and used this to establish the relationship with implicit
Hamiltonian systems for the case of regular Lagrangians.

In conjunction with applications to controlled interconnected systems such as robots and
electromechanical systems, we demonstrated that nonholonomic mechanical systems with
external forces naturally fall into the context of implicit Lagrangian systems.

Furthermore, we developed the notion of an implicit constrained Lagrangian system
(L., Ag, Xp), by introducing the constrained Dirac structure Dp on the constraint momen-
tum space P and the constrained partial vector field Xp : Ag & P — TP; the constrained
Dirac structure Dp on P can be naturally defined by restricting the induced Dirac structure
Da, on T*Q to P and we have shown that Dp can be constructed by using an Ehres-
mann connection associated with the constraint distribution. Also, implicit constrained
Lagrangian systems were shown to fit naturally into the context of the Lagrange-d’Alembert-
Pontryagin principle. Finally, two examples were given, namely, a vertical rolling disk on a
plane as an example of a nonholonomic mechanical system and an L-C circuit as an example
of a degenerate Lagrangian system with holonomic constraints.

Some interesting topics for future work are as follows:

e Implicit Lagrangian systems with symmetry, Dirac reduction and links with, for exam-
ple, Cendra, Marsden, Pekarsky, and Ratiu [2003]. Specifically, it would be interesting
to explore the Euler-Poincaré and Lie-Poisson equations from this point of view.
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e The momentum equations and the reduced Lagrange-d’Alembert equations in the con-
text of Dirac structures; see Cendra, Marsden, and Ratiu [2001] and references therein.

e The relationship between implicit Lagrangian systems and implicit Hamiltonian sys-
tems for degenerate Lagrangians, using a generalized Legendre transform and the the-
ory of Dirac constraints.

e An analog of controlled Lagrangians and related stability problems for implicit La-
grangian systems; Bloch, Leonard, and Marsden [2000]; Bloch, Chang, Leonard, and
Marsden [2001]; Zenkov, Bloch, and Marsden [1998].

e Discrete mechanics and variational integrators for implicit Lagrangian systems from
the viewpoint of the Hamilton-Pontryagin principle.

e Applications to interconnected systems such as multibody systems, general electric cir-
cuits, and networks including sensing and communications, electromechanical systems,
biochemical systems, etc.
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