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Abstract

This paper develops the notion of implicit Lagrangian systems and presents some of
their basic properties in the context of Dirac structures. This setting includes degen-
erate Lagrangian systems and systems with both holonomic and nonholonomic con-
straints, as well as networks of Lagrangian mechanical systems. The definition of
implicit Lagrangian systems with a configuration space Q makes use of Dirac struc-
tures on T ∗Q that are induced from a constraint distribution on Q as well as natural
symplectomorphisms between the spaces T ∗TQ, TT ∗Q, and T ∗T ∗Q. Two illustrative
examples are presented; the first is a nonholonomic system, namely a vertical disk
rolling on a plane and the second is an L-C circuit, a degenerate Lagrangian system
with holonomic constraints.
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1 Introduction

History and Background. The idea of a system made up of interconnected subsystems
has played a key role in the modeling of complex physical systems as a network; that is, these
systems are regarded as an aggregation of subsystems interconnected by physical connec-
tions, information exchange, or sensors. This interconnection view was originally developed
by Kron [1939] for the analysis of electro-mechanical systems and has been widely employed
in various physical and engineering systems such as electric circuits, chemical reaction sys-
tems, and mechanical systems (see, for example, Kron [1963]; Brayton [1971]; Oster and
Perelson [1974]; Perelson and Oster [1974]; Yoshimura [1995]). Owing to a large number
of (implicit) algebraic equations that appear in interconnecting subsystems, mathematical
models of the associated system dynamics will normally be implicit differential-algebraic
equations—regardless of which dynamical formalism, the Lagrangian or Hamiltonian, is
employed.

In mechanics, interconnected and implicit systems play a key role in, for example, con-
trolled mechanical systems like robots. An important class of implicit mechanical systems
is those with nonholonomic constraints, which has a long and rich history; see, for instance,
Neimark and Fufaev [1972] and Bloch [2003]. The Lagrangian and Hamiltonian approaches
for such systems have been extensively developed, including symmetry and reduction; see, for
instance, Marsden and Ratiu [1999]. On the Lagrangian side, see, for example, Vershik and
Faddeev [1981], Koiller [1992], Bloch, Krishnaprasad, Marsden, and Murray [1996], while on
the Hamiltonian side, refer to Weber [1986]; Bates and Sniatycki [1993]; van der Schaft and
Maschke [1994]; Koon and Marsden [1998]. One of the interesting aspects of the Hamilto-
nian side is the fact that the Poisson bracket fails to satisfy the Jacobi identity; such bracket
structures are known as almost Poisson structures. The equivalence of the Lagrangian and
Hamiltonian approaches to nonholonomic systems was established in Koon and Marsden
[1997].

In the field of electric circuits and networks, the idea of interconnected systems, also
referred to as nonenergic systems (or multiports), has been often employed in modeling and
analysis of the systems, as in the work of Duinker [1959, 1962]; Kron [1963]; Wyatt and
Chua [1977]; Brayton [1971]. The term nonenergic system, which is sometimes used for
these systems, was first coined by Birkhoff [1927] in the context of Lagrangian mechanics
(see also Oliva [1970]).

The ideas underlying interconnected systems, which appear in energy-conserving sys-
tems such as L-C circuits and nonholonomic systems, were put into the context of Poisson
structures by van der Schaft and Maschke [1994]; Maschke, van der Schaft and Breedveld
[1995], and later in the general context of Dirac structures by van der Schaft and Maschke
[1995]; Bloch and Crouch [1997]. The idea of interconnections was investigated in the con-
text of implicit Hamiltonian systems by Dalsmo and van der Schaft [1998]; van der Schaft
[1998] and Blankenstein [2000].

An L-C circuit represents a fundamental example in our context since it involves, as
we shall see, a system that has a degenerate Lagrangian as well as nontrivial additional
constraints (the Kirchhoff current laws). In electric circuits, the Brayton-Moser equations
(see Brayton and Moser [1964]) have been known as basic equations of circuit dynamics,
which were employed, for instance, in the analysis of jumping phenomena that can appear
in nonlinear circuits (see, for example, Sastry and Desoer [1981]). Smale [1972] investigated
the Brayton-Moser equations from a geometric point of view, and in doing so, he introduced
a symmetric nondegenerate bilinear form on a subspace of a direct sum of a vector space
V and its dual space V ∗ and then derived equations of motion by a vector field associated
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with a one-form using this bilinear form. This is reminiscent of a symplectic structure on
V ⊕V ∗, which may be viewed as providing an early version of a geometric formulation that
is linked with a Dirac structure on V .

The above works take a Hamiltonian system point of view of interconnected and implicit
systems and, in addition, make use of Dirac structures. One of our main points is to
extend this theory to also include the variational, that is, the Lagrangian mechanics point
of view. Interestingly, this Lagrangian development also makes use of the framework of
Dirac structures, and developing this idea is one of our main objectives.

An algebraic theory of Dirac structure associated with formal variational calculus was
proposed by Dorfman [1987] in the Hamiltonian framework of integrable evolution equations.
One the other hand, the geometric development of a Dirac structure on a manifold M , as a
subset D ⊂ TM ⊕ T ∗M satisfying certain conditions (reviewed below), was introduced by
Courant and Weinstein [1988] and Courant [1990a]. The original goal of these authors was to
find a common generalization of Poisson and pre-symplectic structures and also was designed
to include constrained systems, including constraints induced by degenerate Lagrangians,
as was investigated by Dirac [1950], which is the reason for the name. It is useful to recall
that Dirac was concerned with degenerate Lagrangians, so that the image P ⊂ T ∗Q of the
Legendre transformation, called the set of primary constraints in the language of Dirac,
need not be the whole space. As we have mentioned, electric circuits involve both primary
constraints as well as constraints coming from Kirchhoff’s laws.

Interestingly, despite the fact that Dirac’s original idea started off with degenerate La-
grangians and a Lagrangian viewpoint, Dirac structures have not been widely studied in
the context of Lagrangian systems, nor in the context of variational principles. In Part II,
we will demonstrate how Dirac structures are incorporated into Lagrangian systems in the
context of variational structures, and we hope that the present paper helps to fill the gap.

In studying implicit systems, one usually starts with a configuration manifold Q, and
for interconnected systems, a collection of such manifolds. Of course Lagrangian mechanics
normally deals with the tangent bundle TQ and Hamiltonian mechanics with the cotangent
bundle T ∗Q. A key point of our development will be making use of what we call the
Pontryagin bundle (because of its fundamental role in Pontryagin’s maximum principle),
namely the fiber product (or Whitney) bundle TQ ⊕ T ∗Q, as well as the iterated tangent
and cotangent spaces TT ∗Q, T ∗TQ, and T ∗T ∗Q and the relations between these spaces. To
the best of our knowledge, the Pontryagin bundle was first investigated in Skinner and Rusk
[1983] to aid in the study of degenerate Lagrangian systems, which is a case we also treat in
the present paper. An important ingredient for studying the iterated tangent bundle and its
relation to the Pontryagin bundle is a fundamental diffeomorphism κQ : TT ∗Q → T ∗TQ,
which is used in the theory of the generalized Legendre transform developed by Tulczyjew
[1977]. Interestingly, Courant [1990b] started the investigation of iterated spaces in his work
on tangent Dirac structures. The relation between these iterated spaces and the Pontryagin
bundle was also discussed in Cendra, Holm, Hoyle and Marsden [1998].

One of the topics that we plan to pursue is reduction theory for implicit Lagrangian
systems from the point of view of Lagrangian reduction (see, for example, Cendra, Mars-
den, and Ratiu [2001]). On the Hamiltonian side, this theory has been developed by van
der Schaft [1998] and Blankenstein and van der Schaft [2001] and in the singular case by
Blankenstein and Ratiu [2004].

Other recent developments that might be relevant to future directions include the study
of critical manifolds and the stability of nonholonomic constrained systems. One of the de-
velopments in the context of Hamiltonian systems has been investigated from the viewpoint
of generalized Dirac constraints by Chen [2003], while, on the Lagrangian side, a geometric
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description of vakonomic and nonholonomic dynamics was given on the Pontryagin bundle
by Cortés, León, Diego, and Mart́ınez [2003] including the case of L-C circuits. Lagrangian
and Hamiltonian models of L-C circuits in conjunction with Dirac structures were studied
in the context of Pontryagin’s maximum principle by Moreau and Aeyels [2004]. Both of
these papers, however, along with that of Maschke, van der Schaft and Breedveld [1995]
treat L-C circuits in a special way that avoids the degeneracy of the Lagrangian, but which
also is, in our opinion, at odds with the standard approaches in the circuit literature and
which also makes the coupling to other mechanical systems non-obvious. Our treatment of
L-C circuits considers the KCL and KVL constraints as well as the primary constraints due
to the degeneracy of the Lagrangian in a more standard and transparent way consistent
with standard approaches in mechanics.

Another very interesting direction is the control of implicit Lagrangian systems; in par-
ticular, it would be very nice to have an implicit analog of the general theorem of Chang,
Bloch, Leonard, Marsden, and Woolsey [2002], which asserts the equivalence of controlled
Hamiltonian and controlled Lagrangian systems (including passivity, structure modification,
gyroscopic forces, etc). Reduction theory for these systems was developed in Chang and
Marsden [2003].

Goals and Purpose of this Paper. In the present paper, a framework for implicit
Lagrangian systems based on variational principles, Dirac structures and the use of the
spaces TQ⊕ T ∗Q, TT ∗Q, T ∗TQ, and T ∗T ∗Q, is developed.

Our definition of implicit Lagrangian systems is based directly on the Dirac structure
on T ∗Q that is naturally induced by a constraint distribution ∆Q on Q; the definition also
involves a natural symplectomorphism γQ : T ∗TQ → T ∗T ∗Q to intertwine the differential
of the Lagrangian with the Dirac structure.

One of our main results is to provide a basic link between implicit Lagrangian systems
and variational principles. We also show, via the example of nonholonomic systems, that
the formalism captures systems with velocity constraints and, via the example of electric
circuits, that this theory is very suitable for the study of interconnected systems as well as
for systems with degenerate Lagrangians.

Outline of the Paper. The paper is constructed as follows. In Part I, we develop the
framework of implicit Lagrangian systems associated with Dirac structures induced by con-
straint distributions. In §2, Dirac structures are reviewed and, in particular, an important
construction of a Dirac structure on T ∗Q induced by a constraint on Q is introduced. In
§3, basic examples of Dirac structures are presented in conjunction with Kirchhoff’s current
laws and voltage laws, interconnections, and nonholonomic constraints. The geometry of
the iterated tangent and cotangent spaces TT ∗Q, T ∗TQ and T ∗T ∗Q, and natural diffeo-
morphisms between them, as well as some geometry of the Pontryagin bundle TQ ⊕ T ∗Q
is reviewed in §4. In §5, we study Dirac structures induced by constraint sets. The main
goal of §6 is to define implicit Lagrangian systems in terms of induced Dirac structures.
In §7, the vertical rolling disk on a plane, a basic example of a nonholonomic systems and
an L-C circuit that is a typical degenerate Lagrangian system with holonomic constraints
are developed in the context of implicit Lagrangian systems. In §8, concluding remarks are
given.

In Part II, we link variational principles with Dirac structures; we present an extended
variational principle of Hamilton called the Hamilton-Pontryagin principle to formulate
implicit Lagrangian systems in relation to the symplectic structures on TT ∗Q, T ∗TQ and
T ∗T ∗Q. Furthermore, we develop an extended Lagrange-d’Alembert principle and it is
shown how implicit Lagrangian systems can be formulated in the variational context. We
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also demonstrate the constrained implicit Lagrangian systems, where we illustrate how the
constrained Dirac structure on the constraint momentum space can be constructed by using
an Ehresmann connection.

Acknowledgements. We are very grateful to Tudor Ratiu, Alan Weinstein and Tom
Hughes, who kindly provided several very useful remarks. We also thank Jeff Lawson,
Shawn Shadden, and Troy Smith for pointing out several improvements.

2 Dirac Structures

This section briefly reviews Dirac structures on vector spaces and manifolds, following
Courant and Weinstein [1988] and Courant [1990a]. Following this, we shall recall the
construction of some Dirac structures which will be important for the definition of an im-
plicit Lagrangian system. We first consider the Dirac structure on a vector space V that is
constructed out of a subspace (that will later be a constraint distribution) ∆ ⊂ V and its
annihilator ∆◦ ⊂ V ∗. Following this, we investigate the Dirac structure on a manifold M
constructed from a distribution ∆M and a two-form Ω on M .

Dirac Structures on Vector Spaces. Let V be an n-dimensional vector space, V ∗ be
its dual space, and let 〈· , ·〉 be the natural paring between V ∗ and V . Define the symmetric
paring 〈〈·, ·〉〉 on V ⊕ V ∗ by

〈〈 (v, α), (v̄, ᾱ) 〉〉 = 〈α, v̄〉+ 〈ᾱ, v〉,

for (v, α), (v̄, ᾱ) ∈ V ⊕ V ∗. A Dirac structure on V is a subspace D ⊂ V ⊕ V ∗ such that
D = D⊥, where D⊥ is the orthogonal of D relative to the pairing 〈〈·, ·〉〉.

One can easily check that a vector subspace D ⊂ V ⊕ V ∗ is a Dirac structure on V if
and only if dim D = n and 〈α, v̄〉+ 〈ᾱ, v〉 = 0 for all (v, α), (v̄, ᾱ) ∈ D.

By the definition of a Dirac structure, note that the condition D = D⊥ implies that for
each (v, α) ∈ D, we have

〈α, v〉 = 0 (2.1)

(just choose v̄ = v and ᾱ = α in the definition). Even this elementary remark has interesting
links with applications. For instance, in the context of electric circuits, it gives Tellegen’s
theorem, which we shall see in the next section.

Construction of Dirac Structures. We begin by reviewing some basic constructions
for Dirac structures on vector spaces that will be useful in the examples in the next section.
The constructions will be generalized to the context of manifolds in the next paragraph. We
include a few proofs so that our exposition is reasonably self-contained.

We now recall a standard fact about annihilators that is useful in examples. First of all,
for a vector space V and a subspace ∆ ⊂ V , the annihilator ∆◦ ⊂ V ∗ of ∆ is the subspace
defined by

∆◦ = {α ∈ V ∗ | 〈α, v〉 = 0 for all v ∈ ∆} .

Proposition 2.1. Suppose φ : V → W is a linear surjective map of the vector space V
to the vector space W , and ∆ = Ker φ. Then ∆◦ = Im φT , where φT : W ∗ → V ∗ is the
transpose (that is, the dual) of φ.
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Proof. We recall the following standard argument from linear algebra for the reader’s con-
venience. Let α = φT µ, where µ ∈ W ∗ and α ∈ V ∗. Then, for v ∈ ∆,

〈α, v〉 = 〈φT µ, v〉 = 〈µ, φ(v)〉 = 0.

Therefore, Im φT ⊂ ∆◦. Conversely, let α ∈ ∆◦ and let V = ∆ ⊕ U . Then, for v ∈ V ,
one may denote v = r + u such that r ∈ ∆ and u ∈ U . Note that φ|U : U → W is an
isomorphism and hence (φ|U)T : W ∗ → U∗ is also an isomorphism. Then,

α(v) = α(r + u) = 〈α, u〉 = 〈α|U, u〉 = 〈(φ|U)T µ, u〉 = 〈µ, (φ|U)(u)〉
= 〈µ, φ(u)〉 = 〈µ, φ(r + u)〉 = 〈µ, φ(v)〉 = 〈φT µ, v〉.

Since this holds for all v ∈ V , we get α = φT µ. �

Given a subspace ∆ ⊂ V , and applying this proposition to the map π : V ∗ → ∆∗ that
is the dual of the inclusion map i : ∆ → V , and noticing that Kerπ = ∆◦ (so in the
preceding proposition, replace V by V ∗, φ by π and ∆ by ∆◦) shows the well-known fact
that (∆◦)◦ = ∆, which we will need in the following proof.

Proposition 2.2. Let V be a vector space and ∆ ⊂ V a subspace. Then DV = ∆×∆◦ is
a Dirac structure on V .

Proof. By definition,

D⊥
V = {(w, β) ∈ V × V ∗ | 〈α, w〉+ 〈β, v〉 = 0 for all v ∈ ∆, α ∈ ∆◦}.

We need to check that DV = D⊥
V . First, we check D⊥

V ⊂ DV . Let (w, β) ∈ D⊥
V and

in the definition of D⊥
V , first choose α = 0. This implies that 〈β, v〉 = 0 for arbitrary

v ∈ ∆. Hence, β ∈ ∆◦. Similarly, let v = 0, then 〈α, w〉 = 0 for arbitrary α ∈ ∆◦.
Therefore, w ∈ (∆◦)◦ = ∆. Therefore, if (w, β) ∈ D⊥

V , then (w, β) ∈ DV . Thus, D⊥
V ⊂ DV .

Conversely, DV ⊂ D⊥
V is trivial because if (w, β) ∈ DV , then 〈α, w〉 = 0 for any α ∈ ∆◦,

and 〈β, v〉 = 0 for any v ∈ ∆. Thus, DV = D⊥
V . �

Dirac Structures on Manifolds. Let M be a smooth differentiable manifold whose
tangent bundle is denoted as TM and whose cotangent bundle is denoted as T ∗M . Let
TM ⊕ T ∗M denote the Whitney sum bundle over M ; that is, it is the bundle over the base
M and with fiber over the point x ∈ M equal to TxM×T ∗

x M . An almost Dirac structure
on M is a subbundle D ⊂ TM ⊕T ∗M that is a Dirac structure in the sense of vector spaces
at each point x ∈ M .

As we shall see shortly, in geometric mechanics, almost Dirac structures provide a simul-
taneous generalization of both two-forms (not necessarily closed, and possibly degenerate) as
well as almost Poisson structures (that is brackets that need not satisfy the Jacobi identity).
A Dirac structure, which corresponds in geometric mechanics to assuming the two-form
is closed or to assuming Jacobi’s identity for the Poisson tensor, is one that satisfies

〈£X1α2, X3〉+ 〈£X2α3, X1〉+ 〈£X3α1, X2〉 = 0,

for all pairs of vector fields and one-forms (X1, α1), (X2, α2), (X3, α3) that take values in
D and where £X denotes the Lie derivative along the vector field X on M .

In this paper, we will mostly be concerned with almost Dirac structures and hence for
brevity, unless there is danger of confusion, we will just say “Dirac structures” even for the
case of almost Dirac structures.
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Theorem 2.3. Let M be a manifold and let Ω be a two-form on M . Given a distribution1

∆M on M , define the skew-symmetric bilinear form Ω∆M
on ∆M by restricting Ω to ∆M .

For each x ∈ M , let

DM (x) = {(vx, αx) ∈ TxM × T ∗
x M | vx ∈ ∆M (x), and

αx(wx) = Ω∆M
(x)(vx, wx) for all wx ∈ ∆M (x)}.

Then DM ⊂ TM ⊕ T ∗M is a Dirac structure on M .

Proof. The orthogonal of DM ⊂ TM ⊕ T ∗M is given at x ∈ M by

D⊥
M (x) = {(ux, βx) ∈ TxM × T ∗

x M | αx(ux) + βx(vx) = 0 for all vx ∈ ∆M (x),
and αx(wx) = Ω∆M

(x)(vx, wx) for all wx ∈ ∆M (x)}.

Let us first check that DM (x) ⊂ D⊥
M (x). To do this, let (vx, αx) ∈ DM (x) and (v′x, α′x) ∈

DM (x). Then,

αx(v′x) + α′x(vx) = Ω∆M
(x)(vx, v′x) + Ω∆M

(x)(v′x, vx) = 0,

by skew-symmetry of Ω and hence of Ω∆M
; therefore, DM (x) ⊂ D⊥

M (x).
Next, let us show that D⊥

M (x) ⊂ DM (x). Let (ux, βx) ∈ D⊥
M (x). By definition of D⊥

M ,
we have

αx(ux) + βx(vx) = 0
for all (vx, αx) ∈ TxM × T ∗

x M such that vx ∈ ∆M (x) and αx(wx) = Ω∆M
(x)(vx, wx) for

all wx ∈ ∆M (x). First, choose vx = 0, and αx ∈ ∆◦
M (x), so that (vx, αx) ∈ DM (x).

We conclude that αx(ux) = 0 for all αx ∈ ∆◦
M (x), and hence (since the annihilator of

∆◦
M (x) is ∆M (x)) that ux ∈ ∆M (x). Second, let vx ∈ ∆M (x) be arbitrary and suppose

that αx(wx) = Ω∆M
(x)(vx, wx) for all wx ∈ ∆M (x). Since we have already proved that

ux ∈ ∆M (x), we get αx(ux) = Ω∆M
(x)(vx, ux) and so from αx(ux) + βx(vx) = 0, we get

Ω∆M
(x)(vx, ux) + βx(vx) = 0 for all vx ∈ ∆M (x).

In other words, βx(vx) = Ω∆M
(x)(ux, vx) for all vx ∈ ∆M (x). Therefore, (ux, βx) ∈ DM (x).

Thus, D⊥
M (x) ⊂ DM (x).

Since we have proved both inclusions, we get D⊥
M (x) = DM (x) and so indeed, DM is a

Dirac structure on M . �

Example. Let Ω = 0, so that also Ω∆M
=0. Then, ∆M × ∆◦

M ⊂ TM ⊕ T ∗M is a Dirac
structure on M .

Example. Let M be a symplectic manifold with a two-form Ω : TM × TM → R. In the
case ∆M = TM , the Dirac structure defined by ∆M and Ω∆M

according to the preceding
Theorem is simply the graph of the symplectic structure, thought of as a map of TM to T ∗M .

The preceding theorem has the following dual, which is proved in the same way.

Theorem 2.4. Let M be a manifold and let B : T ∗M × T ∗M → R be a skew-symmetric
two-tensor (such as a Poisson tensor). Given a codistribution ∆∗

M ⊂ T ∗M on M , define
the skew-symmetric two-tensor B∆∗

M
on ∆∗

M by restricting B to ∆∗
M . For each x ∈ M , let

DM (x) = {(vx, αx) ∈ TxM × T ∗
x M | αx ∈ ∆∗

M (x), and
βx(vx) = B∆∗

M
(x)(αx, βx) for all βx ∈ ∆∗

M (x)}.

Then DM ⊂ TM ⊕ T ∗M is a Dirac structure on M .
1 In some examples, for instance in nonholonomic systems, the distribution ∆M is the constraint distri-

bution (see, for instance Bloch [2003]); in circuits, this distribution corresponds to Kirchhoff’s current law,
as we shall explain later.
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Example. Let M be a Poisson manifold with the Poisson structure B : T ∗M×T ∗M → R.
If ∆∗

M = T ∗M , then the Dirac structure defined by ∆∗
M and BM according to the preceding

theorem is the graph of the Poisson structure thought of as a map of T ∗M to TM .

In the case that M = T ∗Q and ∆M = TT ∗Q, let us call the Dirac structure on the
manifold T ∗Q the canonical Dirac structure. One gets the same structure if one uses
the Poisson structure and the codistribution ∆∗

M = T ∗T ∗Q.

Notice that the previous construction of the Dirac structure DV on the vector space V
given in Proposition 2.2 may be regarded as an instance of this more general construction
of the Dirac structure DM on the manifold M , where the two form Ω (or the form B) is
chosen to be zero.

3 Basic Examples of Dirac Structures

In this section, two basic constructions of induced Dirac structures on vector spaces will be
given; these are important for the examples given later in the paper as well as providing
insight into the corresponding construction on manifolds.

The first example is a Dirac structure on a vector space motivated by the type of struc-
ture encountered in Kirchhoff’s current laws for electric circuits. The second is a Dirac
structure relevant to the interconnection of systems. These examples are also fundamen-
tal for understanding Dirac structures of the sort that appear in mechanical systems with
nonholonomic constraints. As will be illustrated in §5, these constructions produce Dirac
structures on a cotangent bundle T ∗Q that is induced from a given constraint distribution
∆Q on Q as well as Dirac structures induced on submanifolds of Dirac manifolds, which will
be important for the consideration of degenerate Lagrangian systems, which correspondingly
have primary constraints.

Example: Kirchhoff’s Current and Voltage Laws. Consider a circuit, which is given
by a nonenergic n-port with a given circuit topology specified by a graph G.2 In this case,
the configuration manifold Q is an n-dimensional vector space E and we use the notation
q = (q1, ..., qn) ∈ E, where qk denotes the charge associated with the k-th branch.

Given a circuit topology G, Kirchhoff’s current law (KCL) may be written in terms of a
fixed collection of covectors (or one-forms) ωa by

〈ωa, f〉 = 0, a = 1, ...,m.

Here, f = (f1, ..., fn) ∈ E denote branch currents in the circuit. Write the covectors ωa as

ωa = ωa
k dqk, a = 1, ...,m; k = 1, ..., n,

where m < n; the coefficients ωa
k are ±1 and 0 are determined by the circuit topology.

The set of all branch currents f = (f1, ..., fn) that satisfy the KCL forms an (n − m)-
dimensional subspace ∆q of E (which is identified with the tangent space TqE to E at
q ∈ E) defined by

∆q = {f ∈ TqE | 〈ωa, f〉 = 0, a = 1, ...,m}.

We call ∆ ⊂ TE the constraint KCL space. Its annihilator is defined, for each q ∈ E, as

∆◦
q = {e ∈ T ∗

q E | 〈e, f〉 = 0 for all f ∈ ∆q}.
2For the fundamentals of circuit theory, see, for example, Chua, Desoer and Kuh [1987].
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In coordinates, any e ∈ ∆◦
q can be written, by using Lagrange multipliers µa, in the form

ek = µa ωa
k , a = 1, ...,m; k = 1, ..., n.

We identify ∆◦ ⊂ T ∗E with the set of branch voltages e = (e1, ..., en). It annihilates the
KCL space and is an m-dimensional subspace of T ∗

q E at each q ∈ E which is equivalent
to Kirchhoff’s voltage law. Accordingly, ∆◦ ⊂ T ∗E is called the constraint KVL space.
From Proposition 2.2, we get

Theorem 3.1. Let ∆ ⊂ TE be the constraint KCL space and ∆◦ ⊂ T ∗E be the constraint
KVL space. Then,

DE = ∆×∆◦ ⊂ TE × T ∗E

is a Dirac structure on E.

Using equation (2.1), we get the following corollary, a simple but important result known
as Tellegen’s theorem.

Corollary 3.2. For each (f, e) ∈ DE, we have 〈e, f〉 = 0.

Generalization. Next we give an induced Dirac structure on T ∗E, which will be employed
in our development of L-C circuits in §7.

Theorem 3.3. Let E be a vector space and E∗ be the dual space of E, and hence we can
regard T ∗E ∼= E × E∗. Given ∆ ⊂ TE and ∆◦ ⊂ T ∗E, define D∆ ⊂ TT ∗E × T ∗T ∗E by,
for each (q, p) ∈ E × E∗,

D∆(q, p) = {((v, α), (−β, v)) | v ∈ ∆q, α− β ∈ ∆◦
q}.

Then, D∆ is a Dirac structure on T ∗E.

This is a special case of Theorem 2.3 with the choice M = E × E∗ and Ω the standard
symplectic structure. This will be generalized to the cotangent bundle in §5.1.

However, the reader might wish to give a separate proof at this point to prepare for its
generalization to cotangent bundles that we give in §5.1.

Proof. Noting that

〈〈 ((w, γ), (−δ, u)), ((v, α), (−β, v)) 〉〉 = −〈β, w〉+ 〈γ, v〉 − 〈δ, v〉+ 〈α, u〉,

the orthogonal space of D∆ is given by, for each (q, p) ∈ E × E∗,

D⊥
∆(q, p) = {((w, γ), (−δ, u)) | −〈β, w〉+ 〈γ, v〉 − 〈δ, v〉+ 〈α, u〉 = 0, v ∈ ∆q, α− β ∈ ∆◦

q}.

Let us first check that D∆ ⊂ D⊥
∆. Let ((w, γ), (−δ, w)) ∈ D∆(q, p), where w ∈ ∆q and

γ − δ ∈ ∆◦
q . Since α− β ∈ ∆◦

q and v ∈ (∆◦
q)
◦ = ∆q, we have

−〈β, w〉+ 〈γ, v〉 − 〈δ, v〉+ 〈α, w〉 = 〈α− β, w〉+ 〈γ − δ, v〉 = 0.

Therefore, D∆ ⊂ D⊥
∆.

Conversely, let us check that D⊥
∆ ⊂ D∆. Let ((w, γ), (−δ, u)) ∈ D⊥

∆(q, p). Setting v = 0
and α = β, we get 〈α, −w +u〉 = 0 for all α ∈ T ∗

q E. Hence, w = u. Let v ∈ ∆q be arbitrary
and let α = β = 0. Then, 〈γ, v〉 − 〈δ, v〉 = 〈−δ + γ, v〉 = 0 for all v ∈ ∆q. Therefore,
−δ + γ ∈ ∆◦

q . Let v = 0 and β = 0 and let α ∈ ∆◦
q be arbitrary. Then, 〈α, w〉 = 0 for all

α ∈ ∆◦
q . So, w = u ∈ (∆◦

q)
◦ = ∆q, and hence D⊥

∆ ⊂ D∆. Finally, D∆ = D⊥
∆, and thus, D∆

is a Dirac structure on T ∗E. �
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Example: Interconnection. Another important class of examples of Dirac structures
are interconnection Dirac structures, which were developed (using different language of
course) by Kron [1939] in the context of power invariance under interconnecting electrome-
chanical machines and networks. For the study of such interconnected and nonholonomic
systems, another construction will be useful.

Theorem 3.4. Let E be a vector space, E∗ be the dual space of E and T ∗E ∼= E × E∗.
Given ∆∗ ⊂ T ∗E, let (∆∗)◦ ⊂ TE be its annihilator and define D∆ ⊂ TT ∗E × T ∗T ∗E by,
for each (q, p) ∈ E × E∗,

D∆(q, p) = {((v, α), (−α, w)) | α ∈ ∆∗
q , v − w ∈ (∆∗

q)
◦}.

Then, D∆ is a Dirac structure on T ∗E.

This result is a special instance of the general construction given in Theorem 2.4 with
M = E × E∗ = T ∗E and with the standard canonical Poisson tensor on T ∗E. The reader
may regard this special case as a useful precursor of the result given later in Proposition
5.1.

Again, the reader may wish to give a proof in this special case as it is a useful precursor
of the result given later in Proposition 5.1.

Proof. Recalling that

〈〈
(
(e, β), (−γ, f)), ((v, α), (−α, w)

)
〉〉 = −〈α, e〉+ 〈β, w〉 − 〈γ, v〉+ 〈α, f〉,

we see that the orthogonal space of D∆ is given by, for each (q, p) ∈ E × E∗,

D⊥
∆(q, p) = {((e, β), (−γ, f)) | −〈α, e〉+ 〈β, w〉 − 〈γ, v〉+ 〈α, f〉 = 0,

α ∈ ∆∗
q , v − w ∈ (∆∗

q)
◦}.

Let us first show that D∆ ⊂ D⊥
∆. Let ((e, β), (−β, f)) ∈ D∆(q, p) so that β ∈ ∆∗

q and
f − e ∈ (∆∗

q)
◦, we get

〈〈 ((e, β), (−β, f)), ((v, α), (−α, w)) 〉〉 = −〈α, e〉+ 〈β, w〉 − 〈β, v〉+ 〈α, f〉
= 〈α, f − e〉+ 〈β, w − v〉 = 0

for all α ∈ ∆∗
q and w−v ∈ (∆∗

q)
◦. Then, D∆ ⊂ D⊥

∆. Conversely, let us check that D⊥
∆ ⊂ D∆.

Let ((e, β), (−γ, f)) ∈ D⊥
∆(q, p). Noting that

−〈α, e〉+ 〈β, w〉 − 〈γ, v〉+ 〈α, f〉 = 0

for all α ∈ ∆∗
q and v − w ∈ (∆∗

q)
◦, let α = 0 and v = w and then 〈β − γ, v〉 = 0 for

all v ∈ TqE. Therefore, β = γ. Letting α = 0, we obtain 〈β, w − v〉 = 0 for arbitrary
w − v ∈ (∆∗

q)
◦. Hence, β ∈ ∆∗

q . Let v = w = 0 and let α ∈ ∆∗
q be arbitrary, and then

〈α, f − e〉 = 0 for all α ∈ ∆∗
q . Thus, f − e ∈ (∆∗

q)
◦. Since β = γ ∈ ∆∗

q and f − e ∈ (∆∗
q)
◦,

D⊥
∆ ⊂ D∆. Finally, D⊥

∆ = D∆, and thus, D∆ is a Dirac structure on T ∗E. �

Example. Let T ∗R3 = R3 × (R3)∗. Let D∆ ⊂ TT ∗R3 × T ∗T ∗R3 be the Dirac structure
on T ∗R3 defined by, for each (q, p) ∈ T ∗R3,

D∆(q, p) = {((v, F ), (−F,w)) ∈ T(q,p)T
∗R3 × T ∗

(q,p)T
∗R3 | F ∈ ∆∗

q , v − w ∈ (∆∗
q)
◦},

where ∆∗ ⊂ T ∗R3 is a given codistribution and (∆∗)◦ ⊂ TR3 its annihilator. Let us set
((v̂, F ), (F̂ , v)) ∈ D∆(q, p), then F = −F̂ ∈ ∆∗

q and v̂ − v ∈ (∆∗
q)
◦. Because D∆ = D⊥

∆,

〈〈 ((v̂, F ), (F̂ , v)), ((v̂, F ), (F̂ , v)) 〉〉 = 2 〈F, v〉+ 2 〈F̂ , v̂〉 = 2 〈F̂ , v̂ − v〉 = 0.
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Then, we have
〈F, v〉+ 〈F̂ , v̂〉 = 0,

which may be interpreted as a condition related to the interconnection of two subsystems.
One may regard the above equation as having the physical interpretation of power invari-
ance interrelating two subsystems. In mechanics, a simple example of such an interconnec-
tion is given by Newton’s law of action and reaction, in which case one may consider
F and F̂ as action and reaction forces associated with adjacent bodies, while, by setting
v̂ − v = 0, one gets v = v̂, which is interpreted as the common velocity of those bodies at
their point of contact.

4 Iterated Tangent and Cotangent Bundles

In this section we recall some basic geometry of the spaces TT ∗Q, T ∗T ∗Q and T ∗TQ,
as well as the Pontryagin bundle TQ ⊕ T ∗Q. Those spaces are very important for the
understanding of the interrelation between Lagrangian mechanics on the tangent bundle
TQ and Hamiltonian mechanics on the cotangent bundle T ∗Q. In particular, there are two
diffeomorphisms between T ∗TQ, TT ∗Q and T ∗T ∗Q that were studied by Tulczyjew [1977]
in the context of the generalized Legendre transform that will be useful in later sections.

Diffeomorphism between TT ∗Q and T ∗TQ. Given a manifold Q, we are going to
define a natural diffeomorphism

κQ : TT ∗Q → T ∗TQ.

In a local trivialization, Q is represented by an open set U in a linear space E, so that TT ∗Q
is represented by (U ×E∗)× (E×E∗), while T ∗TQ is locally given by (U ×E)× (E∗×E∗).
In this local representation, the map κQ will be given by

(q, p, δq, δp) 7→ (q, δq, δp, p),

where (q, p) are local coordinates of T ∗Q and (q, p, δq, δp) are the corresponding coordinates
of TT ∗Q, while (q, δq, δp, p) are the local coordinates of T ∗TQ induced by κQ. The map κQ

is the unique map that intertwines two sets of maps given as follows.

The First Set of Maps. Consider the following two maps:

TπQ : TT ∗Q → TQ, πTQ : T ∗TQ → TQ,

which are the obvious maps and recall that πQ : T ∗Q → Q is the cotangent projection. The
first commutation condition that will be used to define κQ is that

πTQ ◦ κQ = TπQ. (4.1)

The Second Set of Maps. The second set of maps is the following:

τT∗Q : TT ∗Q → T ∗Q, π1 : T ∗TQ → T ∗Q.

Note that τQ : TQ → Q is the tangent bundle projection. Thus, the second commutation
condition is

π1 ◦ κQ = τT∗Q. (4.2)
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To explain the map π1, let αvq
∈ T ∗

vq
TQ and let uq ∈ TqQ. Then

〈π1(αvq ), uq〉 = 〈αvq , ver(uq, vq)〉,

where

ver(uq, vq) =
d

dt

∣∣∣∣
t=0

(vq + tuq) ∈ Tvq
TQ

denotes the vertical lift of uq along vq.

Local Representation. In a natural local trivialization, these four maps are readily
checked to be given by

TπQ(q, p, δq, δp) = (q, δq),
πTQ(q, δq, δp, p) = (q, δq),
τT∗Q(q, p, δq, δp) = (q, p),

π1(q, δq, δp, p) = (q, p),

from which it is easy to check that the commutation conditions are satisfied and it is clear
that this uniquely characterizes the map κQ.

Proposition 4.1. For any manifold Q, there is a unique diffeomorphism

κQ : TT ∗Q → T ∗TQ

such that the two commutation conditions (4.1) and (4.2) are satisfied.

Diffeomorphism between T ∗T ∗Q and TT ∗Q. Let Ω be the canonical symplectic form
on the cotangent bundle T ∗Q. There is a natural diffeomorphism given by the associated
flat map

Ω[ : TT ∗Q → T ∗T ∗Q.

If E is the model space of Q and U is an open set of E, then T ∗T ∗Q is represented by
(U × E∗)× (E∗ × E), while TT ∗Q is represented by (U × E∗)× (E × E∗). The map Ω[ is
locally represented by

(q, p, δq, δp) 7→ (q, p,−δp, δq).

As above, Ω[ is the unique map that also intertwines two sets of maps.

The First Set of Maps. Consider the following maps:

τT∗Q : TT ∗Q → T ∗Q, πT∗Q : T ∗T ∗Q → T ∗Q,

which are obvious maps and recall that τQ : TQ → Q and πQ : T ∗Q → Q are respectively
the tangent projection and the cotangent projection. The first commutation condition is

πT∗Q ◦ Ω[ = τT∗Q.

The Second Set of Maps. The second set of maps is the following:

TπQ : TT ∗Q → TQ, π2 : T ∗T ∗Q → TQ.

Thus, the second commutation condition is

π2 ◦ Ω[ = TπQ,

where π2 is defined similarly to π1.
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Local Representations of Maps. In a local trivialization, these four maps are given by

πT∗Q(q, p,−δp, δq) = (q, p),
τT∗Q(q, p, δq, δp) = (q, p),

π2(q, p,−δp, δq) = (q, δq),
TπQ(q, p, δq, δp) = (q, δq),

from which it is easy to check that the commutation conditions are satisfied.

The Symplectic Form on TT ∗Q. The manifold TT ∗Q is a symplectic manifold with
a particular symplectic form ΩTT∗Q that can be represented by two distinct ways as the
exterior derivative of two intrinsic but different one-forms. When the local coordinates of
T ∗Q and TT ∗Q are respectively denoted by (q, p) and (q, p, δq, δp), these two one-forms are
given in local coordinates by:

λ = δp dq + p dδq, χ = −δp dq + δq dp.

Let ΘT∗TQ denote the canonical one-form on T ∗TQ and let ΘT∗T∗Q denote the canonical
one-form on T ∗T ∗Q. Then we have the following proposition:

Proposition 4.2. The two one-forms λ and χ are given by

λ = (κQ)∗ ΘT∗TQ, χ =
(
Ω[
)∗

ΘT∗T∗Q.

One can easily check the proposition. Thus, the symplectic form ΩTT∗Q on TT ∗Q
associated with λ and χ are given by

ΩTT∗Q = dχ = −dλ

= dq ∧ dδp + dδq ∧ dp.

Remarks. It will be useful to establish systematic notation for, and recall the definition
of, the canonical one-form and two-form on the cotangent bundle T ∗M of a manifold M .
Namely, the canonical one-form ΘT∗M on T ∗M is defined by

ΘT∗M (α)(w) = 〈α, TπM · w〉 ,

where α ∈ T ∗M , w ∈ TαT ∗M , πM : T ∗M → M is the cotangent projection and TπM :
TT ∗M → TM is the tangent map of πM . The canonical symplectic two-form is denoted as
ΩT∗M = −dΘT∗M .

Thus, in the case M = TQ, we have the canonical one-form ΘT∗TQ, while in the case
M = T ∗Q, we have the canonical one-form ΘT∗T∗Q.

Pontryagin Bundle TQ ⊕ T ∗Q. Consider the bundle TQ ⊕ T ∗Q over Q, that is, the
Whitney sum of the tangent bundle and the cotangent bundle over Q, whose fiber at q ∈ Q
is the product TqQ× T ∗

q Q. Let us call TQ⊕ T ∗Q the Pontryagin bundle. Using a model
space E for Q and a chart domain, which is an open set U ⊂ E, then TQ× T ∗Q is locally
denoted by U ×E ×U ×E∗ and TQ⊕ T ∗Q by U ×E ×E∗. In this local trivialization, the
local coordinates of TQ⊕ T ∗Q are written

(q, v, p) ∈ U × E × E∗,
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from which, the following three projections are naturally defined:

prTQ : TQ⊕ T ∗Q → TQ; (q, v, p) 7→ (q, v)

prT∗Q : TQ⊕ T ∗Q → T ∗Q; (q, v, p) 7→ (q, p)

prQ : TQ⊕ T ∗Q → Q; (q, v, p) 7→ q.

We now define an embedding ρT∗TQ : T ∗TQ → TQ⊕ T ∗Q which will have the property
that prTQ ◦ ρT∗TQ = πTQ. This map is defined intrinsically to be the direct sum of the two
maps πTQ : T ∗TQ → TQ and τT∗Q ◦κ−1

Q : T ∗TQ → T ∗Q and is easily checked to be locally
represented by

ρT∗TQ : T ∗TQ → TQ⊕ T ∗Q; (q, δq, δp, p) 7→ (q, δq, p).

Note that this map is a “projection” in the sense that it simply eliminates δp. We likewise
define the maps

ρTT∗Q = ρT∗TQ ◦ κQ : TT ∗Q → TQ⊕ T ∗Q; (q, p, δq, δp) 7→ (q, δq, p)

ρT∗T∗Q = ρTT∗Q ◦ (Ω[)−1 : T ∗T ∗Q → TQ⊕ T ∗Q; (q, p,−δp, δq) 7→ (q, δq, p),

each of which also eliminates δp.

5 Induced Dirac Structures

In this section, we introduce the notion of an induced Dirac structure on the cotangent
bundle T ∗Q of a configuration manifold Q. This Dirac structure is induced from a given
distribution ∆Q ⊂ TQ on Q, which will play an essential role in the definition of implicit
Lagrangian systems in the context of Dirac structures.

Let Q be a smooth manifold and let TQ be the tangent bundle of Q and T ∗Q the
cotangent bundle. Suppose that one is given a regular distribution ∆Q on Q (that is, a
smooth vector subbundle of the tangent bundle TQ) and denote the annihilator of ∆Q

by ∆◦
Q. Let πQ : T ∗Q → Q be the canonical projection so that its tangent is a map

TπQ : TT ∗Q → TQ. Lift the distribution ∆Q on Q, defining the distribution on T ∗Q by

∆T∗Q = (TπQ)−1 (∆Q) ⊂ TT ∗Q. (5.1)

Let Ω be the canonical two-form on T ∗Q and define a skew-symmetric bilinear form
Ω∆Q

by restricting Ω to ∆T∗Q, that is, Ω∆Q
= Ω |∆T∗Q×∆T∗Q

. Then, we have the following
proposition.

Proposition 5.1. Let ∆Q ⊂ TQ be a given (regular for simplicity) distribution on Q, and
let ∆T∗Q = (TπQ)−1 (∆Q) be the induced distribution on T ∗Q. Then, the set of ∆T∗Q and
the skew-symmetric bilinear form Ω∆Q

defines an induced Dirac structure D∆Q
on T ∗Q,

whose fiber is given for each z ∈ T ∗Q as

D∆Q
(z) = {(vz, αz) ∈ TzT

∗Q× T ∗
z T ∗Q | vz ∈ ∆T∗Q(z), and

αz(wz) = Ω∆Q
(z)(vz, wz) for all wz ∈ ∆T∗Q(z)}. (5.2)

While this result is a special case of Theorem 2.3, we give the proof from scratch for the
convenience of the reader, as this is the situation of direct relevance to this paper.
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Proof. The orthogonal of D∆Q
⊂ TT ∗Q⊕ T ∗T ∗Q at the point z ∈ T ∗Q is given by

D⊥
∆Q

(z) = {(uz, βz) ∈ TzT
∗Q×T ∗

z T ∗Q | αz(uz) + βz(vz) = 0 for all vz ∈ ∆T∗Q(z),

and αz(wz) = Ω∆Q
(z)(vz, wz) for all wz ∈ ∆T∗Q(z)}.

Let us first show that D∆Q
(z) ⊂ D⊥

∆Q
(z). Let (vz, αz) ∈ D∆Q

(z) and (v′z, α
′
z) ∈ D∆Q

(z).
Then,

αz(v′z) + α′z(vz) = Ω∆Q
(z)(vz, v

′
z) + Ω∆Q

(z)(v′z, vz) = 0.

Therefore, D∆Q
(z) ⊂ D⊥

∆Q
(z).

Next, we shall check D⊥
∆Q

(z) ⊂ D∆Q
(z). Let (uz, βz) ∈ D⊥

∆Q
(z). By definition of D⊥

∆Q
,

we have αz(uz) + βz(vz) = 0 for all vz ∈ ∆T∗Q(z) and αz(wz) = Ω∆Q
(z)(vz, wz) for all

wz ∈ ∆T∗Q(z). First of all, choose vz = 0, and αz ∈ ∆◦
T∗Q(z), the annihilator of ∆T∗Q(z);

that is, αz(wz) = 0 for all wz ∈ ∆T∗Q(z). For any αz ∈ ∆◦
T∗Q(z), we have (0, αz) ∈ D∆Q

,
and so as (uz, βz) is orthogonal to all such elements, we have αz(uz) = 0 for all αz ∈ ∆◦

T∗Q(z)
and so uz ∈ ∆T∗Q(z).

The other condition on (uz, βz) we need to check is that βz(vz) = Ω∆Q
(z)(uz, vz) for

all vz ∈ ∆T∗Q(z). Thus, let vz ∈ ∆T∗Q(z) be arbitrary and choose αz such that αz(wz) =
Ω∆Q

(z)(vz, wz) for all wz ∈ ∆T∗Q(z). From αz(uz) + βz(vz) = 0 and the fact that we have
already proved that uz ∈ ∆T∗Q(z), we get

Ω∆Q
(z)(vz, uz) + βz(vz) = 0 for all vz ∈ ∆T∗Q(z),

that is, βz(vz) = Ω∆Q
(z)(uz, vz) for all vz ∈ ∆T∗Q(z). Thus, (uz, βz) ∈ D∆Q

(z) and hence
D⊥

∆Q
⊂ D∆Q

, as required. Therefore, D⊥
∆Q

= D∆Q
. �

Dirac Structures Induced from Nonholonomic Constraints. Let Q be a smooth
manifold. Let ∆Q ⊂ TQ be a regular distribution on Q and let ∆◦

Q denotes the annihilator
of ∆Q. Let Ω be the canonical symplectic form on T ∗Q and let Ω[ : TT ∗Q → T ∗T ∗Q be
the associated flat map. Recall that the distribution ∆Q ⊂ TQ may be lifted up as

∆T∗Q = (TπQ)−1 (∆Q) ⊂ TT ∗Q

and that its annihilator is defined, for each z ∈ T ∗Q, as

∆◦
T∗Q(z) = {αz ∈ T ∗

z T ∗Q | 〈wz, αz〉 = 0 for all wz ∈ ∆T∗Q(z)}.

The induced Dirac structure D∆Q
on T ∗Q, defined by equation (5.2), can, by using a little

definition chasing, be expressed by the following proposition.

Proposition 5.2. Given a distribution ∆Q on Q, the induced Dirac structure D∆Q
on T ∗Q

has fiber given, for each z ∈ T ∗Q, by

D∆Q
(z) = { (vz, αz) ∈ TzT

∗Q× T ∗
z T ∗Q | vz ∈ ∆T∗Q(z),

and αz − Ω[(z) · vz ∈ ∆◦
T∗Q(z) }. (5.3)

This is a restatement of the preceding proposition, so we can omit the direct proof.

Remarks. Recall the construction of an induced Dirac structure on a vector space that
was given in Theorem 3.3. Motivated by the vector space case, we can also describe the
induced Dirac structure on T ∗Q in equation (5.3) in the following way:
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Consider the diffeomorphism defined by σQ = κQ ◦ (Ω[)−1 : T ∗T ∗Q → T ∗TQ and let,
as usual, πQ : T ∗Q → Q be the canonical projection. Recall that we have two projections,
namely

TπQ : TT ∗Q → TQ, and π2 = TπQ ◦ (Ω[)−1 : T ∗T ∗Q → TQ.

Consider a pair of points (vz, αz) ∈ TzT
∗Q × T ∗

z T ∗Q and also consider the points κQ(vz)
and σQ(αz), each of which lies in T ∗TQ. First observe that κQ(vz) and σQ(αz) have the
same base point when TπQ(vz) = π2(αz); if this holds, it makes sense to subtract κQ(vz)
and σQ(αz).

Next, let ∆TQ = Tτ−1
Q (∆Q) and let ∆◦

TQ be its annihilator. A straightforward check
using local representatives then shows that the induced Dirac structure D∆Q

on T ∗Q is
given at a point z ∈ T ∗

q Q by

D∆Q
(z) = {(vz, αz) ∈ TzT

∗Q× T ∗
z T ∗Q | TπQ(vz) = π2(αz) =: wq ∈ ∆Q(q),

κQ(vz)− σQ(αz) ∈ ∆◦
TQ(wq)}.

(5.4)

Local Representation of the Dirac Structure. To study Dirac structures locally, we
choose local coordinates qi on Q so that locally, Q is represented by an open set U ⊂ Rn.
The constraint set ∆Q defines a subspace of TQ, which we denote by ∆(q) ⊂ Rn at each
point q ∈ U . If we let the dimension of the constraint space be n−m, then we can choose
a basis em+1(q), em+2(q), . . . , en(q) of ∆(q).

It is also common (see, for instance, Bloch [2003]) to represent constraint sets as the
simultaneous kernel of a number of constraint one-forms; that is, the annihilator of ∆(q),
which is denoted by ∆◦(q), is spanned by such one-forms, that we write as ω1, ω2, . . . , ωm.
Now writing the projection map πQ : T ∗Q → Q locally as (q, p) 7→ q, its tangent map is
locally given by TπQ : (q, p, q̇, ṗ) 7→ (q, q̇). Thus, we can locally represent ∆T∗Q as

∆T∗Q
∼=
{
v(q,p) = (q, p, q̇, ṗ) | q ∈ U, q̇ ∈ ∆(q)

}
.

Letting points in T ∗T ∗Q be locally denoted by α(q,p) = (q, p, α, w), where α is a covector
and w is a vector, notice that the annihilator of ∆T∗Q is locally,

∆◦
T∗Q

∼=
{
α(q,p) = (q, p, α, w) | q ∈ U, α ∈ ∆◦(q) and w = 0

}
.

Now we have, from the local expression for the symplectic form,

Ω[(z) · vz = (q, p,−ṗ, q̇)

and we see that the condition αz − Ω[(z) · vz ∈ ∆◦
T∗Q in equation (5.3) reads

(q, p, α + ṗ, w − q̇) ∈ ∆◦
T∗Q,

that is,
α + ṗ ∈ ∆◦(q), and w − q̇ = 0.

Thus, we get, by Proposition 5.2,

D∆Q
(z) = { (vz, αz) ∈ TzT

∗Q× T ∗
z T ∗Q | vz ∈ ∆T∗Q(z), andαz − Ω[(z) · vz ∈ ∆◦

T∗Q(z) }
= {((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆(q), w = q̇, and α + ṗ ∈ ∆◦(q)} . (5.5)
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A Poisson Representation of Dirac Structures. So far we have used the symplectic
structure on T ∗Q together with the constraint ∆Q to define the Dirac structure D∆Q

.
However, as we have already hinted at, there is a dual version of the above constructions
in which one takes a Poisson point of view to arrive at a “Poisson version” of equation
(5.5). Recall that the Poisson structure on T ∗Q may be viewed as a bundle map B] :
T ∗T ∗Q → TT ∗Q that is usually thought of as taking the differential of a Hamiltonian and
producing the corresponding Hamiltonian vector field. It is associated in a natural way with
the canonical symplectic structure Ω : TT ∗Q × TT ∗Q → R, or its “inverse”, the canonical
Poisson structure B :T ∗T ∗Q× T ∗T ∗Q → R on T ∗Q.

Suppose that again, we are given a constraint distribution ∆Q ⊂ TQ. Recall that the
projection π2 : T ∗T ∗Q → TQ is defined by π2 = TπQ ◦ (Ω[)−1, and, analogously to (5.1),
define the induced codistribution ∆∗

T∗Q ⊂ T ∗T ∗Q by

∆∗
T∗Q = Ω[(∆T∗Q) = (π2)−1(∆Q). (5.6)

Recalling that

∆T∗Q = (TπQ)−1(∆Q) = {v(q,p) = (q, p, v, α) | q ∈ U, v ∈ ∆(q)},

we see that the codistribution is given, using local coordinates q ∈ U ⊂ Rn, by

∆∗
T∗Q = {α(q,p) = (q, p,−α, v) | q ∈ U, v ∈ ∆(q)}.

The annihilator of ∆∗
T∗Q is given, for each z ∈ T ∗Q, by

(∆∗
T∗Q)◦(z) = {wz ∈ TzT

∗Q | 〈wz, αz〉 = 0 for all αz ∈ ∆∗
T∗Q(z)}

= {w(q,p) = (q, p, w, β) | q ∈ U, w = 0, and β ∈ ∆◦(q)}. (5.7)

We summarize the situation in the following Proposition (compare with Proposition 5.2).

Proposition 5.3. Using the above notations, the induced Dirac structure D∆Q
on T ∗Q is

given, for z ∈ T ∗Q, by

D∆Q
(z) = {(vz, αz) ∈ TzT

∗Q× T ∗
z T ∗Q | αz ∈ ∆∗

T∗Q(z)

and vz −B](z) · αz ∈ (∆∗
T∗Q)◦(z)} (5.8)

and is given locally by

D∆Q
(z) = {((q, p, q̇, ṗ), (q, p, α, w)) | q̇ ∈ ∆(q), w = q̇, and α + ṗ ∈ ∆◦(q)} . (5.9)

Of course this last local expression (5.9) agrees with (5.5).

6 Implicit Lagrangian Systems

In this section, an implicit Lagrangian system is defined in the context of the induced Dirac
structure D∆Q

on T ∗Q. As we shall see, the notion of implicit Lagrangian systems that are
developed here can treat with the case of systems with degenerate Lagrangians as well as
systems with nonholonomic constraints.
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Legendre Transform. Let us recall the Legendre transform. Given a Lagrangian L :
TQ → R, define a map FL : TQ → T ∗Q, called the fiber derivative, by

FL(v) · w =
d

ds

∣∣∣∣
s=0

L(v + sw),

where v, w ∈ TqQ and FL(v)·w is the derivative of L at v along the fiber TqQ in the direction
of w. Note that FL is fiber-preserving; that is, it maps the fiber TqQ to the fiber T ∗

q Q. In
local coordinates (q, v) for TQ, the fiber derivative is denoted by

FL(q, v) =
(

q,
∂L

∂v

)
,

that is,

p =
∂L

∂v
,

where (q, p) are local coordinates on T ∗Q. What we recalled here is the “naive” definition
of the Legendre transform; however, notice that the Legendre transform need not be locally
invertible; that is, the Lagrangian is degenerate in general, which is a situation that we wish
to cover in this paper. For the case of degenerate Lagrangians, it is useful to have a more
sophisticated version – a generalized Legendre transform, which was originally developed by
Tulczyjew [1977]. In Part II, we will return to illustrate the generalized Legendre transform
in preparation for the variational link with implicit Lagrangian systems.

The Dirac Differential Operator. We are working towards the important notion of an
implicit Lagrangian system associated with a given Lagrangian (possibly degenerate) and a
given constraint distribution. We shall do this using the language of Dirac structures.

In this paragraph, we make use of the diffeomorphism between T ∗TQ and T ∗T ∗Q, to
introduce what we call the Dirac differential operator D that acts on a Lagrangian and that
will play an important role in the theory that follows.

Let Q be a manifold and let L : TQ → R be a Lagrangian. We employ (q, v) as the
variables in a local representation for TQ. Recall that dL is a one-form on TQ, which is
locally expressed by

dL =
(

q, v,
∂L

∂q
,
∂L

∂v

)
.

Thus, dL : TQ → T ∗TQ. Now define a differential operator D acting on the Lagrangian
L : TQ → R, which we shall call the Dirac differential of L, by

DL = γQ ◦ dL, (6.1)

where γQ is the diffeomorphism defined by

γQ = Ω[ ◦ (κQ)−1 : T ∗TQ → T ∗T ∗Q.

Using the local representation of Ω[ and of κQ, we see that locally γQ : (q, δq, δp, p) 7→
(q, p,−δp, δq) and so DL : TQ → T ∗T ∗Q is represented, in local coordinates on T ∗T ∗Q, by

DL =
(

q,
∂L

∂v
,−∂L

∂q
, v

)
.
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Definition of Implicit Lagrangian Systems. Now we have all the ingredients we need
to define an implicit Lagrangian system. We summarize and extend things in the following
definition. We shall use the slight abuse of notation (q, v) ∈ TQ and (q, p) ∈ T ∗Q for points
in TQ and T ∗Q with base point q. Likewise, points in TQ⊕ T ∗Q are denoted (q, v, p).

Definition 6.1 (Implicit Lagrangian Systems). Let L : TQ → R be a given Lagrangian
(possibly degenerate) and ∆Q ⊂ TQ be a given regular constraint distribution on a
configuration manifold Q. Denote by D∆Q

, the induced Dirac structure on T ∗Q that is
given by equation (5.3) and write DL : TQ → T ∗T ∗Q for the Dirac differential of L,
defined by equation (6.1). Let P = FL(∆Q) ⊂ T ∗Q, the image of ∆Q under the Legendre
transformation.

A partial vector field on T ∗Q is a map X : TQ⊕T ∗Q → TT ∗Q that assigns to a point
(q, v, p) ∈ TQ⊕T ∗Q a vector in TT ∗Q at the point (q, p) ∈ T ∗Q. An implicit Lagrangian
system is a triple, (L,∆Q, X), where X is a partial vector field on T ∗Q, defined at points
(q, v, p) satisfying (q, p) = FL(q, v) for (q, v) ∈ ∆Q, together with the condition

(X, DL) ∈ D∆Q
. (6.2)

In other words, we require that for each point (q, v) ∈ ∆Q and with (q, p) = FL(q, v) ∈ P ,
we have

(X(q, v, p),DL(q, v)) ∈ D∆Q
(q, p).

In the case ∆Q = TQ, P is usually called the primary constraint set; thus, P defined
here is a generalization of the usual primary constraint set.

Notice that the Legendre transform relation p = ∂L/∂v corresponds exactly to the
equality of the base points in equation (6.2).

Definition 6.2. A solution curve of an implicit Lagrangian system (L,∆Q, X) is a curve
(q(t), v(t), p(t)) ∈ TQ ⊕ T ∗Q, t1 ≤ t ≤ t2, such that it is an integral curve of X, where
(q(t), p(t)) = FL(q(t), v(t)) for v(t) ∈ ∆Q(q(t)).

Because of the automatic base point equality, a solution curve of an implicit Lagrangian
system (L,∆Q, X) may be equivalently defined to be a (smooth) curve (q(t), v(t), p(t)),
where t1 ≤ t ≤ t2, whose image lies in the set ∆Q ⊕ P ⊂ TQ ⊕ T ∗Q and is such that
(q(t), v(t), p(t)) is an integral curve of X and such that

(X(q(t), v(t), p(t)),DL(q(t), v(t))) ∈ D∆Q
(q(t), p(t)).

Example: The Case ∆Q = TQ. This is perhaps the simplest case in which one has no
constraints, but the Lagrangian may be degenerate. In this case, the Dirac structure D∆Q

is
given, for each z ∈ T ∗Q, by

D∆Q
(z) = {(vz, αz) ∈ TzP × T ∗

z P | αz(wz) = Ω(z)(vz, wz) for all wz ∈ TzT
∗Q}.

Therefore, writing X(q, v, p) = (q, p, q̇, ṗ), and using the local expressions

Ω ((q, p, u1, α1), (q, p, u2, α2)) = 〈α2, u1〉 − 〈α1, u2〉

for the canonical symplectic form and the local expression

DL =
(

q,
∂L

∂v
,−∂L

∂q
, v

)
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for the Dirac differential, the condition for an implicit Lagrangian system (X, DL) ∈ D∆Q

reads that p = ∂L/∂v (equality of base points as noted above) and that〈
−∂L

∂q
, u

〉
+ 〈v, α〉 = 〈α, q̇〉 − 〈ṗ, u〉

for all u and all α, where (u, α) are the local representatives of a point in T(q,p)T
∗Q. Since

this holds for all (u, α), this means that in this case, the condition of an implicit Lagrangian
system is equivalent to the Euler–Lagrange equations ṗ = ∂L/∂q together with the condition
v = q̇.

In the usual formulation of degenerate Lagrangian systems, one often must simply assume
that the condition v = q̇ holds; for instance, Abraham and Marsden [1978], Theorem 3.5.17
is typical. However, in the present context, the condition v = q̇ follows automatically from
the definition of an implicit Lagrangian system. Notice that integral curves automatically
satisfy the primary constraints and that this is built into the formalism in a natural way.
Of course in typical examples such as when L is linear in the velocity, the actual equations
need not be literally of second order.

The above example gives a good indication of the manner in which the general notion
of an implicit Lagrangian system includes interesting cases. We will explore examples with
a nontrivial constraint set ∆Q shortly, but we first write out the conditions defining an
implicit Lagrangian system in local representation.

These calculations prove the following local representation for an implicit Lagrangian
system.

Proposition 6.3. Locally, and using the preceding notation, the condition (X, DL) ∈ D∆Q

defining an implicit Lagrangian system reads

p =
∂L

∂v
, q̇ ∈ ∆(q), v = q̇, and ṗ− ∂L

∂q
∈ ∆◦(q) (6.3)

Let us develop a convenient matrix representation for these equations in the following
example.

Example. Let Q be a configuration manifold. Given nonholonomic constraints, denoted
by the distribution ∆Q on Q, we choose local coordinates qi on Q so that locally, Q is
expressed by an open set U ⊂ Rn. The constraint set ∆Q defines a subspace of TQ, which
we denote by ∆(q) ⊂ Rn at each point q ∈ U . If we let the dimension of the constraint space
be n−m, then we can choose a basis em+1(q), em+2(q), . . . , en(q) of ∆(q). So, the constraint
set denoted by the annihilator ∆◦(q) is spanned by one-forms ω1, ω2, . . . , ωm; that is,

∆(q) = {vi ∈ Rn | ωa
i (q) vi = 0, a = 1, ...,m},

where we employ the local expressions ωa = ωa
i (q) dqi, a = 1, ...,m. Then, using the La-

grange multipliers µa, a = 1, ...,m, a nonholonomic mechanical system is locally represented
by an implicit Lagrangian system (L,∆Q, X) such that(

q̇i

ṗi

)
=
(

0 1
−1 0

)(− ∂L
∂qi

vi

)
+
(

0
µa ωa

i (q)

)
,

pi =
∂L

∂vi
, (6.4)

0 = ωa
i (q) vi.
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The “Second-Order” Condition. We pick out the following simple but basic result,
(consistent with the above example) for special attention to make a point about the useful-
ness of the present formulation.

Corollary 6.4. Let (q(t), v(t), p(t)) be an integral curve of a given implicit Lagrangian
system (L,∆Q, X). Then v(t) = q̇(t) ∈ ∆Q.

Proof. This is a special case of (6.3). �

In the special case of nonholonomic systems, as we shall examine in more detail later, the
condition v(t) = q̇(t) is normally postulated separately from the equations of motion (see, for
example, Bloch [2003] and references therein) but the above development shows that in fact,
it follows from the condition of having an integral curve of an implicit Lagrangian system.

Conservation of Energy. Define the generalized energy E : TQ⊕ T ∗Q → R by

E(q, v, p) = 〈p, v〉 − L(q, v),

where (q, v) ∈ ∆Q and (q, p) ∈ P . As is common in the Pontryagin maximum principle (see,
for instance, Bloch [2003]), stationarity of E(q, v, p) = 〈p, v〉 − L(q, v) with respect to v,
defines the submanifold K obtained by imposing the base point, or the Legendre transform
condition p = ∂L/∂v:

K =
{

(q, v, p) ∈ TQ⊕ T ∗Q
∣∣∣ v ∈ ∆Q(q), p =

∂L

∂v

}
.

We now show that energy is conserved for any implicit Lagrangian system as follows.

Proposition 6.5. Let (q(t), v(t), p(t)) be an integral curve of a given implicit Lagrangian
system (L,∆Q, X). Then with p(t) = (∂L/∂v)(t), the function E(q(t), v(t), p(t)) is constant
in time.

Proof. We give the proof in local representation. From (6.3) and the definition of E, we
get

d

dt
E = 〈ṗ, v〉+ 〈p, v̇〉 − ∂L

∂q
q̇ − ∂L

∂v
v̇

=
〈

ṗ− ∂L

∂q
, v

〉
which vanishes since v = q̇ ∈ ∆(q) and since ṗ− ∂L/∂q ∈ ∆◦(q). �

Remarks. Recall that, as was illustrated in §3, interconnections can be recognized as Dirac
structures and also that the Tellegen’s theorem is deduced from the (KCL and KVL) inter-
connections in circuits. Interestingly, in mechanics, Birkhoff [1927] introduced an analogous
idea of interconnections called nonenergic systems in the context of Lagrangian systems.
The nonenergicness is the condition of energy conservation such that

d

dt
E(q, v) =

〈
d

dt

∂L

∂v
, v

〉
+
〈

∂L

∂v
, v̇

〉
−
〈

∂L

∂q
, v

〉
−
〈

∂L

∂v
, v̇

〉
=
〈

d

dt

∂L

∂v
− ∂L

∂q
, v

〉
= 0,
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where E(q, v) = 〈∂L/∂v, v〉 − L(q, v), v = q̇ ∈ ∆(q) and d(∂L/∂v)/dt −∂L/∂q ∈ ∆◦(q).
Duinker [1959, 1962] investigated nonenergic Lagrangian circuits called nonenergic multi-
ports including an element of traditor, whose Lagrangian is given by L(q, q̇) = 〈α(q), q̇〉 −
V (q), where α is a one-form on a configuration space Q which is associated with the traditor
and V is a potential function on Q associated with conservative elements. Notice that the
above Lagrangian is linear in q̇ and is degenerate, and this is quite similar to the case of
point vortex systems (see, for instance, Rowley and Marsden [2002]). Birkhoff [1927] actu-
ally considered the special case of nonenergic Lagrangian systems of L(q, q̇) = 〈α(q), q̇〉 that
satisfy E(q, q̇) = 0; that is, the energy itself is zero; for example, an electrically charged
particle of negligible mass moving in a static magnetic field. The nonenergic multiports or
energy-conserving interconnection multiports were investigated in the context of reciprocal
and nonreciprocal circuits by Brayton [1971] and Wyatt and Chua [1977], and were also
studied in the general context of Dirac structures with (implicit) Hamiltonian systems by
Maschke, van der Schaft and Breedveld [1995]; van der Schaft and Maschke [1995]; Dalsmo
and van der Schaft [1998], where the system with nonenergic multiports was called an energy
conserving system or port-controlled system.

7 Examples

In this section, we show how the proposed idea of an implicit Lagrangian system can be
applied to a nonholonomic mechanical system and an electric circuit with two illustrative
examples; the first example is a vertical rolling disk on a plane as a nonholonomic system
and the second one is an L-C circuit for a degenerate Lagrangian system with holonomic
constraints.

Example: The Vertical Rolling Disk. Let us consider the vertical rolling disk on a
plane, which is one of the most fundamental and essential example of mechanical systems
with nonholonomic constraints; see Bloch, Krishnaprasad, Marsden, and Murray [1996] and
Bloch [2003].

Consider a homogeneous vertical disk with a radius R rolling on the xy-plane about
its vertical axis. Let x and y denote the position of contact of the disk in the xy-plane.
Let θ be the rotation angle of the disk and ϕ be the heading angle of the disk. Then, the
configuration space of the vertical rolling disk is Q = R2×S1×S1, whose local coordinates
are given by q = (x, y, θ, ϕ). Let (q, v) = (x, y, θ, ϕ, vx, vy, vθ, vϕ) be the local coordinates
for TQ. The Lagrangian is given by

L(x, y, θ, ϕ, vx, vy, vθ, vϕ) =
1
2
m(v2

x + v2
y) +

1
2
Iv2

θ +
1
2
Jv2

ϕ,

where m is the mass of the disk and I and J are the moments of inertia. Note that
we consider the full configuration space and also that the Lagrangian is the standard free
Lagrangian without constraints.

The kinematic constraints due to the rolling contact without slipping on the plane is
denoted by

ẋ = R (cos ϕ) θ̇,

ẏ = R (sinϕ) θ̇.

The constraint may be represented by the distribution ∆Q ⊂ TQ such that, for each q ∈ Q,

∆Q(q) = {vq ∈ TqQ | 〈ωa(q), vq〉 = 0, a = 1, 2} ,
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where vq = (vx, vy, vθ, vϕ) and the one-forms ωa are given by

ω1 = dx−R (cos ϕ) dθ,

ω2 = dy −R (sinϕ) dθ.

Note that ωa span the annihilator ∆◦
Q of the distribution ∆Q.

The differential of the Lagrangian is denoted by

dL =
(

x, y, θ, ϕ, vx, vy, vθ, vϕ,
∂L

∂x
,
∂L

∂y
,
∂L

∂θ
,
∂L

∂ϕ
,

∂L

∂vx
,

∂L

∂vy
,

∂L

∂vθ
,

∂L

∂vϕ

)
=
(
x, y, θ, ϕ, vx, vy, vθ, vϕ, 0, 0, 0, 0, m vx, m vy, I vθ, J vϕ

)
,

and therefore the Dirac differential of the Lagrangian is given by using the diffeomorphism
γQ = Ω[ ◦ (κQ)−1 : T ∗TQ → T ∗T ∗Q such that

DL =
(

x, y, θ, ϕ,
∂L

∂vx
,

∂L

∂vy
,

∂L

∂vθ
,

∂L

∂vϕ
, −∂L

∂x
,−∂L

∂y
,−∂L

∂θ
,−∂L

∂ϕ
, vx, vy, vθ, vϕ

)
=
(

x, y, θ, ϕ,
∂L

∂vx
,

∂L

∂vy
,

∂L

∂vθ
,

∂L

∂vϕ
, 0, 0, 0, 0, vx, vy, vθ, vϕ

)
.

In the above, the Legendre transformation FL : TQ → T ∗Q gives(
x, y, θ, ϕ, px, py, pθ, pϕ

)
=
(

x, y, θ, ϕ,
∂L

∂vx
,

∂L

∂vy
,

∂L

∂vθ
,

∂L

∂vϕ

)
=
(
x, y, θ, ϕ, mvx,m vy, I vθ, J vϕ

)
,

where (q, p) = (x, y, θ, ϕ, px, py, pθ, pϕ) are local coordinates for T ∗Q. The distribution ∆Q

on Q is locally given by

∆Q(q) = span
{

∂

∂ϕ
,R cosϕ

∂

∂x
+ R sinϕ

∂

∂y
+

∂

∂θ

}
.

Recall the distribution ∆Q is to be lifted to T ∗Q such that

∆T∗Q = (TπQ)−1(∆Q) ⊂ TT ∗Q,

where πQ : T ∗Q → Q is the cotangent projection and TπQ : TT ∗Q → T ∗Q is its tangent
map.

As in equations (5.6) and (5.7), we can define the distribution ∆∗
T∗Q = Ω[(∆T∗Q) and its

annihilator (∆∗
T∗Q)◦. Then, using the canonical Poisson structure B : T ∗T ∗Q×T ∗T ∗Q → R,

the induced Dirac structure on T ∗Q is expressed, as shown in equation (5.8), such that, for
each (q, p) ∈ T ∗Q,

D∆Q
(q, p) = {(v(q,p), α(q,p)) ∈ T(q,p)T

∗Q× T ∗
(q,p)T

∗Q | α(q,p) ∈ ∆∗
T∗Q(q, p)

and v(q,p) −B](q, p) · α(q,p) ∈ (∆∗
T∗Q)◦(q, p)}.

Let X denote a partial vector field on T ∗Q, which is locally denoted by, for each (q, v, p) ∈
TQ⊕ T ∗Q that satisfying (q, p) = FL(q, v) for (q, v) ∈ ∆Q,

X(q, v, p) = (ẋ, ẏ, θ̇, ϕ̇, ṗx, ṗy, ṗθ, ṗϕ).

Then, the triple (L,∆Q, X) is an implicit Lagrangian system that satisfies, for each vq ∈
∆Q(q) and with (q, p) = FL(q, v),

(X(q, v, p),DL(q, v)) ∈ D∆Q
(q, p).
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Recall the local expressions for an implicit Lagrangian system are given by equation (6.4),
and we obtain the following matrix representation:

ẋ
ẏ

θ̇
ϕ̇

ṗx

ṗy

ṗθ

ṗϕ


=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0





0
0
0
0

vx

vy

vθ

vϕ



+



0 0
0 0
0 0
0 0

1 0
0 1

−R cosϕ −R sinϕ
0 0


(

µ1

µ2

)
,

together with the Legendre transformation
px

py

pθ

pϕ

 =


m vx

m vy

I vθ

J vϕ

 ,

and with the kinematic constraints

(
0
0

)
=
(

1 0 −R cosϕ 0
0 1 −R sinϕ 0

)
vx

vy

vθ

vϕ

 .

Then, we obtain the implicit differential-algebraic equations for the system as

ṗx = µ1, ṗy = µ2, ṗθ = −(R cos ϕ) µ1 − (R sinϕ) µ2, ṗϕ = 0,

ẋ = vx, ẏ = vy, θ̇ = vθ, ϕ̇ = vϕ, vx = (R cosϕ)vθ, vy = (R sinϕ)vθ,

px = m vx, py = m vy, pθ = I vθ, pϕ = J vϕ.

Example: L-C Circuits. Let us investigate an example of L-C circuits, i.e., a lossless
circuit comprising of inductors (L’s) and capacitors (C’s) in the framework of implicit La-
grangian systems. The system of L-C circuits is a typical degenerate Lagrangian system
that is accompanied with KCL (holonomic) constraints as well as primary constraints in
the sense of Dirac’s theory. In analogy with mechanics, the KCL constraints may be recog-
nized as kinematic constraints. Then, we demonstrate how a degenerate Lagrangian system
with the KCL (or equivalently kinematic) constraints can be incorporated into the context
of implicit Lagrangian systems by an illustrative example of L-C circuits. For comparison
with an approach of implicit Hamiltonian systems, refer to Bloch and Crouch [1997]; van
der Schaft [1998].
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In order to investigate L-C circuits, let us employ an analogy with mechanics in such a
way that a configuration space Q of circuits may be recognized as the charge space whose
point indicates a charge associated with every element of the circuit. This implies that local
coordinates for the charge qi as to every element correspond to local coordinates of a point
of the configuration space in mechanics. In this analogy, the tangent bundle TQ may be
regarded as the current space, whose local coordinates are denoted by (q, f), while the
cotangent bundle T ∗Q corresponds to the flux linkage space, whose local coordinates are
given by (q, p). In this context, f ∈ TqQ indicates the current, while p ∈ T ∗

q Q denotes the
flux linkage.

Consider a 4-port L-C circuit shown in Fig.7.1, which was also investigated by van
der Schaft [1998]. In the illustrative example of L-C circuits, the configuration manifold Q
is a 4-dimensional vector space E = R4, that is, Q = E. Then, we have TQ = TE (∼= E×E)
and T ∗Q = T ∗E (∼= E × E∗). Let q = (qL, qC1 , qC2 , qC3) ∈ E and f = (fL, fC1 , fC2 , fC3) ∈
TqE.

L

C1C2 C3

eC3

fC3fC2

eC2
eC1

fC1

fL

eL

Figure 7.1: L-C Circuit

Let T : TE (= E × E) → R be the magnetic energy of the L-C circuit, which is defined
by the inductance L such that

Tq(f) =
1
2
L (fL)2,

and let V : E → R be the electric potential energy of the L-C circuit, which is defined by
capacitors C1, C2, and C3 such that

V (q) =
1
2

(qC1)
2

C1
+

1
2

(qC2)
2

C2
+

1
2

(qC3)
2

C3
.

Then, we can define the Lagrangian of the L-C circuit L : TE (∼= E × E) → R by

L(q, f) = Tq(f)− V (q)

=
1
2
L (fL)2 − 1

2
(qC1)

2

C1
− 1

2
(qC2)

2

C2
− 1

2
(qC3)

2

C3
.

(7.1)

The KCL constraints indicate constraints of the current given, in coordinates, by

− fL + fC2 = 0,

− fC1 + fC2 − fC3 = 0,
(7.2)

which are represented by
〈ωa, f 〉 = 0, a = 1, 2,
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where f = (fL, fC1 , fC2 , fC3) ∈ TqE and ωa denote 2-independent covectors (or one-forms)
represented, in coordinates, by

ωa = ωa
k dqk, a = 1, 2; k = 1, ..., 4,

where q = (q1, q2, q3, q4) = (qL, qC1 , qC2 , qC3). In this example, the coefficients ωa
k are given

in matrix representation by

ωa
k =

(
−1 0 1 0
0 −1 1 −1

)
.

Therefore, the set of currents that satisfy the KCL constraints forms a constraint sub-
space ∆ ⊂ TE, which we shall call the constraint KCL space that is defined, for each q ∈ E,
by

∆q = {f ∈ TqE | 〈ωa, f〉 = 0, a = 1, 2}.

On the other hand, the annihilator ∆◦ of ∆ is the constraint KVL space, which is defined,
for each q ∈ E, by

∆◦
q = {e ∈ T ∗

q E | 〈e, f〉 = 0, for all f ∈ ∆q}.

In the above, e ∈ ∆◦
q denotes the voltage of the circuit that is the covector in the constraint

KVL space, which is represented, in coordinates, by using Lagrange multipliers µa such that

ek = µa ωa
k , a = 1, 2, k = 1, ..., 4,

where e = (e1, e2, e3, e4) = (eL, eC1 , eC2 , eC3).

Setting f = (f1, f2, f3, f4) = (fL, fC1 , fC2 , fC3), it is obvious that the Lagrangian L :
TE → R of the L-C circuit defined by equation (7.1) is degenerate, since

det
[

∂2L
∂f i∂f j

]
= 0.

The constraint flux linkage subspace is defined by the Legendre transform such that

P = FL(∆) ⊂ T ∗E ∼= E × E∗.

In coordinates, (q, f) = (qL, qC1 , qC2 , qC3 , fL, fC1 , fC2 , fC3) ∈ ∆ ⊂ TE, where the current
f = (fL, fC1 , fC2 , fC3) satisfies the KCL constraints in equation (7.2). So we can define
(q, p) = FL(q, f) ∈ T ∗E. Since the Legendre transform is expressed, in coordinates, by

(qL, qC1 , qC2 , qC3 , pL, pC1 , pC2 , pC3) =
(

qL, qC1 , qC2 , qC3 ,
∂L
∂fL

,
∂L

∂fC1

,
∂L

∂fC2

,
∂L

∂fC3

)
,

by computing, we obtain

pL = LfL, pC1 = pC2 = pC3 = 0.

The constraints of the flux linkages, that is, pC1 = pC2 = pC3 = 0 correspond to primary
constraints in the sense of Dirac, which form the constraint flux linkage subspace P ⊂
T ∗E = E × E∗, and it immediately reads

(q, p) = (qL, qC1 , qC2 , qC3 , pL, 0, 0, 0) ∈ P ⊂ T ∗E.

Let X be a partial vector field on T ∗E, defined at each (q, f, p) ∈ TE ⊕ T ∗E satisfying
(q, p) = FL(q, f), such that

X = (qL, qC1 , qC2 , qC3 , pL, 0, 0, 0, q̇L, q̇C1 , q̇C2 , q̇C3 , ṗL, 0, 0, 0) . (7.3)
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Since the differential of the Lagrangian dL = (q, f, ∂L/∂q, ∂L/∂f) is given by

dL =
(

qL, qC1 , qC2 , qC3 , fL, fC1 , fC2 , fC3 , 0,−qC1

C1
,−qC2

C2
,−qC3

C3
, LfL, 0, 0, 0

)
,

the Dirac differential of the Lagrangian DL = (q, ∂L/∂f,−∂L/∂q, f) may be denoted by

DL =
(

qL, qC1 , qC2 , qC3 , LfL, 0, 0, 0, 0,
qC1

C1
,
qC2

C2
,
qC3

C3
, fL, fC1 , fC2 , fC3

)
. (7.4)

As was illustrated, the induced distribution ∆T∗E on T ∗E is defined by the KCL con-
straint distribution ∆ ⊂ TE such that

∆T∗E = (TπE)−1(∆) ⊂ TT ∗E,

where πE : T ∗E → E is the canonical projection and TπE : TT ∗E → TE. Let ∆◦
T∗E be

the annihilator of ∆T∗E and let Ω be the canonical symplectic structure on T ∗E, and then
the Dirac structure D∆ on T ∗E induced from the KCL constraint distribution ∆ can be
defined by, for each z = (q, p) ∈ T ∗E,

D∆(z) = { (wz, αz) ∈ TzT
∗E × T ∗

z T ∗E | wz ∈ ∆T∗E(z),

and αz − Ω[(z) · wz ∈ ∆◦
T∗E(z) }.

As shown in equation (5.4), we can also define the induced Dirac structure by the different
way; that is, let τE : TE → E be the canonical projection and define

∆TE = Tτ−1
E (∆) ⊂ TTE.

Letting ∆◦
TE be its annihilator, the induced Dirac structure can be given, by employing the

symplectomorphisms κE : TzT
∗E → T ∗

z TE and σE : T ∗
z T ∗E → T ∗

z TE, such that, for each
z ∈ T ∗

q E,

D∆(z) = {( wz, αz ) ∈ TzT
∗E × T ∗

z T ∗E | TπE(wz) = π2(αz) =: fq ∈ ∆q,

κE(wz)− σE(αz) ∈ ∆◦
TE(fq)}.

By equations (7.3) and (7.4), it follows that the condition

(X(q, f, p),DL(q, f)) ∈ D∆(q, p)

holds for each (q, f) ∈ ∆ ⊂ TE and with (q, p) = FL(q, f).

Thus, L-C circuits can be understood in the context of the implicit Lagrangian system
(L,∆, X), which is locally described by equation (6.4). It immediately follows that, in
matrix representation,

q̇L

q̇C1

q̇C2

q̇C3

ṗL

0
0
0


=



0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0





0
qC1
C1
qC2
C2
qC3
C3

fL

fC1

fC2

fC3


+



0 0
0 0
0 0
0 0

−1 0
0 −1
1 1
0 −1


(

µ1

µ2

)
,
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together with the Legendre transformation

pL = LfL,

and with the KCL (holonomic) constraints

(
0
0

)
=
(
−1 0 1 0
0 −1 1 −1

)
fL

fC1

fC2

fC3

 .

Thus, we obtain the implicit differential-algebraic equations as

q̇L = fL, q̇C1 = fC1 , q̇C2 = fC2 , q̇C3 = fC3 ,

ṗL = −µ1, µ2 = −qC1

C1
, µ1 = −µ2 +

qC2

C2
, µ2 = −qC3

C3
,

pL = LfL, fL = fC2 , fC1 = fC2 − fC3 .

8 Conclusions

In this Part I of a two-part paper, we have proposed a framework for implicit Lagrangian
systems, which makes use of Dirac structures on the cotangent bundles that are induced
by constraint distributions on the underlying configuration manifold. We have shown that
systems such as nonholonomic mechanical systems and L-C circuits (which often have de-
generate Lagrangians) are natural examples of implicit Lagrangian systems.

We showed how a Dirac structure D∆Q
on a cotangent bundle T ∗Q is naturally induced

by a distribution ∆Q on Q, and we also showed some basic examples of these induced Dirac
structures, such as the KCL and KVL constraints in electric circuits, interconnections, and
constraints in nonholonomic mechanics.

The general notion of an implicit Lagrangian system makes use of the Dirac differential
DL : TQ → T ∗T ∗Q of a Lagrangian L : TQ → R. The definition of the Dirac differential
makes use of the diffeomorphisms between the spaces TT ∗Q, T ∗TQ, and T ∗T ∗Q as well as
the Legendre transformation. An implicit Lagrangian system (L,∆Q, X) then is defined by
the property that (X(q, v, p),DL(q, v)) ∈ D∆Q

(q, p) for each (q, v) ∈ ∆Q ⊂ TQ and with
(q, p) = FL(q, v) ∈ P ⊂ T ∗Q, where X : TQ⊕ T ∗Q → TT ∗Q is a partial vector field.

Finally, we illustrated the theory with two specific examples; the first is a vertical rolling
disk on a plane as a nonholonomic mechanical system and the second is an L-C circuit,
which has a degenerate Lagrangian as well as holonomic constraints.

In Part II, we explore links between variational principles, Dirac structures and implicit
Lagrangian systems. To establish these links, use is made of an extension of Hamilton’s
principle, one version of which is known as the Hamilton-Pontryagin principle, or sometimes,
Liven’s principle. We also investigate implicit Lagrangian systems in the general context of
an extended Lagrange-d’Alembert principle. Furthermore, we not only address how implicit
Hamiltonian systems can be formulated in the context of variational principles.
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