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Abstract. A methodology is given to determine the effect of different mass
distributions for triatomic reactions using the geometry of shape space. Atomic
masses are incorporated into the non-Euclidean shape space metric after the
separation of rotations. Using the equations of motion in this non-Euclidean
shape space, an averaged field of velocity-dependent fictitious forces is deter-
mined. This force field, as opposed to the force arising from the potential,
dominates branching ratios of isomerization dynamics of a triatomic molecule.
This methodology may be useful for qualitative prediction of branching ratios
in general triatomic reactions.

1 Introduction

The roles played by atomic masses are of great interest in current chemical physics.
Atomic-mass effects will be the most prominent in isotopic reactions such as the
breakup dynamics of the triatomic hydrogen ion Hþ

3 and its isotopomers, D2Hþ,
H2Dþ, and Dþ

3 [1]. The anomalous isotope effect in ozone O3 [2, 3] also provides
intriguing problems that are related to the influence of atomic masses. Therefore, a
general framework to describe the effect of atomic masses in triatomic reactions
should serve many purposes.

Atomic masses are incorporated into the metric tensor of shape space on the
basis of reduction theory [4] and gauge theory [5–7] that is used for the separation
of rotational degrees of freedom. The metric tensor after reduction is generally
non-Euclidean for three- and more-atom systems. As a result, the dynamical effects
that have their origin in the non-Euclidean nature of the metric of shape space,
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should be important for understanding the effect of the masses. It should be noted
that while the Born-Oppenheimer potential energy surface changes depending on
the system, the geometry of shape space is rather intrinsic and independent of the
system. Therefore, it is important to study the geometry of shape space of many-
body systems.

Its non-Euclidean nature suggests that trajectories in shape space possess a
certain directionality, even without the influence of the potential energy surface.
This directionality is of importance in branching processes in multi-channel reac-
tions. The behavior of geodesics signals this ‘‘preference’’ of motion in shape
space. In this article, using suitable coordinates, an averaged field of ‘‘fictitious
forces’’ is found that accounts for the directionality of geodesics. It is shown that
this force field does, in fact, dominate mass-influenced branching ratios of isomer-
ization dynamics of a triatomic molecule.

A prototypical model to study mass-related branching ratios of isomerization
reactions is presented in Sect. 2, and Sect. 3 gives a theoretical explanation for the
branching ratios via the geometry of shape space.

2 Model Reactions and Branching Ratios

This section investigates the isomerization dynamics of a molecular cluster com-
posed of three atoms with different masses ðm1;m2;m3Þ ¼ ð1; 1; 0:1Þ with the aim
of determining the effects of the values of the masses. The total angular momentum
of the system is taken to be zero for simplicity. The three atoms interact equally
through a pairwise Morse potential. Because of the mass difference, this system is
called a ‘‘modified’’ M3 cluster. The dimensionless Hamiltonian of the system is
given by
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where ri ¼ ðrix; riy; rizÞTði ¼ 1; 2; 3Þ is the three-dimensional position vector of
each atom. Here, " represents the depth of the Morse potential and dij is the
inter-particle distance between the i-th and j-th atoms. In what follows, our numer-
ical results are presented in absolute units.

As shown in Fig. 1a, this cluster has two local equilibrium structures (iso-
mers) whose potential energy is V ¼ �3:00". These are equilateral triangle and
permutationally distinct since motion of the system is confined to a plane because
of the assumption of zero total angular momentum. The system has three saddle
points with potential energy V � �2:005", which correspond to collinear config-
urations. They are also permutationally distinct. Channels 1 and 2 are essentially
equivalent and only Channel 3 is different from the other two. The potential-
barrier heights for these three channels are exactly the same since the three
particles interact equally through the pairwise Morse potential. The difference
lies in the effect that different masses have on the dynamics of the isomerization
reactions.

Fig. 1b shows the energy dependence of the relative reaction frequencies for the
respective channels. In this numerical experiment, the frequencies of reactions
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through respective channels are counted and normalized to 100. To avoid over-
counting reactions due to recrossing, only the event in which the system leaves the
vicinity of one of the equilibrium points and arrives at the vicinity of the other
equilibrium point is counted. It is evident from Fig. 1b that the reaction through
Channel 3 is much less frequent than those through Channels 1 and 2. In other
words, the system prefers the reaction through heavy-heavy-light configurations
rather than heavy-light-heavy configurations. Furthermore, this tendency is
observed to become more prominent as the energy of the system increases. The
bias in the reaction frequency in Fig. 1b cannot be explained simply by the poten-
tial energy barrier height since the barrier heights for the three channels are the
same. Instead, the bias must be related to the mass. In the next section, a possible
explanation for this mass effect is given.

3 Geometry of Shape Space and Dynamical Barriers

A useful coordinate system for characterization of mass effect in triatomic reac-
tions is the so-called ‘‘symmetrical coordinates’’ [6, 7], which is defined as follows.
First, the mass-weighted Jacobi vectors are defined as

q1 ¼
ffiffiffiffiffi
�1

p ðr1 � r2Þ; q2 ¼
ffiffiffiffiffi
�2

p
�
m1r1 þ m2r2

m1 þ m2

� r3
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Fig. 1. a: Two equilibrium con-

figurations and three saddle con-

figurations of the modified M3

cluster. The curves are the stee-

pest descent paths of the poten-

tial energy. The two equilibrium

points are located at ðw1;w2;

w3Þ¼ð15:429; 0;�13:607Þ. The

saddle point for Channel 1 is at

(10.277, �23.548, 0) while that

for Channel 2 is located at

(10.277, 23.548, 0). The saddle

point for Channel 3 is at (71.939,

0, 0). Inset is the equi-potential

surface at V¼�1:4". b: Energy

dependence of the relative reac-

tion frequency for each channel
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where �1 ¼ m1m2=ðm1 þ m2Þ and �2 ¼ ðm1 þ m2Þm3=ðm1 þ m2 þ m3Þ are the
reduced masses. Then the shape (internal) coordinates are defined as,

w1 ¼ jq1j2 � jq2j2; w2 ¼ 2q1 � q2; w3 ¼ 2q1 � q2; ð3Þ
where the sign of w3 specifies the permutational isomers of the modified M3 cluster.
Fig. 1a shows the steepest descent paths of the potential energy connecting the two
equilibrium points via the three saddle points. The inset shows the equi-potential
surface of the modified M3 cluster at V ¼ �1:4". The interior region of the equi-
potential surface is called ‘‘Hill’s region’’ in analogy with usage in astrophysics.
The structures in Fig. 1a have reflection symmetry with respect to the w1-w2 plane
and the w1-w3 plane.

The intrinsic metric tensor of shape space for the coordinates ðw1;w2;w3Þ
is known to be diagonal [6, 7] with g11 ¼ g22 ¼ g33 ¼ 1=4w, where w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

1 þ w2
2 þ w2

3

p
and gij ¼ 0 (for i 6¼ j). Therefore the Lagrangian for the triatomic

system with zero-angular momentum is
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Then the classical equations of motion derived from this Lagrangian are
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Fig. 2. a: Field of the averaged

fictitious force in Hill’s region

at E ¼ �1:4". b: Solid lines

are the original potential for re-

spective reaction channels. The

broken lines and the dotted lines

are the reaction-path potential

at total energy E ¼ �1:8" and

E ¼ �1:4", respectively
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The terms from the 2nd to the 6th on the left-hand sides of these equations are
quadratic in the velocity components _wwi. These terms are originated from the
non-Euclidean metric of shape space and can be regarded as velocity-dependent
‘‘fictitious forces’’ in the coordinate chart depicted in Fig. 1. These terms charac-
terize the behavior of geodesics.

To extract the essential property of these velocity-dependent force terms,
their averages are considered. This is reasonable since these velocity-depen-
dent terms (forces) usually fluctuate rapidly in the chaotic dynamics of the
system. If the distribution of velocity vectors in the tangent space at each
point is sufficiently stochastic, then the equipartition law holds for the kinetic
energy terms in Eq. (4). As a result, one obtains, for the averages of the diag-
onal quadratic terms, h _ww2

1i ¼ h _ww2
2i ¼ h _ww2

3i ¼ 8wK=3; where K ¼ E � Vðw1;
w2;w3Þ is the kinetic energy at each point in the shape space. As for the
cross terms, one gets h _wwi _wwji ¼ 0 (for i 6¼ j), since one can assume _wwi and _wwj

are independent in a stochastic system. Applying these averages to the ve-
locity-dependent terms in Eqs. (5)–(7), an averaged force field is finally
obtained as �
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3w2
;�Kw2

3w2
;�Kw3

3w2

�
: ð8Þ

This force field should be working effectively in the dynamics of the cluster.
Fig. 2a shows the field of Eq. (8) in the Hill’s region at E ¼ �1:4". Observe

that the averaged force works to block trajectories to get into the reaction
pathway of Channel 3 at the vicinity of the two equilibrium points. This is the
mass-related dynamical barrier originated from the geometry of shape space. To
quantify the effects of the averaged force, a ‘‘reaction-path potential’’ is intro-
duced, which is defined as the sum of the original potential and the line-integral
of the averaged force along a path. For simplicity, the steepest descent paths are
chosen in Fig. 1a as the reaction paths. Fig. 2b shows the original potential and
the reaction-path potential as a function of arc-length of the path for respective
channels. The height of the original potential barrier is the same for all the
channels. The barrier of the reaction-path potential becomes higher and higher
as the energy increases in Channel 3, while the energy dependence of the reac-
tion-path potential is very weak for Channels 1 and 2. This explains why the
isomerization reaction through Channel 3 becomes much less frequent as the
energy increases.

In conclusion, a concise method to characterize the effect of different masses
for triatomic reactions has been proposed. An averaged force field has been
deduced using the non-Euclidean metric of shape space. This force field is shown
to play a crucial role in determining the mass-related branching ratios of isomer-
ization of the triatomic cluster. Since the geometry of shape space is independent of
the system, the proposed methodology should be useful for varieties of triatomic
reactions.
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