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This paper presents some developments related to the idea of covariance in elas-
ticity. The geometric point of view in continuum mechanics is briefly reviewed.
Building on this, regarding the reference configuration and the ambient space as
Riemannian manifolds with their own metrics, a Lagrangian field theory of elastic
bodies with evolving reference configurations is developed. It is shown that even in
this general setting, the Euler-Lagrange equations resulting from horizontal �refer-
ential� variations are equivalent to those resulting from vertical �spatial� variations.
The classical Green-Naghdi-Rivilin theorem is revisited and a material version of it
is discussed. It is shown that energy balance, in general, cannot be invariant under
isometries of the reference configuration, which in this case is identified with a
subset of R3. Transformation properties of balance of energy under rigid transla-
tions and rotations of the reference configuration is obtained. The spatial covariant
theory of elasticity is also revisited. The transformation of balance of energy under
an arbitrary diffeomorphism of the reference configuration is obtained and it is
shown that some nonstandard terms appear in the transformed balance of energy.
Then conditions under which energy balance is materially covariant are obtained. It
is seen that material covariance of energy balance is equivalent to conservation of
mass, isotropy, material Doyle-Ericksen formula and an extra condition that we call
configurational inviscidity. In the last part of the paper, the connection between
Noether’s theorem and covariance is investigated. It is shown that the Doyle-
Ericksen formula can be obtained as a consequence of spatial covariance of
Lagrangian density. Similarly, it is shown that the material Doyle-Ericksen formula
can be obtained from material covariance of Lagrangian density. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2190827�

. INTRODUCTION

Invariance plays an important role in mechanics and in physics. In any continuum theory one
as some conservation laws; i.e., quantities that are constant in time, such as mass and energy or
alance laws, such as balance of linear and angular momentum. One way of building a continuum
heory is to postulate these conservation or balance laws. On the other hand, as we shall recall
ater, conservation laws and even balance laws can be obtained as a result of postulating invari-
nce of a quantity such as energy or Lagrangian density, under some group of transformations.

Traditionally, continuum mechanics is developed using Euclidean space as the ambient space.
his has been motivated by the engineering applications of continuum mechanics and the general

endency of the engineering community to work with the simplest possible spaces. This is of
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ourse useful and the implicit simplifying assumptions of continuum mechanics have made it
pplicable to many problems of practical importance. However, being restricted to the misleading
nd rigid structure of Euclidean space, one should expect to lose important geometric information.
or example, for many years there were debates on different stress rates and whether one stress
ate is “more objective” than the other one. Putting continuum mechanics in the right geometric
etting, one can clearly see that different stress rates in the literature are simply different repre-
entations of the same Lie derivative.28

Another basic example of the lack of geometry in the traditional formulation of continuum
echanics is the dependence of the well-known balance of linear and angular momenta on the

inear structure of Euclidean space. These laws are written in terms of integrals of some vector
elds. Of course, integrating a vector field has no intrinsic meaning and is dependent on a linear
tructure or a specific coordinate choice. One can argue that a geometric point of view has proven
seful in, for example, building systematic numerical schemes as well as in bridging length and
ime scales. For example, geometry has proven useful in Refs. 25, 6, and 3, although much
emains to be done in the future.

Following Einstein’s idea that physical laws should not depend on any particular choice of
oordinate representation of ambient spaces, Marsden and Hughes28 developed a covariant theory
f elasticity building on ideas originated from the work of Naghdi, Green and Rivilin.19 This work
tarts from balance of energy, which makes sense intrinsically as it is written in terms of integrals
f scalar fields �or more precisely 3-forms�. Then they postulate that balance of energy is invariant
nder arbitrary diffeomorphisms of the ambient space. They observe that this invariance assump-
ion gives all the usual balance laws plus the Doyle-Ericksen formula that relates the stress and the

etric tensor.
Our motivation for studying spatial and material covariant balance laws was to gain a better

nderstanding of the geometry of configurational forces, which are forces that act in the reference
onfiguration. One may ask the following question. What are the consequences of postulating that
alance of energy is materially covariant? In the process of answering this question we discovered
hat such invariance cannot hold in general and this led us to obtain formulas for the way in which
alance of energy transforms under material diffeomorphisms. In this paper we also study the
onnection between spatial and material covariance with Noether’s theorem. It will be shown that
patial and material covariance of a Lagrangian density lead to the spatial and material forms of
he Doyle-Ericksen formula, respectively.

As was mentioned, one of our motivations for this study was to initiate a geometric study of
onfigurational forces. These forces and their balance laws are important in formulating the evo-
ution of defects in solids in the setting of continuum mechanics. Driving �configurational, mate-
ial and so forth� forces in continuum mechanics were introduced by Eshelby,13–15 and many
esearchers have studied them from different points of view. We mention the work of Knowles,22

beyaratneh and Knowles1,2 on driving force on a phase interface, Gurtin’s work20,21 on configu-
ational forces by postulating new balance laws, the work of Maugin31,32 and Maugin and
rimarco33 on pull-back of balance of standard linear momentum to the reference configuration,
tc. However, even after more than five decades after Eshelby’s original work there does not seem
o be a consensus on the nature of configurational forces and their exact role in continuum
echanics and there are still some controversies in the literature. We believe that the geometric

deas in this paper may be helpful in this direction.
This paper is organized as follows. The geometry of continuum mechanics is reviewed in Sec.

I. The Lagrangian field theory of elastic bodies with evolving reference configurations is pre-
ented in Sec. III, where deformed bodies and their reference configurations are treated as Rie-
annian manifolds. Using this setting, the classical Green-Naghdi-Rivilin theorem and a new
aterial version of it are discussed in Sec. IV. Spatial covariant energy balance is revisited in Sec.
. In Sec. VI we obtain the transformation �push-forward� of energy balance under an arbitrary
aterial diffeomorphism. Then, we investigate the consequences of material covariance of energy
alance. Section VII studies the connection between covariance and Noether’s theorem. It is
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hown that spatial and material covariance of a Lagrangian density result in spatial and material
ersions of the Doyle-Ericksen formula, respectively. Conclusions and future directions are given
n Sec. VIII.

I. GEOMETRY OF CONTINUUM MECHANICS

This section recalls some notation from the geometric approach to continuum mechanics that
ill be needed. It is assumed that the reader is familiar with the basic ideas; refer to, for example,
arsden and Hughes28 for details. See also Refs. 30 and 29.

If M is a smooth n-manifold, the tangent space to M at a point p�M is denoted TpM, while
he whole tangent bundle is denoted TM.

We denote by B a reference manifold for our body and by S the space in which the body
oves. We assume that B and S are Riemannian manifolds with metrics denoted by G and g,

espectively. Local coordinates on B are denoted by XI and those on S by xi. The material body
is a subset of the material manifold, i.e., B�B.

A deformation of the body is, for purposes of this paper, a C1 embedding � :B→S. The
angent map of � is denoted F=T� :TB→TS; in the literature it is often called the deformation
radient. In local charts on B and S, the tangent map of � is given by the Jacobian matrix of
artial derivatives of the components of �, which we write as

F = T�:TB → TS, T��X,V� = ���X�,D��X� · V� . �2.1�

If F :B→R is a C1 scalar function, X�B and VX�TXB, then VX�F� denotes the derivative of
at X in the direction of VX, i.e., VX�F�=DF�X� ·V. In local coordinates �XI� on B,

VX�F� =
�F

�XIV
I. �2.2�

For f :S→R, the pull-back of f by � is defined by

�*f = f � � . �2.3�

f F :B→R, the push-forward of F by � is defined by

�*F = F � �−1. �2.4�

If Y is a vector field on B, then �*Y=T� �Y ��−1, or using the F notation, �*Y=F �Y ��−1 is
vector field on ��B� called the push-forward of Y by �. Similarly, if y is a vector field on
�B��S, then �*y=T��−1� �y �� is a vector field on B and is called the pull-back of y by �.

The cotangent bundle of a manifold M is denoted T*M and the fiber at a point p�M �the
ector space of one-forms at p� is denoted by Tp

*M. If � is a one form on S �that is, a section of
he cotangent bundle T*S�, then the one-form on B defined as

��*��X · VX = ���X� · �T� · VX� = ���X� · �F · VX� �2.5�

or X�B and VX�TXB, is called the pull-back of � by �. Likewise, the push-forward of a
ne-form � on B is the one form on ��B� defined by �*�= ��−1�*�.

We can associate a vector field �� to a one-form � on a Riemannian manifold M through the
quation

��x,vx� = ���x
�,vx��x, �2.6�

here �,� denotes the natural pairing between the one-form �x�Tx
*M and the vector vx�TxM and

here ���x
� ,vx��x denotes the inner product between �x

��TxM and vx�TxM. In coordinates, the
� i ij
omponents of � are given by � =g �i.
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Traditionally force is thought of as a vector field in the deformed configuration. For example,
ody force B per unit undeformed mass is a vector field on S and its associated one-form can be
efined as

��x,�w� = ��B,�w��x �2.7�

or all �w�TxS. The pull-back of � is defined as

���*��X,�W�X = ��x,F�W�X = ��B,F�WX��X = ��FTB,�WX��X. �2.8�

herefore FTB is the vector field associated with the pull-back of the one-form associated with B.

A type �pq �-tensor at X�B is a multilinear map,

�2.9�

is said to be contravariant of order p and covariant of order q. In a local coordinate chart,

T��1, . . . ,�p,V1, . . . ,Vq� = Ti1¯ip
j1¯jq

�i1
1
¯ �ip

p V1
j1
¯ Vq

jq, �2.10�

here �k�TX
*B and Vk�TXB.

Suppose � :B→S is a regular map and T is a tensor of type �pq �. Push-forward of T by � is

enoted �*T and is a �pq �-tensor on ��B� defined by

��*T��x���1, . . . ,�p,v1, . . . ,vq� = T�X���*�1, . . . ,�*�p,�*v1, . . . ,�*vq� , �2.11�

here �k�Tx
*S ,vk�TxS ,X=�−1�x� ,�*��k� ·vl=�k · �T� ·vl� and �*�vl�=T��−1�vl. Similarly, pull-

ack of a tensor t defined on ��B� is given by �*t= ��−1�*t. In the setting of continuum mechanics
ush-forward and pull-back of tensors will have the following forms:

��*T�i1¯ip
j1¯jq

�x� = Fi1
I1

�X� ¯ Fip
Ip

�X�TI1¯Ip
J1¯Jq

�F−1�J1
j1

�x� ¯ �F−1�Jq
jq

�x� ,

��*t�I1¯Ip
J1¯Jq

�X� = �F−1�I1
i1

�x� ¯ �F−1�Ip
ip

�x�ti1¯ip
j1¯jq

Fj1
J1

�X� ¯ Fjq
Jq

�X� .

A two-point tensor T of type �q q�

p p� � at X�B over a map � :B→S is a multilinear map,

�2.12�

here x=��X�.
Let w :U→TS be a vector field, where U�S is open. A curve c : I→S, where I is an open

nterval, is an integral curve of w if

dc

dt
�r� = w�c�r�� " r � I . �2.13�

f w depends on time variable explicitly, i.e., w :U� �−� ,��→TS, an integral curve is defined by

dc
= w�c�t�,t� . �2.14�
dt
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Let w :S� I→TS be a vector field. The collection of maps Ft,s such that for each s and x,
�Ft,s�x� is an integral curve of w and Fs,s�x�=x is called the flow of w. Let w be a C1 vector field
n S, Ft,s its flow, and t a C1 tensor field on S. The Lie derivative of t with respect to w is defined
y

Lwt = 	 d

dt
�Ft,s

* t�	
t=s

. �2.15�

f we hold t fixed in t then we denote

£wt = 	 d

dt
�Ft,s

* t�	
t=s

, �2.16�

hich is called the autonomous Lie derivative. Hence

Lwt =
�

�t
t + Lwt . �2.17�

Let v be a vector field on S and � :B→S a regular and orientation preserving C1 map. The
iola transform of v is

V = J�*v , �2.18�

here J is the Jacobian of �. If Y is the Piola transform of y, then the Piola identity holds,

Div Y = J�div y� � � . �2.19�

A k-form on a manifold M is a skew-symmetric �0k �-tensor. The space of k-forms on M is

enoted �k�M�. If � :M→N is a regular and orientation preserving C1 map and ���k���M��,
hen



��M�

� = 

M

�*� . �2.20�

Geometric continuum mechanics: We next review a few of the basic notions of continuum
echanics from the geometric point of view.

A body B is a submanifold of a Riemannian manifold B and a configuration of B is a
apping � :B→S, where S is another Riemannian manifold. The set of all configurations of B is

enoted C. A motion is a curve c :R→C ; t��t in C.
For a fixed t, �t�X�=��X , t� and for a fixed X, �X�t�=��X , t�, where X is position of material

oints in the undeformed configuration B. The material velocity is the map Vt :B→R3 given by

Vt�X� = V�X,t� =
���X,t�

�t
=

d

dt
�X�t� . �2.21�

imilarly, the material acceleration is defined by

At�X� = A�X,t� =
�V�X,t�

�t
=

d

dt
VX�t� . �2.22�

n components

Aa =
�Va

�t
+ �bc

a VbVc, �2.23�

a a
here �bc is the Christoffel symbol of the local coordinate chart �x �.
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Here it is assumed that �t is invertible and regular. The spatial velocity of a regular motion �t

s defined as

vt:�t�B� → R3, vt = Vt � �t
−1, �2.24�

nd the spatial acceleration at is defined as

a = v̇ =
�v

�t
+ �vv . �2.25�

n components

aa =
�va

�t
+

�va

�xb vb + �bc
a vbvc. �2.26�

Let � :B→S be a C1 configuration of B in S, where B and S are manifolds. Recall that the
eformation gradient is denoted F=T�. Thus, at each point X�B, it is a linear map

F�X�:TXB → T��X�S . �2.27�

f �xi� and �XI� are local coordinate charts on S and B, respectively, the components of F are

Fi
J�X� =

��i

�XJ �X� . �2.28�

he deformation gradient may be viewed as a two-point tensor,

F�X�:Tx
*S � TXB → R; ��,V� � ��,TX� · V� . �2.29�

uppose B and S are Riemannian manifolds with inner products ��,��X and ��,��x based at X�B
nd x�S, respectively.

Recall that the transpose of F is defined by

FT:TxS → TXB, ��FV,v��x = ��V,FTv��X �2.30�

or all V�TXB ,v�TxS. In components,

�FT�X��J
i = gij�x�Fj

K�X�GJK�X� , �2.31�

here g and G are metric tensors on S and B, respectively. On the other hand, the dual of F, a
etric independent notion, is defined by

F * �x�:Tx
*S → TX

*B; �F*�x� · �,W� = ��,F�X�W� �2.32�

or all ��Tx
*S ,W�TXB.

Considering bases ea and EA for S and B, respectively, one can define the corresponding dual
ases ea and EA. The matrix representation of F* with respect to the dual bases is the transpose of
a

A. F and F* have the following local representations:

F = Fj
K

�

�xj � dXK, F* = Fj
K dXK

�
�

�xj . �2.33�

he right Cauchy-Green deformation tensor is defined by

C�X�:TXB → TXB, C�X� = F�X�TF�X� . �2.34�
n components,
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CI
J = �FT�I

kF
k
J. �2.35�

t is straightforward to show that

C� = �*�g�, i . e . ,CIJ = �gij � ��Fi
IF

j
J. �2.36�

rom now on, by C we mean the tensor with components CIJ. The Finger tensor is defined as
=�t*G, where G is the metric of the reference configuration.

To make ideas more concrete, a comment is in order. In the geometric treatment of continuum
echanics one assumes that the material body is a Riemannian manifold �B ,G�. Here B is an

mbedding of the material body, i.e., material points are identified with their positions in the
eference configuration. A deformation of the material body is represented by a mapping � :B

S, where �S ,g� is the ambient space, which is another Riemannian manifold. If �=Id, the
eference configuration is a trivial embedding of the material body in the ambient space. Physi-
ally, in the deformation process the relative distance of material points change in general. In other
ords, in terms of material points X ,X+dX and their positions in the deformed configuration
,x+dx we have

dx · dx = C dX · dX � dX · dX . �2.37�

his means that in general

g � �t*G . �2.38�

The following identities will be used frequently in this paper.

�gab

�xc = gad�bc
d + gbd�ac

d , �2.39�

�GAB

�XC = GAD	BC
D + GBD	AC

D , �2.40�

here �bc
d and 	BC

D are the Christoffel symbols associated to the metric tensors g and G, respec-
ively. The covariant derivative of two-point tensors will also be used frequently in this paper. The
ollowing two examples would be useful to clarify the idea. For definition for an arbitrary two-
oint tensor the reader may refer to Marsden and Hughes,28

PaA
�B =

�PaA

�XB + PaC	CB
A + PbAFc

A�bc
a , �2.41�

Qa
A

�B =
�Qa

A

�XB + Qa
C	CB

A − Qb
AFc

A�ca
b . �2.42�

Let �t :B→S be a regular motion of B in S and P�B a k-dimensional submanifold. The
ransport theorem says that for any k-form � on S,

d

dt



�t�P�
� = 


�t�P�
Lv� , �2.43�

here v is the spatial velocity of the motion. In a special case when �= f dv and P=U is an open
et,

d

dt



�t�P�
f dv = 


�t�P�
� � f

�t
+ div�fv�
dv . �2.44�
We say that a body B satisfies balance of linear momentum if for every nice open set U�B,
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d

dt



�t�U�

v dv = 


�t�U�

b dv + 


��t�U�
t da , �2.45�

here 
=
�x , t� is mass density, b=b�x , t� is body force vector field and t= t�x , n̂ , t� is the traction
ector. Note that Cauchy’s stress theorem tells us that there is a contravariant second-order tensor
=��x , t� �Cauchy stress tensor� with components �ij such that t= ��� , n̂��. Note that ��,�� is the

nner product induced by the Riemmanian metric g. Equivalently, balance of linear momentum can
e written in the undeformed configuration as

d

dt



U

0V dV = 


U

0B dV + 


�U
��P,N̂��dA , �2.46�

here, P=J�*� �the first Piola-Kirchhoff stress tensor� is the Piola transform of Cauchy stress
ensor. Note that P is a two-point tensor with components PiJ. Note also that this is the balance of
inear momentum in the deformed �physical� space written in terms of some quantities that are
efined with respect to the reference configuration.

As was mentioned before, balance of linear momentum has no intrinsic meaning because
ntegrating a vector field is geometrically meaningless. As is standard in continuum mechanics,
his balance law makes use of the linear �or affine� structure of Euclidean space.

A body B is said to satisfy balance of angular momentum if for every nice open set U�B,

d

dt



�t�U�

x � v dv = 


�t�U�

x � b dv + 


��t�U�
x � ���,n̂��da . �2.47�

As with balance of linear momentum, balance of angular momentum makes use of the linear
tructure of Euclidean space and this does not transform in a covariant way under a general change
f coordinates.

One says that balance of energy holds if, for every nice open set U�B,

d

dt



�t�U�

�e +

1

2
��v,v���dv = 


�t�U�

���b,v�� + r�dv + 


��t�U�
���t,v�� + h�da , �2.48�

here e=e�x , t� ,r=r�x , t� and h=h�x , n̂ , t� are internal energy per unit mass, heat supply per unit
ass and heat flux, respectively.

The geometry of inverse motions: The study of inverse motions in continuum mechanics was
tarted by Shield38 and further extended by Ericksen10 and Steinmann.43,42 Here the idea is to fix
patial points and look at the evolution of material points under the inverse of the deformation
apping. It is known that in inverse motion, Eshelby’s tensor has a role similar to that of stress

ensor in direct motion. One should note that formulating continuum mechanics in terms of the
nverse motion is simply a change in describing the same physical system and so, in general,
annot have any profound consequences. However, in the general relativistic setting, in which it is
esireable to have the fields to be defined on space-time and take values in a bundle over space-
ime, inverse configurations are preferred; see Ref. 5 and references therein.

II. LAGRANGIAN FIELD THEORY OF ELASTIC BODIES WITH EVOLVING REFERENCE
ONFIGURATIONS

Suppose the reference configuration evolves in time and assume that this evolution can be
epresented by a one-parameter family of mappings that map B�B �reference configuration at
=0� to Bt�B �the reference configuration at time t�,

�t:B → Bt. �3.1�

e call these maps the configurational deformation maps. Note that this is not the most general

orm of reference configuration evolution. In general, one should look at the reference configura-
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ion evolution locally �see Refs. 9 and 8 for some discussions on this�. For the sake of simplicity,
e assume a global reference configuration evolution. The configuration space for the evolution of

he reference configuration is

Cconf = ����:B → Bt� . �3.2�

n evolution of the reference configuration is a curve c : I→Cconf in Cconf. It is important to put the
ight restrictions on �t. It does not seem necessary for �t to be invertible, in general. Here, we
ssume that �t is a diffeomorphism. A standard deformation is represented by a one-parameter
amily of mappings,

�t:Bt → S . �3.3�

he standard configuration space is defined by

C = ����:Bt → S� . �3.4�

gain, a standard deformation is a curve in the standard configuration space. The total deforma-
ion map is the composition of standard and configurational deformation maps,


t = �t � �t:B → S; �3.5�

hat is, the following diagram commutes:

FIG. 1. Configurational and standard deformation maps.
igure 1 below shows the same idea schematically.
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In terms of mapping the material points, xt=�t�Xt�=�t ��t�X�, as is shown in the following
ommutative diagram:

he configuration space for the total deformation is defined as

Ctot = �
�
 = � � �,� � C,� � Cconf� = C � Cconf. �3.6�

deformation is a curve c : I→Ctot in the total configuration space. Note that �t=Id �identity map�
n most of classical continuum mechanics.

Notice that there are two independent deformation mappings �t and �t when reference con-
guration evolves in time �see Fig. 1�. These separate mappings represent independent kinematical
rocesses and hence may correspond to two separate systems of forces, in general.

Definition 3.1 (configurational velocity): The configurational velocity is defined by

V0�X,t� =
��t�X�

�t
. �3.7�

Definition 3.2: The total material velocity is defined by

Ṽ�X,t� = 	 �
t�Xt�
�t

	
X fixed

=
��t

�t
+ FV0 = V + FV0, �3.8�

here, as before, F=��t /�Xt is the deformation gradient �holding t fixed�. Note that

T
t = T�t � T�t or F̃ = FF0. �3.9�

hus

F0 = F−1 � F̃ . �3.10�

ow we may think about postulating the conservation of configurational mass and balance of
inear and angular configurational momenta.

Conservation of mass is defined in terms of conservation of mass for deformation mappings

t and �t separately or equivalently for �t and 
t separately. This makes sense as �t and �t

orrespond to configurational and standard deformations and should preserve the mass of an
rbitrary sub-body.

Definitiion 3.3 (conservation of mass): Suppose B is a body and 
t=�t ��t is a deformation
ap. We say that the deformation mapping is mass conserving if for every U�B,

d

dt



�t�U�

0�Xt,t�dV = 0 and

d

dt




t�U�

�x,t�dv = 0, �3.11�

here 
0�Xt , t� is the mass density at point Xt�Bt and 
�x , t� is the mass density at the point x
S.

Localization of the above equations gives the local form of conservation of mass, namely

R0�X� = 
0�Xt,t�J0 = 
�x,t�J̃ , �3.12�

here J0=det�F0���det G /�det G0�, F0=T�t is the configurational deformation gradient, G0 is

he fixed metric of B, G is the metric of Bt and R0 is the mass density at X�B and J̃=det�F̃�
� �
� det g / det G�=JJ0. Note that this is equivalent to
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R0 = 
0J0 and 
0 = 
J . �3.13�

One may be tempted to postulate a balance of configurational linear momentum as follows. A
ody B satisfies the balance of configurational linear momentum if for any U��Bt,

d

dt



U�

0V0 dV = 


U�

0B0 dV + 


�U�
P0N dA . �3.14�

ocalization of this balance law and using Cauchy’s theorem gives the following local form of the
alance of configurational linear momentum

Div P0 + 
0B0 = 
0A0. �3.15�

hinking of configurational deformation mapping �t as a deformation of a fixed reference con-
guration, this balance law is similar to the standard balance of linear momentum written in the
eformed configuration. Note that postulating such a balance law requires the introduction of two
ew quantities, namely P0 and B0 and does not seem to be of any use at this point.

It should be noted that a configurational change need not be volume preserving. An example
s a phase transformation from cubic to tetragonal which has the following configurational defor-
ation gradient �this is called Bain strain or matrix in martensitic phase transformations�,

F0 =�
1 0 0

0 1 0

0 0
c

a
� �3.16�

here a=b and c�a are the tetragonal lattice parameters.
The Lagrangian may be regarded as a map L :TC→R, where C is the space of some sections

for technical details see Ref. 28�, associated to the Lagrangian density L and a volume element
V�X� on B and is defined as

L��,�̇� = 

B

L�X,��X�,�̇�X�,F�X�,G�X�,g���X���dV�X� . �3.17�

ote that here we have assumed an explicit dependence of L on the material and spatial metrics
and g. Let us first revisit the classical Lagrangian field theory of elasticity using the above

agrangian density with explicit dependence on material and spatial metrics. The action function
s defined as

S��� = 

t0

t1

L��,�̇�dt . �3.18�

amilton’s principle states that the physical configuration � is the critical point of the action, i.e.,

dS��� · �� = 0. �3.19�

ote that variation in � leaves the material metric unchanged. The statement of Hamilton’s
rinciple can be simplified to read



t0

t1 

B
� �L

��
· �� +

�L
��̇

· ��̇ +
�L
�F

:�F +
�L
�g

:�g�dV�X�dt = 0. �3.20�
fter some manipulations the above integral statement results in
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�L
��a −

�

�t
� �L

��̇
�

a

− � �L
�F

�
a

A

�A
− � �L

�F
�

b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b = 0. �3.21�

oting that

d

dt
� �L

��̇
�

a

= 
0�gabAb + gbc�ad
c �̇b�̇d� , �3.22�

� �L
�F

�
a

A

= − Pa
A, �3.23�

2
�L
�gcd

= 
0�̇c�̇d − J�cd, �3.24�

q. �3.21� can be written as

Pa
A

�A +
�L
��a + �Fc

APb
A − J�cdgbd��ac

b = 
0gabAb. �3.25�

ote that if L depends on F and g through C, then the term in the parentheses would be zero and
ence

Pa
A

�A +
�L
��a = 
0gabAb, �3.26�

hich is nothing but the familiar equations of motion. �Also note that in �3.25� use was made of
oyle-Ericksen formula �3.24�. However, for arriving at �3.26� there is no need for using Doyle-
ricksen formula.�

Now suppose that during the process of deformation the continuum undergoes a continuous
aterial evolution. This means that the deformation mapping � is the composition of a total

eformation mapping and a referential mapping, i.e.,

� = 
 � �−1 or 
 = � � � . �3.27�

ote that defining such a composition is ambiguous because there are infinitely many possibilities
or decomposing a given deformation mapping 
 into two mappings � and �. The new mappings
an represent part of the standard deformation and material evolution. To make sure that � is the
tandard part of total deformation mapping, the Lagrangian is written as an integral on the current
eference configuration Bt

L��,�̇� = 

Bt

L�X,��X�,�̇�X�,F�X�,G�X�,g���X���dV�X� . �3.28�

t would be more convenient to write the Lagrangian as a functional on B �the fixed initial
eference configuration�. Let us denote points on B by U. Note that


̇�U� = ��̇ � ���U� + T����U�� · �̇�U� or ��̇ � ���U� = 
̇�U� − F���U�� · �̇�U� .

�3.29�

lso

F���U�� = F
�U�F�
−1���U�� . �3.30�
hus,
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L = L���U�,
�U�,
̇�U� − F
�U�F�
−1���U�� · �̇�U�,F
�U�F�

−1���U��,G���U��,g�
�U���J��U� ,

�3.31�

here

J� = det�T��
�det G
�det G0

, �3.32�

nd where G0 is the fixed metric of the fixed reference configuration and G is the metric of Bt. As
efore, the action is defined as

S��,
� = 

t0

t1

L��,�̇,
,
̇�dt . �3.33�

amilton’s principle states that the physical configurations � and 
 are the critical points of the
ction, i.e.,

dS��,
� · ���,�
� = 0. �3.34�

or the sake of clarity, we look at the two independent variations separately.

. Vertical variations

Let us first look at vertical variations; that is, we assume that ��=0 and see if we can recover
he classical Euler-Lagrange equations.

Proposition 3.4: Allowing only vertical variations in Hamilton’s principle, one obtains the
ollowing equations of motion

�L
��a −

d

dt
� �L

��̇ � �
�

a

− � �L
�F

�
a

B

�B
− Fc

B�ac
b � �L

�F
�

b

B

+
�L
�gbc

�gbc

�xa = 0. �3.35�

Proof: The derivative of the action with respect to vertical variations is computed as follows:

dS��,
� · �0,�
� = 

t0

t1 

B
� �L

�� � �
· �
 +

�L
��̇ � �

· ��
̇ − ��F
�U�F�
−1���U�� · �̇�U���

+
�L
�F

:��F
�U�F�
−1���U��� +

�L
�g

:�g � 
�J��U�dV�U�dt = 0. �3.36�

ote that

��F
F�
−1 � �� = ��F
F�

−1� � � = T���
 � �−1�� � � = T��
 � �−1� � �

= �T�
T�−1� � � = D�
F�
−1 � � . �3.37�

et us assume coordinates �U��, �XA�, and �xa� and basis vectors E�, eA, and fa on B, Bt, and S,
espectively. Thus, in coordinates

D�
 =
��
a

�U� fa � E�. �3.38�
he first part of the second term is simplified as
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t0

t1 

B

�L
��̇ � �

�
̇J��U�dV�U� = − 

t0

t1 

B
� d

dt
� �L

��̇ � �
�

a

+
�L

��̇ � �
aWB

�B
�
aJ� dV�U�dt ,

�3.39�

here

W�U� =
d

dt
��U� . �3.40�

he second part of the second term in �3.36� can be simplified to

− 

t0

t1 

B

J�

�L
��̇ � �

D�
F�
−1 � � · W dV�U�dt

= 

t0

t1 

B
�� �L

��̇ � �
�

a

J��F�
−1 � ���

BWB

��

�
a dV�U�dt

+ 

t0

t1 

B
�J�� �L

��̇ � �
�

b

�F � ��c
A�ac

b WA
�
a dV�U�dt . �3.41�

sing the Piola identity we have

�� �L
��̇ � �

�
a

J��F�
−1 � ���

BWB

��

= J��� �L
��̇ � �

�
a

WA

�A

. �3.42�

lso

�� �L
��̇ � �

�
a

WA

�A

=
�

�XA� �L
��̇ � �

�
a

WA + � �L
��̇ � �

�
a

WA
�A − � �L

��̇ � �
�

b

WA�ac
b FA

c .

�3.43�

herefore �3.41� is simplified to



t0

t1 

B
� �

�XA� �L
��̇ � �

�
a

WA + � �L
��̇ � �

�
a

WA
�A
�
aJ�dV�U�dt . �3.44�

ote that

�

�t
� �L

��̇
�

a

=
�

�t
� �L

��̇ � �
�

a

� �−1 −
�

�XA� �L
��̇ � �

�
a

� �−1WA. �3.45�

ence adding �3.39� and �3.44� the term corresponding to �
̇ is simplified to



t0

t1 

Bt

−
�

�t
� �L

��̇
�

a

�
a � �−1 dV�X� dt . �3.46�

fter some lengthy manipulations, the third term in �3.36� can be written as

− 

t0

t1 

B
�� �L

�F � �
�

a

B

�B
+ Fc

B � �� �L
�F � �

�
a

B

�ac
b 
�
aJ��U�dV�U�dt . �3.47�
he last term is simplified as
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t0

t1 

B

�L
�g � 


:�g � 
J� dV�U�dt = 

t0

t1 

B

�L
�gbc � 


�gbc

�xa �
aJ� dV�U�dt = 

t0

t1 

Bt

�L
�gbc

�gbc

�xa �
a

� �−1 dV�X�dt = − 

t0

t1 

Bt

�L
�gbc �gcd�ad

b + gbd�ad
c ��
a � �−1 dV�X�dt . �3.48�

herefore, adding the above four simplified terms, we obtain

dS��,
� · �0,�
� = 

t0

t1 

Bt

� �L
��a −

d

dt
� �L

��̇
�

a

− � �L
�F

�
a

B

�B
− Fc

B�ac
b � �L

�F
�

b

B

+
�L
�gbc

�gbc

�xa 
�
a

� �−1 dV�X�dt . �3.49�

s �
a is arbitrary we conclude that

�L
��a −

d

dt
� �L

��̇ � �
�

a

− � �L
�F

�
a

B

�B
− Fc

B�ac
b � �L

�F
�

b

B

+
�L
�gbc

�gbc

�xa = 0, �3.50�

hich gives the stated result. �

. Horizontal variations

Now let us try to find the Euler-Lagrange equations resulting from horizontal variations; that
s, variations of the configurational deformation mapping �.

Proposition 3.5: Allowing only horizontal variations in Hamilton’s principle, one obtains the
ollowing configurational equations of motion:

�L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A
 − �L�B

A − � �L
�F

�
a

B

Fa
A


�B
+ � �L

�F
�

a

B

Fa
C	AB

C + 2GCD	AB
D

�L
�GBC

= 0,

�3.51�

here 	AB
C is the Christoffel symbol of a local chart in Bt.

Proof: The derivative of the action with respect to horizontal variations is computed as
ollows:

dS��,
� · ���,0� = 

t0

t1 

B
�� �L

��
· �� −

�L
��̇ � �

· ��F
F�
−1 � � · �̇� +

�L
�F � �

:��F
F�
−1 � ��
J�

+
�L

�G � �
:�G � � + L�J��dV�U�dt = 0. �3.52�

ote that

��F
F�
−1 � �� = F
��F�

−1 � �� . �3.53�

ut

��F�
−1 � �� = − F�

−1D����F�
−1 � � . �3.54�

hus

��F
F�
−1 � �� = − F
F�

−1D����F�
−1 � � = − FD����F�

−1 � � . �3.55�
imilarly
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��F
F�
−1 � � · �̇� = − FD����F�

−1 � � · W + F � � ·
d

dt
���� . �3.56�

n coordinates,

D���� =
���A

�U� eA � E�. �3.57�

he second term in �3.52� has two parts which are simplified as follows. The first part is



t0

t1 

B
� �L

��̇ � �
�

a

Fa
A � �

���A

�U� �F�
−1 � ���

BWBJ� dV�U�dt = − 

t0

t1 

B�

�

�XB�� �L
��̇

�
a

Fa
A
WB��A

� �−1 dV�X�dt − 

t0

t1 

B�
� �L

��̇
�

a

Fa
AWB

�B��A � �−1 dV�X�dt . �3.58�

imilarly, the second part is simplified as

− 

t0

t1 

B

�L
��̇ � �

· F � � ·
d

dt
����J� dV�U�dt = 


t0

t1 

Bt

d

dt
�� �L

��̇
�

a

Fa
A
��A � �−1 dV�X�dt

+ 

t0

t1 

Bt

� �L
��̇

�
a

Fa
AWB

�B��A dV�X�dt . �3.59�

dding �3.58� and �3.59�, the second term of �3.52� can be written as

− 

t0

t1 

B

�L
��̇ � �

��F
F�
−1 � � · �̇�J� dV�U�dt = 


t0

t1 

Bt

d

dt
�� �L

��̇
�

a

Fa
A
��A � �−1 dV�X�dt .

�3.60�

fter some lengthy manipulations, the third term of �3.52� is simplified to



t0

t1 

B

�L
�F � �

:��F
F�
−1 � ��J� dV�U�dt

= 

t0

t1 

Bt

�� �L
�F

�
a

B

Fa
A


�B
��A � �−1 dV�X�dt

+ 

t0

t1 

Bt

� �L
�F

�
a

B

Fa
C	AB

C ��A � �−1 dV�X�dt . �3.61�

he fourth term of �3.52� is simplified to



t0

t1 

B

�L
�G � �

:�G � �J� dV�U�dt = 

t0

t1 

Bt

2GCD	AB
D

�L
�GBC

dV�X�dt . �3.62�

ote that

J� = �det F��� det G

det G0
, �3.63�
here G0 is the fixed Riemannian metric of the fixed reference configuration. Thus,
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�J� = ��det F��� det G

det G0
+ �det F��

� det G

det G0
= J��F�

−1��
B
���B

�U� + �det F��
1

�det G0

��det G

�X
�� .

�3.64�

ote that

��det G

�X
=

1

2
�det GG−1�G

�X
= �det G	AB

B ��A. �3.65�

ence

�J� = J��F�
−1��

B
���B

�U� + J�	AB
B . �3.66�

hus the last term of �3.52� is simplified to



t0

t1 

B

L�J� dV�U�dt = − 

t0

t1 

Bt

�L�A
B��B��A � �−1 dV�X�dt . �3.67�

ow substituting the above five simplified terms into �3.52�, we have

dS��,
� · ���,0� = 

t0

t1 

Bt

� �L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A
 − �L�A

B − � �L
�F

�
a

B

Fa
A


�B
���A

� �−1 dV�X�dt + 

t0

t1 

Bt

�� �L
�F

�
a

B

Fa
C	AB

C + 2GCD	AB
D

�L
�GBC

���A

� �−1 dV�X�dt = 0. �3.68�

ecause ��A is arbitrary, we conclude that

�L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A
 − �L�A

B − � �L
�F

�
a

B

Fa
A


�B
+ � �L

�F
�

a

B

Fa
C	AB

C + 2GCD	AB
D

�L
�GBC

= 0.

�3.69�

�

We now show that this is equivalent to the classical Euler-Lagrange equations and does not
ive us any new information. After some lengthy manipulations, it can be shown that

�L
�XA +

�

�t
�� �L

��̇
�

a

Fa
A
 − �L�A

B − � �L
�F

�
a

B

Fa
A


�B
= � �L

��a −
�

�t
� �L

��̇
�

a

− � �L
�F

�
a

A

�A

− � �L
�F

�
b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b 
Fa

A − � �L
�F

�
a

B

Fa
C	AB

C − 2GCD	AB
D

�L
�GBC

. �3.70�

�

�It will be seen in Sec. VI that material covariance of internal energy density implies that the
um of the last two terms is zero. In Sec. VII, it will be shown that material covariance of
agrangian density results in the same identity. However, at this point there is no such relation and

he variational principle does not give us any new information.� This result is known for the case
here the underlying metrics are trivial.25 In conclusion, we have proved the following proposi-

ion.
Proposition 3.6: In the absence of discontinuities, i.e., when all the fields are smooth, the

onfigurational and the standard equations of motion are equivalent, even if one is allowed to vary

he referential and spatial metrics.
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V. THE GREEN-NAGHDI-RIVILIN THEOREM

Green, Rivilin, and Naghdi19 realized that conservation of mass and balance of linear and
ngular momenta can be obtained as a result of postulating invariance of energy balance under
sometries of R3, i.e., rigid translations and rotations in the deformed configuration. Later Marsden
nd Hughes28 extended this idea to Riemannian manifolds and diffeomorphisms of the deformed
onfiguration showing that this covariant approach gives the Doyle-Ericksen formula for Cauchy
tress as well as conservation of mass and balance of linear and angular momenta. In another
elevant work, Šilhavý39 considered all the densities in the energy balance to be volume densities
nd assuming �i� invariance of energy balance under Galilean transformations and �ii� bounded-
ess of energy from below, proved the existence of mass, its conservation, balance of linear and
ngular momenta, transformation of body forces and the splitting of total energy into internal and
inetic energies.

Before discussing the covariant approach to elasticity, let us first discuss the classical Green-
aghdi-Rivilin �GNR� theorem and a nonconventional material form of it. We consider two cases:

i� material energy balance invariance under spatial isometries of R3 and �ii� material energy
alance invariance under material isometries of R3. We call �i� and �ii� the spatial-material and
aterial-material GNR theorems, respectively.

. The spatial-material GNR theorem

Consider the material energy balance for a nice subset U�B,

d

dt



U

0�� +

1

2
V · V�dV = 


U

0�B · V + R�dV + 


�U
�T · V + H�dA , �4.1�

here �=��t ,X ,F� is the free energy density per unit mass of the undeformed configuration.
ow consider an isometry �t :R3→R3 of R3. We postulate that the material energy balance is

nvariant under �t. For the sake of simplicity we consider translations and rotations separately.

�i� �Rigid translations� A spatial rigid translation is defined by

�t�x� = x + �t − t0�c , �4.2�

where c is some constant vector field. We now postulate that the material balance of
energy holds for the deformation mapping �t�=�t ��t as well. This balance law is still
written on U but with different fields �primed fields� in general,

d

dt



U

0���� +

1

2
V� · V��dV = 


U

0��B� · V� + R��dV + 


�U
�T� · V� + H��dA .

�4.3�

Using Cartan’s space-time theory, the primed fields are related to the unprimed quanti-
ties through the following relations:


0��X� = 
0�X�, R��X� = R�X�, H��X� = H�X� ,

V��t=t0
= 	�

�t
�t�	

t=t0

= �T�tV + c�t=t0
= V + c ,

T��X,N� = T�X,N� . �4.4�
Also because
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b� − a� = �t*�b − a� and B − A = �b − a� � �t. �4.5�

We have

B� − A� = �t
*�b − a� � �t�. �4.6�

Hence

�B� − A��t=t0
= �b − a� � �t = �B − A� . �4.7�

It can be easily shown that

F��X� = F�X� . �4.8�

The free energy density would have the following transformation:

���t,X,F��X�� = ��t,X,F�X�� . �4.9�

Thus,

d

dt
���t,X,F��X�� =

��

�t
. �4.10�

Balance of energy for U�B for the new deformation mapping at t= t0 can be written as



U

�
0

�t
�� +

1

2
�V + c� · �V + c��dV + 


U

0� ��

�t
+ �V + c� · A��t=t0�dV

= 

U


0�B��t=t0
· �V + c� + R�dV + 


�U
�T · �V + c� + H�dA , �4.11�

where Div c=0 was used. Subtracting the material energy balance of the deformation
�t for U�B from the above equation and using �4.7� we obtain



U

�
0

�t
�c · V +

1

2
c · c�dV + 


U

0A · c dV = 


U

0B · c dV + 


�U
T · c dA .

�4.12�

Because U and c are arbitrary one concludes that

�
0

�t
= 0, �4.13�

Div P + 
0B = 
0A . �4.14�

�ii� �Rigid rotations� Now let us consider a rigid rotation in the ambient space, i.e., �t :S
→S, where

�t�x� = e�t−t0��x , �4.15�

for some constant skew-symmetric matrix �. Note that

T�t�t=t0
= e�t−t0���t=t0

= Id and 	 �

�t
	

t=t0

�t�x� = �x . �4.16�
Also
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V��X��t=t0
= V + �x�X� . �4.17�

Subtracting the balance of energy for U for deformation mapping �t from that of �t�
=�t ��t at time t= t0 results in



U


0�x�X� · �A − B�dV = 

�U

T�x�X�dA . �4.18�

But



�U

T�x�X�dA = 

U

�Div P · �x + PFT:��dV . �4.19�

Thus

PFT = FPT, �4.20�

where use was made of balance of linear momentum.

. The material-material GNR theorem

To our best knowledge, there is no study of invariance of energy balance under isometries of
he reference configuration in the literature. It turns out that such an invariance does not hold in
eneral, even in Euclidean space. In this section we study the transformation of balance of energy
nder rigid translations and rotations of the reference configuration in the Euclidean space context.
t will be shown that balance of energy is invariant under translations and rotations of the refer-
nce configuration for isotropic materials that satisfy an internal constraint that we call material
nviscidity.

Again we consider rigid translations and rigid rotations of the reference configuration sepa-
ately.

�i� �Rigid translations� Consider a time-dependent rigid translation of the reference con-
figuration �t :B→B�. Let

X� = Xt = �t�X� = X + �t − t0�W , �4.21�

for some constant vector field W. Note that

T�t = Id, X = �t
−1�Xt� = Xt − �t − t0�W . �4.22�

Deformation gradient with respect to the new reference configuration is denoted F� and,

dx = F dX = F� dX�. �4.23�

But, dX�=dX and hence

F dX = F� dX " dX . �4.24�

This means that

F��Xt� = F�X� or F� = F � �t
−1. �4.25�

In the differential geometry language this means that

F� = �t*F = F � �t
−1. �4.26�
The material velocity with respect to the new reference configuration is
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V��Xt� =
�

�t
�t � �t

−1�X�� = V � �t
−1�X�� − FW. �4.27�

Thus at t= t0,

V� = V − FW. �4.28�

Free energy density is assumed to have the following transformation:

���X�,F � �t
−1� = ��X,F� . �4.29�

Or

���X�,F� = ��X,F � �t� . �4.30�

�Note that this does not put any restrictions on the material properties as here all we
assume is that under a change of frame the 3-form 
0� dV is transformed to a 3-form

0��� dV�=�t*�
0� dV�.� More precisely,

�t
*���X�,F� = ��X,F � �t� . �4.31�

Thus

d

dt
���X�,F� =

��

�t
+

��

��F � �t�
:

�F

��t�X�
. W . �4.32�

Hence at t= t0

d

dt
���X�,F� =

��

�t
+

��

�F
:
�F

�X
. W . �4.33�

Material balance of energy for U�B reads



U

�
0

�t
�� +

1

2
��V,V���dV + 


U

0� d

dt
� + ��V,A���dV

= 

U


0�B · V + R�dV + 

�U

�T · V + H�dA . �4.34�

Let us assume that material balance of energy for U��B� reads

d

dt



U�

0���� +

1

2
V� · V��dV� = 


U�

0�B� · V� + R��dV� + 


U�
B0� · Wt dV�

+ 

�U�

�T� · V� + H��dA�, �4.35�

for some vector field B0� which will be determined shortly. Note that thinking of the
integrand of the left-hand side of balance of energy as a 3-form �, we have

d

dt



U�
�� = 


U

d

dt
��t

*��� . �4.36�

But �t
*��=
0�X���X ,F ��t�dV, thus material balance of energy for U��B� at t= t0
reads
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U

�
0

�t
�� +

1

2
��V − FW,V − FW���dV + 


U

0�	ddt

	
t=t0

�� + ��V − FW,A��t=t0
���dV

=

U


0�B��t=t0
· �V − FW� + R�dV + 


�U
�T · �V − FW� + H�dA + 


U
B0 · W dV ,

�4.37�

where B0 is an unknown vector field at this point. Note that

�B� − A��t=t0
= B − A . �4.38�

Now subtracting the material balance of energy for U�B from that of U��B� at time
t= t0 yields



U
�P:

�F

�X
+ 
0FT�B − A� − B0� · W dV + 


�U
FTT · WdA = 0 " W . �4.39�

Localization leads to the following conclusion:

B0 = Div�FTP� + 
0FT�B − A� + P:
�F

�X
. �4.40�

Note that

P:
�F

�X
= Div��I� −

��

�X
, �4.41�

and

Div�FTP� = FT Div P + P:
�F

�X
. �4.42�

Thus �4.40� is equivalent to

B0 = FT�Div P + 
0�B − A�� + 2P:
�F

�X
= 2P:

�F

�X
. �4.43�

Therefore, the transformed balance of energy is �4.35� with B0�=�t*�B0�.
Invariance of balance of energy under rigid translations of the reference configuration is
equivalent to B0=0, i.e.,

P:
�F

�X
= 0 , �4.44�

which is equivalent to

Div�FTP� = FT Div�P� . �4.45�

Obviously, if F is independent of X, i.e., if the deformation gradient is uniform then this
condition is satisfied but as we will see in the sequel this is not necessary. Note that �4.43�
is independent of balance of linear momentum. It is seen that an additional constraint must
be satisfied for the material energy balance to be invariant under time-dependent rigid
referential translations. This shows the very different natures of material and spatial mani-
folds. We will show at the end of Sec. VI that �4.45� implies that configurational stress
tensor is hydrostatic. For this reason we call �4.45� the configurational inviscidity
constraint.

Example: Consider a Neo-Hookean rod in uniaxial tension. The deformation gradient is
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F = ��−1/2 0 0

0 �−1/2 0

0 0 �
� . �4.46�

It can be easily shown that the first Piola-Kirchhoff stress tensor has the following repre-
sentation:

P =�
0 0 0

0 0 0

0 0 �� −
�

�2
� , �4.47�

where �=��X�. It is now an easy exercise to show that �4.45� is satisfied only if � is
constant, i.e., only if the deformation gradient is uniform. Thus in this case the only
possibility would be a uniform deformation gradient for balance of energy to be invariant
under rigid translations of the reference configuration.
Example: We know that for an isotropic material

SAB = �0GAB + �1CAB + �2CA
DCDB, �4.48�

where �0 ,�1, and �2 are scalar functions of X and SAB are components of the second
Piola-Kirchhoff stress tensor. For the sake of simplicity, suppose �1=�2=0. In terms of P
and F we have

PaA = �0GABFa
B. �4.49�

When the reference configuration and ambient space are Euclidean the condition
Div�FTP�=FT Div�P� is equivalent to

�0Fa
B

�Fa
B

�XA = 0. �4.50�

Or

Fa
B

�Fa
B

�XA = Fa
B

�Fa
A

�XB = 0. �4.51�

Note that, in general, this does not imply that the deformation gradient is uniform and it is
simply an internal constraint.
Example: Consider an incompressible perfect fluid �ideal fluid� for which

�ab = − pgab and J = 1. �4.52�

Thus

PaA = − J�F−1�A
bpgab. �4.53�

Using Piola identity we have

�Div�FTP��A = �− pJGAB��B = − J
�p

�xbFb
BGAB. �4.54�

Also

�FT Div�P��A = − gabFb
BGABJ�pgad��d = − J

�p

�xbFb
BGAB. �4.55�
Thus �4.45� is satisfied for an ideal fluid.

 Apr 2006 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



t
fi
T
u
i

042903-24 Yavari, Marsden, and Ortiz J. Math. Phys. 47, 042903 �2006�

Downloaded 28
�ii� �Rigid rotations� Consider a time-dependent rigid rotation of the reference configuration
�t :B→B� defined as

X� = Xt = e�t−t0��X , �4.56�

for some constant skew-symmetric matrix �. Note that

V� = V − F�X, F� = F � �t
−1. �4.57�

Let us assume that material balance of energy for U��B� has the following form:

d

dt



U�

0���� +

1

2
V� · V��dV� = 


U�

0�B� · V� + R��dV� + 


�U�
�T� · V� + H��dA�

+ 

U�

�B0� · �X + C0�:��dV�, �4.58�

where C0�=�t*C0 and C0 is an unknown vector field at this point. Material balance of
energy for U��B� at t= t0 reads



U

�
0

�t
�� +

1

2
��V − F�X,V − F�X���dV

+ 

U


0�	 d

dt
	

t=t0

�� + ��V − F�X,A��t=t0
���dV

= 

U


0�B��t=t0
· �V − F�X� + R�dV + 


�U
�T · �V − F�X� + H�dA

+ 

U

�B0 · �X + C0:��dV . �4.59�

Subtracting the material balance of energy for U�B from that of U��B� at time t= t0
and considering the relation for B0 coming from rigid translations of the reference
configuration yields



U

�FTP − C0�:� dV = 0. �4.60�

This means that

FTP − C0 = �FTP − C0�T. �4.61�

Thus C0=−PTF+S for some symmetric tensor S. This symmetric tensor does not con-
tribute to balance of energy and we can choose it to be S=0. Thus the transformed
balance of energy under rigid rotations of the reference configuration is �4.58� where
C0�=�t*�C0� and C0=−PTF.
In conclusion, we have proved the following proposition.

Proposition 4.1: Balance of energy is invariant under time-dependent translations and rota-
ions of the reference configuration if B0=C0=0, i.e., if the reference configuration is both con-
gurationally inviscid and isotropic.
hus, balance of energy is invariant under material isometries of the reference configuration only
nder some constraints. As an example, it is seen that balance of energy is invariant under material

sometries in the case of ideal fluids.
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. COVARIANT SPATIAL ENERGY BALANCE

In this section we start by a reappraisal of the concept of covariance in elasticity and its
onsequences. We revisit Marsden and Hughes’ theorem28 and clarify some details in their proof.
e then show that the same conclusions can be reached if one assumes that mass density is a

-form instead of a scalar. A proof is then given for converse of Marsden and Hughes’ theorem,
.e., assuming conservation of mass, balance of linear and angular momenta and Doyle-Ericksen
ormula, balance of energy is invariant under arbitrary spatial diffeomorphisms. At the end of this
ection, we show that assuming spatial covariance for material energy balance yields results that
re identical to those obtained by assuming spatial covariance for spatial energy balance.

. Covariance and the Doyle-Ericksen formula

First recall that the general notion of covariance of a set of equations is as follows.
Definition 5.1 (Covariance): Suppose a theory has some tensor fields U ,V , . . . defined on a

pace A and the governing equations of the theory have the form F�U ,V , . . . �=0. These govern-
ng equations are called covariant if for any diffeomorphism � :A→A, �*�F�U ,V , . . . ��
F��*U ,�*V , . . . �. A theory is covariant if all its governing equations are covariant.

The Doyle-Ericksen formula: Doyle and Ericksen7 showed the following interesting relation:

� = 2

�e

�g
, �5.1�

.e., Cauchy’s stress tensor is proportional to the partial derivative of the free energy density with
espect to the Riemannian metric in the deformed configuration. �Note that �see Ref. 28, p. 198�

�e

�g
=

��

�g
. �5.2�

n other words, in Doyle-Ericksen formula internal energy density can be replaced by free energy
ensity because

e = � + �s , �5.3�

here � is absolute temperature and s is entropy density. Thus

�e

�g
=

��

�g
+

��

��

��

�g
+

��

�g
s =

��

�g
, �5.4�

s �� /��=−s�.
Doyle and Ericksen7 looked at changes of spatial frame passively, i.e., as changes of coordi-

ates while Marsden and Hughes28 chose the active point of view. The Doyle-Ericksen formula is
nown to be the essential condition for covariance of energy balance. Later Simo and Marsden40

ound a material version of Doyle-Ericksen formula, which we discuss next. Here by “material
ersion” they mean an analogue of the usual Doyle-Ericksen formula that ensures covariance of
aterial energy balance under spatial diffeomorphisms. �An interesting question to ask would be

he condition�s� that ensures covariance of material energy balance under diffeomorphisms of the
eference configuration. This will be discussed in Sec. VI.� Simo and Marsden consider a general
orm of polar decomposition theorem by first associating two Riemannian metrics G0 and G to B,
here G0 does not change under spatial diffeomorphisms while G does change. The polar decom-
osition theorem states that

F = RU, �5.5�
here
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U�X�:�TXB,G0� → �TXB,G� �5.6�

s the material stretch tensor �a positive-definite symmetric linear map with respect to the given
etrics� and

R�X�:�TXB,G� → �T�t�X�S,g� �5.7�

s, for each X�B, a �G ,g�-orthogonal linear transformation. The metric G is arbitrary and can
hange under spatial diffeomorphisms,

G = R*�g� . �5.8�

he internal energy density per unit mass of the deformed configuration is

e = e�x,t,g�x�� . �5.9�

ow define

E�X,t,G� = e��t�X�,t,R*�G�� . �5.10�

imo and Marsden40 show that

� = 2

�E

�G
, �5.11�

here � is the rotated stress tensor defined as

� = R*� or �AB = �R−1�A
a�ab�R−1�B

b. �5.12�

n this paper we prove a similar theorem by postulating a balance of energy for an arbitrary
eframing of the reference configuration for a special class of materials. It should be noted that
here are four possibilities for a covariant energy balance law.

�i� Spatial energy balance law for any reframing of the deformed configuration: This gives
the usual Doyle-Ericksen formula.

�ii� Material energy balance law for any reframing of the deformed configuration: This gives
the Doyle-Ericksen formula in terms of Kirchhoff stress tensor.

�iii� Material energy balance law for any reframing of the reference configuration: This
should give a material form of Doyle-Ericksen formula for Eshelby’s stress tensor.

�iv� Spatial energy balance for any reframing of the reference configuration: This should
give a spatial form of Doyle-Ericksen formula for Eshelby’s stress tensor.

Note that cases �i� and �ii� and also cases �iii� and �iv� are equivalent as the important thing
ere is the type of the diffeomorphism.

. Revisiting Marsden and Hughes’ theorem

Let us first revisit Marsden and Hughes’ covariant energy balance theory.28 These authors
ostulate a covariant spatial energy balance, i.e., they consider a motion �t :B→S and postulate
hat balance of energy still holds for any spatial change of frame. Marsden and Hughes consider
rbitrary changes of frame for the deformed configuration and postulate that energy balance is
nvariant under these framings. For a given nice subset U�B, the �spatial� balance of energy reads

d

dt



�t�U�

�e +

1

2
��v,v���dv = 


�t�U�

���b,v�� + r�dv + 


��t�U�
���t,v�� + h�da , �5.13�

here e ,r, and h are the internal energy function per unit mass, the heat supply per unit mass and
he heat flux, respectively. Marsden and Hughes then consider an arbitrary reframing of the

eformed configuration, which can be regarded as a motion of S in S, i.e., �t :S→S. Postulating
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he balance of energy �5.13� for such a reframing and considering it for t= t0 they obtain �i�
onservation of mass, �ii� balance of linear momentum, �iii� balance of angular momentum, and
iv� the Doyle-Ericksen formula. Conversely, if �i�, �ii�, �iii�, �iv� and balance of energy hold, then
alance of energy would hold for any change of spatial frame. We will give a proof for the
onverse of the theorem in the sequel.

Proposition 5.2 (Transport theorem in a reframing of the deformed configuration): Suppose
f�=�t*f is a scalar quantity defined on �t��U�, i.e., f� :�t��U�→R and f :�t�U�→R. �Marsden and

ughes have the following transport theorem on p. 166 of Ref. 28 in the second equation after
heir Eq. �2�, which needs to be corrected:

d

dt



�t��U�
f dv = 


�t��U�
� ḟ + f div v�dv�. �5.14�

n fact, the first dv should read dv�.� Then,

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t�U�

� ḟ + f div v�dv . �5.15�

Proof: The usual transport theorem can be written as

d

dt



�t��U�
f� dv� = 


�t��U�
� ḟ� + f� div� v��dv�, �5.16�

here

ḟ� =
� f�

�t
+

� f�

�x�
· v� =

� f�

�t
+ df� · v�, �5.17�

nd

v� = �t*v + w . �5.18�

herefore,

d

dt



�t��U�
f� dv� = 


�t��U�
� � f�

�t
+ df� · ��t*v + w� + f� div� v�
dv�. �5.19�

ote that

�

�x
=

�

�x�
� �T�t� or

�

�x�
= �T�t�−1 �

�

�x
. �5.20�

his means that

	 �

�x�
	

t=t0

=
�

�x
. �5.21�

emma 5.3: If �t :S→S is a diffeomorphism with the properties,

�t�t=t0
= Id, T�t�t=t0

= Id. �5.22�

hen

�div� v� dv���t=t0
= div v dv . �5.23�

Proof: We prove the lemma when S is equipped with an arbitrary volume form �. This will

mply the particular case of a Riemannian manifold with the volume form induced by the Rie-
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annian metric. Recall that the divergence of a vector field X with respect to � is defined as

LX� = �div� X�� . �5.24�

nder the spatial change of frame v�=�t*X+w, ��=�t*�. Thus,

�div�� v���� = Lv���t*�� = �t*�Lv�� , �5.25�

here use was made of Theorem 6.19 of Marsden and Hughes28. Therefore,

�div� v� dv���t=t0
= div v dv . �5.26�

�

One should be careful with partial time derivatives as �f� /�t is not equal to �f /�t at t= t0

ecause the former is partial time derivative for fixed x� while the latter is a partial time derivative
or fixed x. Note that

	 � f�

�t
	

x fixed
=	 � f�

�t
	

x� fixed
+ df� · wt. �5.27�

ence,

�	 � f�

�t
	

x� fixed
�

t=t0

=
� f

�t
− df · w . �5.28�

herefore �5.19� is simplified to

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t�U�

� ḟ + f div v�dv . �5.29�

�

Now let us take a more natural approach and assume that we are transporting a 3-form. Note
hat this is more general in the sense that we have not chosen a volume form dv a priori.

Proposition 5.4: Suppose ��=�t*� is a 3-form defined on �t��U�. Then,

	 d

dt
	

t=t0



�t��U�

�� = 

�t�U�

Lv� . �5.30�

Proof: Using the usual transport theorem for forms we have

d

dt



�t��U�
�� = 


�t��U�
Lv���. �5.31�

ssuming that � transforms objectively, i.e., ��=�t*�, using Theorem 6.19 of Marsden and
ughes28 we have

Lv��� = �t*Lv� . �5.32�

hus,

d

dt



�t��U�
�� = 


�t��U�
�t*Lv� . �5.33�
herefore,
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	 d

dt
	

t=t0



�t��U�

�� = 

�t�U�

Lv� . �5.34�

�

Now substitute �= f dv, where f is a scalar. Note that

f� dv� = f� Ù dv� = ��t*f� Ù ��t* dv� = �t*�f Ù dv� = �t*�f dv� . �5.35�

he above proposition now reads

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t0

�U�
Lv�f dv� . �5.36�

ote that L is a derivation and hence

Lv�f dv� = �Lvf�dv + f�Lv dv� = � ḟ + div v�dv . �5.37�

herefore

	 d

dt
	

t=t0



�t��U�

f� dv� = 

�t0

�U�
� ḟ + f div v�dv . �5.38�

hus, this approach recovers the same transport equation �5.15�.

. Energy balance in terms of differential forms

In this section we regard 
 as a 3-form and write the energy balance equation as

d

dt



�t�U�

�e +

1

2
��v,v��� = 


�t�U�

���b,v�� + r� + 


��t�U�
���t,v�� + h�da . �5.39�

Traction can be thought of as a covector-valued 2-form. There are some technical details involved
nd we choose to stick to the usual definition of traction.� Under a spatial diffeomorphism �t :S
S we postulate that

d

dt



�t��U�

��e� +

1

2
��v�,v���� = 


�t��U�

����b�,v��� + r�� + 


��t��U�
���t�,v��� + h��da�.

�5.40�

et f be the scalar multiplying the density 3-form in the first integrand, i.e., fªe+ 1
2 ��v ,v��. Thus

d

dt



�t�U�

f = 


�t�U�
Lv�
f� = 


�t�U�
�
Lvf + fLv
� . �5.41�

ut

Lvf = Lve + Lv� 1
2 ��v,v��� = ė +

�

�t
�1

2
��v,v��� + d�1

2
��v,v��� · v

= ė + ���v

�t
,v�� + ��v,�vv�� = ė + ��v,a�� . �5.42�
lso,
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d

dt



�t��U�

�f� = 


�t�U�
Lv��
�f�� = 


�t��U�
�
�Lv�f� + f�Lv�
�� . �5.43�

ote that v�=�t*v+wt and thus

Lv�
� = �t*�Lv
� . �5.44�

lso,

Lv�f� = e�̇ + ��v�,
�v�

�t
+ �v�v��� = e�̇ + ��v�,a��� . �5.45�

hus

�Lv�f���t=t0
= ė +

�e

�g
:Lwg + ��v + w,a��t=t0

�� , �5.46�

�Lv�
���t=t0
= Lv
 . �5.47�

herefore

	 d

dt
	

t=t0



�t��U�


�f� = 

�t�U�


�ė +
�e

�g
:Lwg + ��v + w,a��t=t0���

+ 

�t�U�

� f + ��v,w�� +
1

2
��w,w���Lv
 . �5.48�

ow subtracting the balance of energy equation for �t�U� from that of �t��U� at t= t0 we obtain



�t�U�


� �e

�g
:Lwg + ��v,a��t=t0

− a�� + ��w,a��t=t0
��� + 


�t�U�
���v,w�� +

1

2
��w,w���Lv


= 

�t�U�

���v,b��t=t0
− b + ��w,b��t=t0

��� + 

��t�U�

��w,t��da . �5.49�

sing the identity �b�−a���t=t0
=b−a we have



�t�U�


� �e

�g
:Lwg + ��w,a − b��� + 


�t�U�
���v,w�� +

1

2
��w,w���Lv
 = 


��t�U�
��w,t��da .

�5.50�

e know that



��t�U�

��w,t��da = 

�t�U�

���div �,w�� + �:
1

2
Lwg + �:��dv , �5.51�

here � has the coordinate representation �ab= 1
2 �wa�b−wb�a�. Let us replace 
 by 
 dv in the first
ntegral of Eq. �5.50�,
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�t�U�


� �e

�g
:Lwg + ��w,a − b���dv + 


�t�U�
���v,w�� +

1

2
��w,w���Lv


= 

�t�U�

���div �,w�� + �:
1

2
Lwg + �:��dv . �5.52�

ince w is arbitrary we conclude that

Lv
 = 0, �5.53�

� = 2

�e

�g
, �5.54�

div � + 
b = 
a , �5.55�

�T = � . �5.56�

. Proof of the converse of Marsden and Hughes’ theorem

Marsden and Hughes28 do not give a proof for the converse of the covariant energy balance
heorem, i.e., when Eqs. �5.53�–�5.56� are satisfied then energy balance is invariant under �t :S

S. Such a proof is nontrivial and is given here.
Let us assume that Eqs. �5.53�–�5.56� are satisfied and define

�E��t� =
d

dt



�t��U�

��e� +

1

2
��v�,v���g� − 


�t��U�

����b�,v���g + r�� − 


��t��U�
���t�,v���g + h��da�.

�5.57�

ote that balance of energy for �t�U� can be written as �E�Id�=0. We need to prove that for any
iffeomorphism �t, �E��t�=0. We know that

e��x�,t,g� = e�x,t,�t
*�g�� . �5.58�

et us denote

wt ª
d

dt
�t, Wt = �t

*�wt�, gt = �t
*�g� . �5.59�

ote that by definition



�t��U�


�r� = 

�t�U�


r, 

��t��U�

h� da� = 

��t�U�

h da . �5.60�

lso note that



��t��U�

��t�,v���g da� = 

��t��U�

���t*t,�t*v + wt��g da� = 

��t�U�

��t,v + Wt��gt
da . �5.61�
straightforward computation shows that
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d

dt



�t��U�
�1

2

���v�,v���g − 
���b�,v���g� = 


�t��U�

����t*�a − b�,�t*v + wt��g = 


�t�U�

��a − b,v��gt

+ 

�t�U�


��a − b,Wt��gt
, �5.62�

here use was made of Lv
=0. Note that

d

dt



�t��U�

�e� = 


�t��U�
�
�Lv�e� + e��t*�Lv
�� = 


�t��U�

�Lv�e� = 


�t��U�

�t

*�Lv�e�� .

�5.63�

ut

�t
*�Lv�e�� = ė +

�e

�gt
:LWt

gt. �5.64�

herefore

�E��t� = �E�Id� + 

�t�U�

��2

�e

�gt
− ��:

1

2
LWt

gt + �:�t
dv − 

�t�U�

��div � + 
�b − a�,Wt��gt
dv

= 0. �5.65�

�

. Spatial covariant material energy balance

Let us consider the material balance of energy

d

dt



U

0�E +

1

2
��V,V��� = 


U

0���B,V�� + R� + 


�U
���T,V�� + H�dA , �5.66�

here we have assumed that 
0 is a 3-form. Physically this is equivalent to the spatial energy
alance; material energy balance is simply the spatial energy balance expressed in terms of
uantities defined with respect to the reference configuration. Let us postulate that the material
nergy balance is invariant with respect to diffeomorphisms �t :S→S. This is physically equiva-
ent to the postulate of covariant spatial energy balance. The material energy balance for �t��U��S
s written as

d

dt



U

0��E� +

1

2
��V�,V���� = 


U

0����B�,V��� + R�� + 


�U
���T�,V��� + H��dA . �5.67�

ote that for both deformations balance of energy is written for the same subset U�B. The
aterial velocity V� is related to V by the following relation:

V��X� = T�t � Vt + wt � �t�X� . �5.68�

hus

�V��t=t0
= V + w � �t0

. �5.69�

e know that

R = J�t
r � �t, R� = J�t�

r� � �t�, r = J�t
r� � �t. �5.70�
ence
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J�t�
r� � �t� = �J�t

r� � �t� � �tJ�t
= J�t

r � �t. �5.71�

hus

R� = R . �5.72�

imilarly

H� = H . �5.73�

ote that looking at densities as 3-forms


0�X,t� = �t
*
�x,t�, 
0��X,t� = ��t��

*
��x�,t� . �5.74�

ut

��t��
*
��x�,t� = ��t � �t�*
��x�,t� = ��t

* � �t
*� � �t*
�x,t� = �t

*
�x,t� . �5.75�

hus


0��X,t� = 
0�X,t� . �5.76�

ecause balance of energy is written for the same subset U�B the same equality holds for
ensities as scalar fields, i.e., one can replace 
0� and 
0 by 
0� dV and 
0 dV, respectively. Define

E�X,t,g� = e��t�X�,t,g � �t�X�� . �5.77�

e know that

e��x�,t,g� = e�x,t,�t
*g� . �5.78�

hus

E��X,t,g� = e��x�,t,g� = e�x,t,�t
*g� = E�X,t,�t

*g� . �5.79�

herefore

	 d

dt
	

t=t0

E� =
�E

�t
+

�E

�g
:Lw��t

�g � �t� . �5.80�

ow the material energy balance for the motion �t� at t= t0 can be written as



U

�
0

�t
�E +

1

2��V + w � �t0
,V + w � �t0���dV + 


U
�
0� �E

�t
+

�E

�g
:Lw��t

�g � �t��
+ �
0��V + w � �t0

,A��t=t0
��
dV

= 

U


0���B��t=t0
,V + w � �t0

�� + R� dV + 

�U

���T,V + w � �t0�� + H� dA . �5.81�

ubtracting the balance of energy for the motion �t from �5.81� one arrives at the following

dentity:
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U

�
0

�t
���V,w � �t0�� +

1

2��w � �t0
,w � �t0���dV + 


U

0� �E

�g
:Lw��t

�g � �t� + ��w � �t0
,A���dV

= 

U

��
0B,w � �t0
��dV + 


�U
��T,w � �t0

�� dA . �5.82�

et us denote W=w ��t and note that W is a spatial vector field with components Wa.
Lemma 5.5: The surface integral term in �5.82� is transformed to a volume integral as



�U

��T,W��dA = 

U

���Div P,W�� + � :� + � :k�dV , �5.83�

here, �ab= PaBFB
b is the Kirchhoff stress and � and k have the coordinate representations kab

1
2 �Wa�b+Wb�a� and �ab= 1

2 �Wa�b−Wb�a�.
Proof: The integrand has the following component form:

TagabWb = PaCGCDNDgabWb = �PaCgabWb�GCDND. �5.84�

ow using divergence theorem the surface integral is transformed to an integral on U with an
ntegrand with the following component form:

�PaCgabWb��C = PaC
�CgabWb + PaCgabWb

�C, �5.85�

here use was made of the fact that gab�C=0. Note that

Wb
�C =

�Wb

�XC + �cd
b WcFd

C = Wb
,dFd

C + �cd
b WcFd

C = �Wb
,d + �cd

b Wc�Fd
C = Wb

�dFd
C. �5.86�

herefore,

�PaCgabWb��C = PaC
�CgabWb + PaCWa!dFd

C

= PaC
�CgabWb + PaCFd

C� 1
2 �Wa!d + Wd!a� + 1

2 �Wa!d − Wd!a�� , �5.87�

hich proves the lemma. �

Substituting �5.83� into �5.82� yields



U

�
0

�t
���V,W�� +

1

2
��W,W���dV + 


U
�2
0

�E

�g
− ��:k dV − 


U
� :� dV

− 

U

��Div P + 
0B − 
0A,W�� dV = 0 . �5.88�

s W and U�B are arbitrary we conclude that,

�
0

�t
= 0, �5.89�

� = 2
0
�E

�g
, �5.90�

T
� = � , �5.91�
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Div P + 
0B = 
0A . �5.92�

n conclusion, these computations result in the following proposition.
Proposition 5.6: Energy balance written in material form, but still with the assumption of

patial covariance yields results that are identical to those of energy balance written in spatial
orm, also with covariance under spatial diffeomorphisms.
he converse can be proved similar to what was done in the previous subsection.

I. TRANSFORMATION OF ENERGY BALANCE UNDER MATERIAL DIFFEOMORPHISMS

As was seen in the preceding section, invariance of balance of energy under an arbitrary
hange in spatial frame is equivalent to �1� balance of linear momentum, �2� balance of angular
omentum, �3� conservation of mass, and �4� Doyle-Ericksen formula. To our best knowledge,

here is no material version of this theorem in the literature. Our motivation for studying the
ossibility of material invariance of energy balance was to gain a better understanding of configu-
ational forces as they are believed to be related to rearrangements of the reference configuration.
t turns out that, in general, energy balance cannot be invariant under diffeomorphisms of the
eference configuration and what one should be looking for instead is the way in which energy
alance transforms under material diffeomorphisms. In this section we first obtain such a trans-
ormation formula under an arbitrary time-dependent material diffeomorphism �see Eq. �6.51��
nd then obtain the conditions under which balance of energy is materially covariant.

. The energy balance material transformation formula

We begin with a discussion of how energy balance transforms under material diffeomor-
hisms. Define

E�X,t,G� = ��X,t,C�F�X�,g��t�X���,G� , �6.1�

here �=��X , t ,G ,C� is the material free energy density. Material �Lagrangian� energy balance
an be written as

d

dt



U

0�E +

1

2
��V,V���dV = 


U

0���B,V�� + R�dV + 


�U
���T,V�� + H�dA , �6.2�

hich can be simplified to read



U

d

dt
�
0�E +

1

2
��V,V���
dV = 


U

0���B,V�� + R�dV + 


�U
���T,V�� + H�dA , �6.3�

here U is an arbitrary nice subset of the reference configuration B, B is body force per unit
ndeformed mass, V�X , t� is the material velocity, 
0�X , t� is the material density, R�X , t� is the

eat supply per unit undeformed mass, and H�X , t , N̂� is the heat flux across a surface with normal
ˆ in the undeformed configuration �normal to �U at X��U�. It is to be noted that this is balance
f energy for a deformed part of the body written in terms of quantities that are defined with
espect to the undeformed �reference� configuration. Here we assume that we have a material
anifold which is a Riemannian manifold �B ,G� and a given reference configuration B�B.

Change of reference frame: In this paragraph we consider a change of frame for the reference
onfiguration and look at the transformed quantities for the new reference configuration. A refram-
ng of the reference configuration is a diffeomorphism

�t:�B,G� → �B,G�� . �6.4�

change of frame can be thought of as a change of coordinates in the reference configuration
passive definition� or a rearrangement of microstructure �active definition�. Under such a framing,

nice subset U is mapped to another nice subset U�=�t�U� and a material point X is mapped to
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�=�t�X�. Note that X is the position of a particle in the reference configuration, i.e., material
oints are identified with their positions in the reference configuration �which is arbitrary�. The
hange of frame is mathematically a mapping between two manifolds and one would expect to
efine an object on �B ,G�� as push-forward of the corresponding object on �B ,G�.

The deformation mapping for the new reference configuration is �t�=�t ��t
−1. This can be

learly seen in Fig. 2. The material velocity in U� is

V��X�,t� =
�

�t
�t��X�� =

��t

�t
� �t

−1�X�� + T�t �
��t

−1

�t
�X�� . �6.5�

e assume that

�t�t=t0
= Id,

��t

�t
�X� = W�X,t� . �6.6�

ote that W is the infinitesimal generator of the rearrangement �t. It can be shown that at t= t0,

	 ��t
−1

�t
�X��	

t=t0

= − W�X,t� . �6.7�

hus, at t= t0,

V� = V − FW. �6.8�

o find the relation between G and G� we note that the Finger tensor b=�t*G is a spatial tensor
nd hence independent of framing of the reference configuration. Thus,

b = �t*G = ��t��*G�. �6.9�

hat is,

G� = ��t � �t
−1�* � �t*G = ��t

−1�* � �t
* � �t*G = ��t

−1�*G = �t*G = �T�t�−*G�T�t�−1.

�6.10�

FIG. 2. A material reframing and the corresponding deformation maps.
ote that for an arbitrary X0�B,
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F�X0�:TX0
B → T�t�X0�S and F��X0��:TX0�

B → T�t��X0��S .

iven dX�TX0
B,

dx = F�X0� · dX and dX� = T�t · dX .

ence,

dx = F��X0�� · dX� = F��X0�� � T�t · dX = F�X0� · dX

or all dX�TX0
B. Thus,

F� = �t*F , �6.11�

here

�t*F = F � �T�t�−1. �6.12�

he easier way of proving this is the following:

F� = T�t� = T��t � �t
−1� = T�t � ��t�−1 = F � ��t�−1 . �6.13�

he material internal energy density is assumed to have the following tensorial property:

E��X�,t,G�� = E�X,t,G� . �6.14�

ote that this is different from assuming local covariance for internal energy density. This is
imply the material analogue of �5.78�; all that �6.14� says is that internal energy density at X�
valuated by the transformed metric G� is equal to the internal energy density at X evaluated by
he metric G. We know that G�=�t*G, thus

E��X�,t,G� = E�X,t,�t
*G� . �6.15�

his means that

	 d

dt
	

t=t0

E��X�,t,G� =
�E

�t
+

�E

�G
:LWG . �6.16�

Remark: Marsden and Hughes28 defined covariant constitutive equations by looking at isom-
tries of TX0

B at a given point X0�B. This is why they did not need to consider an explicit
ependence of � on G. Another more general way of defining material covariance for the strain
nergy function � is to assume that for any local diffeomorphism � :TX0

B→T��X0���B� that
eaves X0 fixed,

��X0,G,C� = ��X0,�*G,�*C� . �6.17�

ote that this is different from the implication of Cartan’s space-time, e.g.,

��X�,G�,C�� = ��X,�*G�,�*C�� ,

or an arbitrary diffeomorphism � :B→B. We emphasize that this relation and similarly �6.14�
o not put any restrictions on material properties. Ju and Papadopoulos26,27 proved that a conse-
uence of �6.17� is the following infinitesimal covariance condition:

G
��

�G
+ C

��

�C
= 0 , �6.18�
hich is equivalent to
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��

�G
= − G−1C

��

�C
= −

1

2
G−1CS = −

1

2
FTP . �6.19�

e will obtain this condition in the sequel as a consequence of assuming material covariance of
nergy balance.

Example: Consider a �materially uniform� Neo-Hookean material with the following energy
ensity

��X,G,C� = ��tr�C� − 3� = ��CIJG
IJ − 3� . �6.20�

e now show that this is an example of a materially covariant material. Note that

�C
��

�C
�J

I
= �CIKGKJ. �6.21�

lso

�G
��

�C
�J

I
= �GIKCMN

�GMN

�GKJ
= −

�

2
CMNGIK�GMKGJN + GMJGKN� = − �CIKGKJ, �6.22�

.e.,

C
��

�C
+ G

��

�G
= 0 . �6.23�

�

Spatial covariance of strain energy function �material-frame-indifference� can be defined simi-
arly �see Ref. 41�. However, one should note that this is different from Marsden and Hughes point
f departure for developing a covariant theory of elasticity; in Marsden and Hughes’ theory28

alance of energy is assumed to be covariant and not the energy function. In covariant energy
alance, a global diffeomorphism is considered and energy balance is assumed to be invariant
nder this global diffeomorphism.

Balance of energy for reframings of the reference configuration: One way to obtain the
overning balance equations of a continuum is to use the homogeneity of the ambient space and
ostulate that if a deformed body satisfies the balance of energy, any framing of it should satisfy
he balance of energy as well. This is a postulate and cannot be proved. But, one can justify it �or
otivate it� by the fact that the ambient space S is homogeneous. Invariance of energy balance

nder framings of the reference configuration is less obvious and, in general, it turns out not to
old. The following is the main conclusion of this section. Under referential diffeomorphisms,
aterial energy balance has some extra terms in it. The extra terms correspond to some forces

hat contribute to the rate of change of energy when the reference configuration evolves.
Consider a deformation mapping �t :B→S and a referential diffeomorphisms �t :B→B. The

apping �t�=�t ��t
−1 :B�→S, where B�=�t�B�, represents the deformation of the new �evolved�

eference configuration. We are interested in understanding the form of material energy balance for

t�U��B� for any nice U�B. In addition to contributions from the mapping �t�, in general, one
hould expect to see contributions from the referential mapping �t as well, i.e., evolution of
eference configuration may, in general, contribute to the energy balance. Now the balance of
nergy should include the following two groups of terms:

�i� Looking at �t� as the deformation of B� in S, one has the usual material energy balance
for �t�U�. Transformation of fields from �B ,G� to �B ,G�� follows Cartan’s space-time
theory.

�ii� Nonstandard terms may appear to represent the energy associated with the material

evolution.
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Here a comment is in order. The mapping that represents all the physical processes is �t. This
apping is the composition of �t� and �t and hence it is expected that, in general, both �t� and �t

epresent part of the physical processes. This means that standard deformation represented by �t�
nd evolution of microstructure �or any other material evolution� represented by �t should con-
ribute to balance of energy. �This is similar to Gurtin’s idea20,21 of including both standard and
onstandard terms in the expression of working. However, here we consider the full balance of
nergy.� This rough picture should be enough to convince the reader that the lack of invariance of
nergy balance under �t should not be surprising. Lack of invariance implies the appearance of
ome new terms that are work-conjugate to Wt= �� /�t��t. Let us denote the volume and surface
orces conjugate to W by B0 and T0, respectively.

Instead of looking at spatial framings, we fix the deformed configuration and look at framings
f the reference configuration. We postulate that energy balance for each nice subset U� has the
ollowing form:

d

dt



U�
�E� +

1

2

0���V�,V����dV� = 


U�

0����B�,V��� + R��dV� + 


�U�
���T�,V��� + H��dA�

+ 

U�

��B0�,Wt��dV� + 

�U�

��T0�,Wt��dA�, �6.24�

here U�=�t�U� and B0� and T0� are unknown vector fields at this point. Using Cartan’s space-time
heory, it is assumed that the primed quantities have the following relations with the unprimed
uantities

dV� = �t*dV �J��t�dV� = dV�, R��X�,t� = R�X,t� ,


0��X�,t� = 
0�X�, H��X�,N̂�,t� = H�X,N̂,t� , �6.25�

T��X�,N̂�,t� = T�t�X� · T�X,N̂,t� .

e know that

B� − A� = �t*�B − A� . �6.26�

hus

�B� − A���t=t0
= B − A . �6.27�

Note that if � is a 3-form on U, then

	 d

dt
	

t=t0



U�

�� = 

U
	 d

dt
	

t=t0

��t
*��� , �6.28�

here U�=�t�U�. Thus

	 d

dt
	

t=t0



U�

E�dV� = 

U
	 d

dt
	

t=t0

��t
*E��dV = 


U
� �E

�t
+

�E

�G
:LWG�dV . �6.29�
aterial balance of energy for U��B� at t= t0 reads
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U

�
0

�t
�E +

1

2
��V − FW,V − FW���dV + 


U

0� �E

�t
+

�E

�G
:LWG + ��V − FW,A��t=t0

���dV

= 

U


0���B��t=t0
,V − FW�� + R�dV + 


�U
���T,V − FW�� + H�dA + 


U
��B0,W��dV

+ 

�U

��T0,W��dA . �6.30�

ote that T0 and B0 are defined on B and T0� and B0� are the corresponding quantities defined on

t�B�. Here we assume that T0�=�t*T0 and B0�=�t*B0. Subtracting balance of energy for U from
his and noting that �A�−B��t=t0

=A−B we obtain



U

�
0

�t
�− ��V,FW�� +

1

2
��FW,FW���dV + 


U

0� �E

�G
:LWG − ��FW,A���dV

= − 

U

��
0B,FW��dV − 

�U

��T,FW��dA + 

U

��B0,W��dV + 

�U

��T0,W��dA .

�6.31�

auchy’s theorem implies that

��T,FW�� = ��FW,��P,N̂���� , �6.32�

here P is the first Piola-Kirchhoff stress tensor. Similarly

T0 = ��P0,N̂�� . �6.33�

Lemma 6.1: The surface integral in material energy balance has the following transformation:



�U

��FTT,W��dA = 

U

Div��FTP,W��dV = 

U

���Div�FTP�,W�� + FTP:� + FTP:K�dV ,

�6.34�

here

�IJ = 1
2 �GIKWK

�J − GJKWK
�I� = 1

2 �WI!J − WJ!I� , �6.35�

KIJ = 1
2 �GIKWK

�J + GJKWK
�I� = 1

2 �WI!J + WJ!I�, K = 1
2LWG . �6.36�

Proof: In components the integrand can be written as

�FT�A
aTaGABWB. �6.37�

ut

Ta = PaCGCDND. �6.38�

ence in components the integrand reads

��FT�A
aPaCGABWB�GCDND. �6.39�

sing the divergence theorem the surface integral is transformed to an integral on U with the

ollowing integrand in components:
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��FT�A
aPaCGABWB��C = ��FTP�ACGABWB��C = �FTP�AC

�CGABWB + �FTP�ACGABWB
�C

= �FTP�AC
�CGABWB + �FTP�AC� 1

2 �GABWB
�C + GCBWB

�A� + 1
2 �GABWB

�C

− GCBWB
�A�� , �6.40�

here use was made of the fact that GAB�C=0. �

Similarly,



�U

��T0,W��dA = 

U

Div��P0,W��dV = 

U

���Div�P0�,W�� + P0:� + P0:K�dV . �6.41�

y definition, at time t= t0 the transformed balance of energy should be the same as the balance of
nergy for U. Subtracting the material balance of energy for U from the above balance law and
onsidering conservation of mass, we obtain



U


0
�E

�G
:LWGdV + 


U
��
0FT�B − A�,W��dV − 


U
��
0B0,W��dV + 


�U
��FTT − T0,W��dA = 0.

�6.42�

hus



U
�2
0

�E

�G
+ FTP − P0�:

1

2
LWGdV + 


U
�FTP − P0�:�dV + 


U
��
0FT�B − A� − B0 + Div�FTP�

− Div P0,W��dV = 0. �6.43�

ow using the balance of linear momentum the identity �6.43� simplifies to



U
�2
0

�E

�G
+ FTP − P0�:

1

2
LWGdV + 


U
�FTP − P0�:�dV + 


U
��Div�FTP − P0� − FTDiv P

− B0,W��dV = 0. �6.44�

ecause U and W are arbitrary

P0 = 2
0
�E

�G
+ FTP , �6.45�

�FTP − P0�T = FTP − P0, �6.46�

B0 = Div�FTP − P0� − FT Div P . �6.47�

ote that �6.46� is trivially satisfied after having �6.45�. Thus we have

P0 = 2
0
�E

�G
+ FTP , �6.48�

B0 = Div�FTP − P0� − FT Div P . �6.49�

ote that P0 is a measure of anisotropy �deviation from material Doyle-Ericksen formula�. This is
n interesting result that in a natural way shows the contribution of some nonstandard terms to
alance of energy when reference configuration evolves.

Thus we have proven the following theorem.
Theorem 6.2: Under a referential diffeomorphism �t :B→B, and assuming that material
nergy density transforms tensorially, i.e.,
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E��X�,t,G� = E�X,t,�t
*G� , �6.50�

aterial energy balance has the following transformation:

d

dt



�t�U�
�E� +

1

2

0���V�,V����dV� = 


�t�U�

0����B�,V��� + R��dV� + 


��t�U�
���T�,V��� + H��dA�

+ 

�t�U�

��B0�,Wt��dV� + 

��t�U�

��T0�,Wt��dA�, �6.51�

here

T0� = �t*���2
0
�E

�G
+ FTP,N̂��
 , �6.52�

B0� = �t*�Div�FTP − P0� − FT Div P� , �6.53�

nd the other quantities are already defined.

. Consequences of assuming invariance of energy balance

This section shows the consequences of assuming material covariance of energy balance. It
urns out that energy balance, in general, cannot be materially covariant.

Material energy balance is invariant under material diffeomorphisms if and only if the fol-
owing relations hold between the nonstandard terms:

P0 = 0 or 2
0
�E

�G
= − FTP , �6.54�

B0 = 0 or Div�FTP� = FT Div P . �6.55�

quation �6.54� is the material Doyle-Ericksen formula and �6.55� is the configurational inviscid-
ty constraint, which will be defined in the sequel. Let us now start with the “naive” assumption
hat energy balance is materially covariant and see what its consequences are.

Material covariance of energy balance: Let us postulate that the balance of energy is invariant
nder a diffeomorphism �t :B→B, i.e.,

d

dt



U�

0��E� +

1

2
��V�,V����dV� = 


U�

0����B�,V��� + R��dV� + 


�U�
���T�,V��� + H��dA�.

�6.56�

Proposition 6.3: If material energy balance is invariant under arbitrary material diffeomor-
hisms �t :B→B, then

�
0

�t
= 0, �6.57�

2
0
�E

�G
= − FTP , �6.58�

FTP = PTF , �6.59�

T T
Div�F P� = F Div P . �6.60�
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onversely, if the above four conditions hold, then material energy balance is invariant under any
aterial diffeomorphism.

Proof: Material balance of energy for U��B� at t= t0 reads



U

�
0

�t
�E +

1

2
��V − FW,V − FW���dV + 


U

0� �E

�t
+

�E

�G
:LWG + ��V − FW,A��t=t0

���dV

= 

U


0���B��t=t0
,V − FW�� + R�dV + 


�U
���T,V − FW�� + H�dA . �6.61�

ubtracting balance of energy for U�B from this and noting that �A�−B��t=t0
=A−B we obtain



U

�
0

�t
�− ��V,FW�� +

1

2
��FW,FW���dV + 


U

0� �E

�G
:LWG − ��FW,A���dV

= − 

U

��
0B,FW��dV − 

�U

��T,FW��dA . �6.62�

e know that



�U

��FTT,W��dA = 

U
���Div�FTP�,W�� + FTP:� + FTP:

1

2
LWG
dV . �6.63�

Thus, �6.62� simplifies to



U

�
0

�t
�− ��V,FW�� +

1

2
��FW,FW���dV + 


U
�2
0

�E

�G
+ FTP�:

1

2
LWG dV + 


U
FTP:� dV

+ 

�U

��Div�FTP� + 
0FT�B − A�,W�� dV = 0. �6.64�

s U and W are arbitrary, we have

�
0

�t
= 0, �6.65�

2
0
�E

�G
= − FTP , �6.66�

FTP = PTF , �6.67�

Div�FTP� + 
0FTB = 
0FTA . �6.68�

quation �6.65� is nothing but material conservation of mass. Equation �6.66� is the material
oyle-Ericksen formula. This is what Lu and Papadopoulos26 call infinitesimal material covari-

nce. Equation �6.67� is balance of configurational angular momentum or isotropy of the material.
Note that if �6.66� holds then �6.67� holds trivially.� Finally, Eq. �6.68� is a condition that must be
atisfied for the balance of energy to be invariant under material diffeomorphisms. This constraint
s equivalent to

Div�FTP� = FT Div P . �6.69�

ssuming the above four conditions, it is easy to show that material energy balance is invariant

nder arbitrary material diffeomorphisms.
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Ideal fluids do satisfy all these conditions. In fact, their transformation properties under ma-
erial diffeomorphisms gives rise to Kelvin’s circulation theorem and it is a key ingredient in the
eometric approach to fluid mechanics; see the introduction to the Marsden and Ratiu book29 for
discussion and references to the literature.

. Material energy balance and defects

We now make a connection between �6.69� and Eshelby’s idea of force on a defect. The idea
f a driving force in continuum mechanics goes back to Eshelby13–15 and this notion is important
n developing evolution laws for the movement of defects, including dislocations, vacancies,
nterfaces, cavities, cracks, etc. Driving forces on these defects cause climb and glide of disloca-
ions, diffusion of point defects, migration of interfaces, changing the shape of cavities and
ropagation of cracks, to mention a few examples. Eshelby defined the force on a defect as the
eneralized force corresponding to position of the defect �in the reference configuration�, which is
hought of as a generalized displacement. Eshelby studied inhomogeneities in elastostatic and
lastodynamic systems by considering the explicit dependence of the elastic energy density on
osition in the reference configuration.

Defect forces: Suppose the elastic energy density has an explicit dependence on X �the posi-
ion of material points in the undeformed configuration�, i.e.,

W = W��,F,X� , �6.70�

here � and F are the deformation mapping and the deformation gradient, respectively. Consider
n open neighborhood � of an isolated defect. Force on the defect in the sense of Eshelby is
efined as

Fdefect = 

�

� �W

�X
�

explicit
dV = 


�

Div E dV = 

��

EN̂ dA , �6.71�

here E=WI−FTP is Eshelby’s energy-momentum tensor. It turns out that for a crack �thought of
s a defect� Fdefect is related to the celebrated J-integral;37 J is the component of Fdefect in the
irection of crack propagation.

The following proposition makes an explicit connection between �6.69� and Eshelby’s idea of
orce on a defect.

Proposition 6.4: Suppose an elastic material in an isothermal and quasistatic deformation
atisfies the internal constraint Div�FTP�=FTDiv P. In the absence of body forces, force on a
efect in the sense of Eshelby would be

Fdefect = 

�

� �W

�X
�

explicit
dV = 


�

Div E dV = 

��

WN̂ dA . �6.72�

Proof: Note that

Fdefect = 

��

EN̂ dA = 

��

WN̂ dA − 

�

FTDiv P dV = 

��

WN̂ dA .

his means that the configurational traction on �� is normal to �� at all points, i.e., the configu-
ational stress is hydrostatic. For this reason we call the internal constraint Div�FTP�=FT Div P,
he configurational inviscidity constraint.

If there is a stationary surface S across which deformation gradient and other quantities have
ump discontinuities, the balance of standard forces reads

�P�N̂ = 0 . �6.73�
ow let us look at the normal jump in Eshelby’s energy-momentum tensor,
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�E�N̂ = ��I − FTP�N̂ = ���N̂ − �FT��P�N̂ − �FT��P�N̂ , �6.74�

here �·� denotes average of inner and outer traces. Using Hadamard’s compatibility equations,

�F�t̂ = 0 for all t̂ such that t̂ · N̂ = 0, �6.75�

t can be easily shown that

N̂ · �E�N̂ = ��� − �F�N̂ · PN̂, t̂ · �E�N̂ = − Ft̂ · �P�N̂ . �6.76�

ow if the balance of standard forces hold one concludes that

t̂ · �E�N̂ = 0. �6.77�

his means that jump in configurational traction on �� is always normal to ��. However, the
revious remark shows that in the absence of body forces the condition Div�FTP�=FT Div P
mplies that the configurational traction itself is normal to ��.

Are configurational forces newtonian?: There have been doubts and discussions concerning
he nature of configurational forces in the literature already starting from Eshelby himself. Eshelby
trongly believed that force on a defect is fictitious and is different from the usual forces in
echanics. He defined force on a defect to be the thermodynamic force conjugate to the general-

zed coordinates defining the defect, for example, the crack tip position in the case of a crack.
shelby16 observed that the configurational force on a disclination in a liquid crystal is a real

orce. A similar observation was made by Nabarro34 for dislocations. Kröner23 and Ericksen11,12

ave similar discussions. Batra4 argues that force on a defect is equal to the standard force exerted
n the boundary of a subbody embracing the defect. Steinmann42 introduces the spatial signature
f a material force. One should note that this viewpoint is not in agreement with Gurtin’s theory
n which standard and configurational forces have their own balance laws.

Batra4 proves a theorem that states that force on a defect is equal to the resultant of tractions
n the boundary of any region enclosing this single defect. This seems to be a very surprising
esult. First of all, if body forces are considered resultant of tractions on different regions em-
odying the defect cannot be independent of the region as in this case stress tensor is not diver-
ence free. Barta suggests that problems involving the J-integral could be reinterpreted using his
heorem. As a matter of fact, the J-integral can serve as a counter example for Batra’s theorem.
he reason is that in the case of a linear elastic material in mode I fracture, for example, the
-integral is quadratic in KI while the stress is linear in KI and hence the resultant of tractions
cting on the boundary of a small region enclosing the crack would be linear in KI. This means
hat the J-integral, which is the component of configurational force in the direction of crack
rowth, cannot be a real force. The incorrectness of Batra’s theorem is because of the way he
efines force on a defect. Force on a defect in the sense of Eshelby is the rate of change of
otential energy of the elastic body with respect to changes in the position of the defect in the
eference configuration. Batra defines force on a defect to be the rate of change of energy with
espect to changes of position of the defect in the current configuration. This is the source of his
urprising result. One should note that direct and inverse motions describe the same physical
rocess and cannot lead to different conclusions regarding forces. Having the duality picture is
seful but one should note that positions of defects in the reference and current configurations are
ot related by the standard deformation mapping as the evolution of defects is an independent
inematical process.

Standard forces in continuum mechanics are one forms in the deformed configuration, i.e., at
ach point x�S, force is an element of Tx

*S. Configurational forces on the other hand are one
orms in the reference configuration, i.e., at each point X�B, configurational force is an element

*
f TXB. Therefore, geometrically it is meaningless to ask if a configurational force is a real force
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ery much like asking whether the deformation gradient �a two-point tensor� is symmetric. This is
hy arguments like the one proposed by Steinmann43 where he defines a spatial signature for a
aterial force do not make sense from the geometric standpoint.

Plasticity and embeddings: A traditional means of introducing configurational forces is based
n remapping the reference configuration of the body. However, this approach tacitly assumes that
he reference configuration can be embedded in Euclidean space. This approach fails when there
s no natural embedding of the reference configuration. A case in point is provided by multiplica-
ive plasticity,24 where the total deformation gradient at a point x has the representation: F�x�
Fe�x�Fp�x�, where Fe�x� and Fp�x� are the elastic and plastic deformation gradients, both of
hich fail to be a gradient in general. The plastic deformation mapping Fp�x� defines an interme-
iate configuration that defines the reference configuration for the elasticity of the material. In
articular, the elastic energy density is assumed to be of the form W�Fe ,x�. Since Fp�x� is not the
erivative of a mapping, the intermediate configuration cannot be embedded in Euclidean space.
herefore, remapping cannot be applied to deriving configurational forces directly from W�Fe ,x�.
y contrast, the present approach can be applied for that purpose, for example, by equipping the

ntermediate configuration with a constant metric.
The derivation of certain conserved integrals, such as the L-integral that gives the configura-

ional torque on isotropic subbodies, relies on the metric structure of the embedding Euclidean
pace. In addition, the conventional formulation of material symmetry also presumes the existence
f an Euclidian embedding. Such an embedding may not be natural or available in certain models
f materials, such as liquid crystals or smectic polymers, where the reference configuration may
nclude a unit director field.

II. NOETHER’S THEOREM AND BALANCE OF CONFIGURATIONAL FORCES

As is well known, there is a strong connection between conservation laws and symmetries. If
he Euler-Lagrange equations are satisfied and the Lagrangian density of a system is invariant
nder a group of transformations, Noether’s theorem gives the corresponding conserved quantity.
n this sense, conservation laws are related to symmetries of a given system. Marsden and
ughes28 consider material invariance in elasticity �in the absence of body forces� and show that

nvariance of Lagrangian density under rigid translations in the reference configuration results in
he following conservation law

�

�t
��
̇L · D
 · W� + DIV��FL · D
 · W − LW� = 0. �7.1�

his has been obtained assuming that the flow of W is volume-preserving and that L does not
xplicitly depend on X. For a constant W, this equation in our notation reads

Div��� −
1

2

0�V�2�I − FTP
 = −

�

�t
�
0FTV� . �7.2�

t is seen that this is identical to balance of configurational linear momentum if 
0 and � are
ndependent of X �note that this is stronger that homogeneity of L�. Ignoring the inertial effects,
oether’s theorem results in

Div��I − FTP� = 0 . �7.3�

Roughly speaking, Noether’s theorem states that when the Euler-Lagrange equations are sat-
sfied, any symmetry of the Lagrangian density corresponds to a conserved quantity. Here we
evisit Noether’s theorem for nonlinear elasticity assuming that undeformed and deformed con-
gurations are Riemannian manifolds. Writing action in the reference configuration, Lagrangian

ensity has the following explicit independent variables:
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L = L�XA,�a,�̇a,Fa
A,GAB,gab� . �7.4�

or the sake of clarity, we consider spatial and material symmetries of the Lagrangian density
eparately.

. Spatial covariance of Lagrangian density

Theorem 7.1: If the Lagrangian density is spatially covariant, then the following hold: (i)
patial homogeneity of the Lagrangian density and (ii) the Doyle-Ericksen formula.

Proof: Suppose �s is a flow on S generated by a vector field w, i.e.,

	 d

ds
	

s=0
�s � � = w � � . �7.5�

nvariance of L means that

L�XA,�s
a���,

��s
a

�xb �̇b,
��s

a

�xb Fb
A,GAB,−

��s
c

�xa

��s
d

�xb gcd� = L�XA,�a,�̇a,Fa
A,GAB,gab� . �7.6�

This reminds us of the definition of covariance for internal energy density. So, it would be very
atural to expect some connection between Noether’s theorem and covariant balance laws.� Now
ifferentiating the above relation with respect to s and then evaluating it at s=0 �This is somewhat
imilar to subtracting two balance relations and evaluating the result at t= t0�, one obtains

�L
��awa +

�L
��̇a

�wa

�xb �̇b + � �L
�F

�
a

A�wa

�xb Fb
A − 2

�L
�gab

�wc

�xa gbc = 0. �7.7�

ote that

�L
��̇a

�wa

�xb �̇b =
�

�t
� �L

��̇awa� −
�

�t
� �L

��̇a�wa. �7.8�

fter some manipulations, it can be shown that

� �L
�F

�
a

A�wa

�xb Fb
A = �� �L

�F
�

a

A

wa

�A

− � �L
�F

�
a

A

�A
wa − � �L

�F
�

b

A

�ac
b Fc

Awa. �7.9�

lso

− 2
�L
�gab

�wc

�xa gbc = − �2
�L
�gab

gbc�F−1�a
Awc


�A
+ �2

�L
�gab

gbc�F−1�a
A


�A

wc

+ 2
�L
�gab

gbd�ac
d wc.

�7.10�

herefore, symmetry of L implies that

� �L
��a −

�

�t
� �L

��̇
�

a

− � �L
�F

�
a

A

�A
− � �L

�F
�

b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b 
wa +

�

�t
� �L

��̇awa�
+ �� �L

�F
�

a

A

wa

�A

− �2
�L
�gab

gbc�F−1�a
Awc


�A
+ �2

�L
�gab

gbc�F−1�a
A


�A
wc = 0. �7.11�

ote that the term multiplied by wa is zero if the Euler-Lagrange equations are satisfied. Thus,

oether’s theorem states that
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�

�t
� �L

��̇awa� + �� �L
�F

�
a

A

wa

�A

− �2
�L
�gab

gbc�F−1�a
Awc


�A
+ �2

�L
�gab

gbc�F−1�a
A


�A
wc = 0.

�7.12�

ote that

�� �L
�F

�
a

A

wa

�A

= � �L
�F

�
a

A

�A
wa + � �L

�F
�

a

A

Fb
Awa

�b. �7.13�

lso

�2
�L
�gab

gbc�F−1�a
Awc


�A
= �2

�L
�gab

gbc�F−1�a
A


�A
wc + 2

�L
�gab

gbcw
c
�a. �7.14�

herefore �7.12� is simplified to

� �

�t
� �L

��̇a� + � �L
�F

�
a

A

�A

wa + � �L

��̇a� �wa

�t
+ �� �L

�F
�

a

A

Fc
A − 2

�L
�gbc

gab
wa
�c = 0. �7.15�

ote that

�wa

�t
=

�wa

�xc �̇c = �̇cwa
�c − �cd

a wd�̇c. �7.16�

herefore statement of Noether’s theorem, Eq. �7.12� can be rewritten as

� �

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇c
wa + �� �L
�F

�
a

A

Fc
A +

�L
��̇a �̇c − 2

�L
�gbc

gab
wa
�c = 0.

�7.17�

ote that

�L
��̇a �̇c = 
0gab�̇b�̇c. �7.18�

f Lagrangian density is covariant, i.e., if w is arbitrary then �7.17� implies that

2
�L
�gab

= gbc� �L
�F

�
c

A

Fa
A + gbc

�L
��̇c �̇a, �7.19�

�

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇c = 0. �7.20�

quation �7.19� can be rewritten as

2
�W

�gab
= gbc� �W

�F
�

c

A

Fa
A, �7.21�

hich is nothing but the Doyle-Ericksen formula. �Note that this includes balance of angular

omentum.� Note that
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�

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇c =
�L
��a − � �L

�F
�

b

A

Fc
A�ac

b + 2
�L
�gcd

gbd�ac
b −

�L
��̇b �̇c�ac

b .

�7.22�

ut

− � �L
�F

�
b

A

Fc
A + 2

�L
�gcd

gbd =
�L
��̇b �̇c. �7.23�

hus

�

�t
� �L

��̇a� + � �L
�F

�
a

A

�A
−

�L
��̇d�ac

d �̇c =
�L
��a . �7.24�

ence �7.20� implies that

�L
��a = 0. �7.25�

�

Note that this theorem implies that arbitrary flows and in particular rigid translations cannot be
ransitive �in the sense of Gotay et al.17,18� for arbitrary Lagrangian densities.

. Material covariance of Lagrangian density

Let us first consider the case of Euclidean spaces. Consider a flow �s on B generated by a
ector field W. Invariance of L with respect to this flow means that

L��s
A�X�,�a,�̇a,�� ��s

�X
�−1
B

A

Fa
B� = L�XA,�a,�̇a,Fa

A� . �7.26�

ifferentiating the above relation with respect to s and evaluating the result at s=0, one obtains

�L
�XAWA −

�L
�Fa

A

�WB

�XA Fa
B = 0. �7.27�

f W is a constant, then

�L
�XA = 0, �7.28�

.e., the Lagrangian density must be materially homogeneous. This is also what Nelson35,36 ob-
ains. After some manipulation and assuming that Euler-Lagrange equations are satisfied �7.27�
an be rewritten as

�

�XA�LWA −
�

�Fa
A

Fa
BWB� −

�

�t
� �L

��̇aFa
AWA� − L�WA

�XA = 0, �7.29�

here use was made of the fact that W is time independent. For a volume-preserving flow this

ives us
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�

�XA�LWA −
�

�Fa
A

Fa
BWB� −

�

�t
� �L

��̇aFa
AWA� = 0, �7.30�

hich is what Marsden and Hughes28 obtain. Now let us consider the general case of Riemannian
anifolds and assume that �s is a flow on the Riemannian manifold �B ,G� generated by a vector
eld W, i.e.,

	 d

ds
	

s=0
�s�X� = W�X�, X � B . �7.31�

Theorem 7.2: If the Lagrangian density is materially covariant then the following hold: �i�
aterial homogeneity of the Lagrangian density and �ii� material Doyle-Ericksen formula.

Proof: Invariance of L with respect to �s means that

L��s
A�X�,�a,�̇a,�� ��s

�X
�−1
B

A

Fa
B,gab,�� ��s

�X
�−1
C

A
�� ��s

�X
�−1
D

B

GCD�
= L�XA,�a,�̇a,Fa

A,gab,GAB� . �7.32�

ifferentiating the above relation with respect to s and evaluating the result at s=0, one obtains

�L
�XAWA −

�L
�Fa

A

�WB

�XA Fa
B − 2

�L
�GDK

GDC
�WC

�XK = 0. �7.33�

ote that

−
�L

�Fa
A

�WB

�XA Fa
B = − �Fa

B

�L
�Fa

A
WB�

�A
+ �Fa

B

�L
�Fa

A
�

�A
WB + Fa

C

�L
�Fa

A
	AB

C WB �7.34�

nd

− 2
�L

�GDK
GDC

�WC

�XK = − �2
�L

�GDK
GDCWC�

�K
+ �2

�L
�GDK

GDC�
�K

WC + 2
�L

�GDK
GBD	CK

B WC.

�7.35�

lso

�Fa
B

�L
�Fa

A
�

�A
WB = � �Fa

B

�XA − Fa
C	BA

C � �L
�Fa

A
WB + Fa

A�� �L
�Fa

B
�

�B
+

�L
�Fb

B
Fc

B�ac
b 
WA.

�7.36�

ssuming that Euler-Lagrange equations are satisfied and using the above identities after a lengthy
eries of simplifications, one obtains

�LWA −
�L

�Fa
B

WB�
�A

−
�

�t
�Fa

A

�L
��̇aWA� − LWA

�A − �2
�L

�GDK
GDCWC�

�K
+ �2

�L
�GDK

GDC�
�K

WC = 0.

�7.37�

ote that

− �2
�L

�GDK
GDCWC�

�K
+ �2

�L
�GDK

GDC�
�K

WC = − 2
�L

�GDK
GDCW�K

C . �7.38�
herefore in this case Noether’s theorem states that

 Apr 2006 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



N

U

I

O

w
D

i

V

042903-51 Covariant balance laws in elasticity J. Math. Phys. 47, 042903 �2006�

Downloaded 28
�LWA −
�L

�Fa
B

WB�
�A

−
�

�t
�FA

a
�L
��̇aWA� − LWA

�A − 2
�L

�GDK
GDCWC

�K = 0. �7.39�

ote that

�Fa
B

�L
�Fa

A

WB�
�A

=
�

�XA�Fa
B

�L
�Fa

A
�WB + Fa

B

�L
�Fa

A

WB + Fa
B

�L
�Fa

A

�WB	AC
C − WC	CA

B � .

�7.40�

sing the above relation and some lengthy simplifications, one can rewrite �7.39� as

� �L
�XA + � �L

�Fa
C

Fa
B + 2

�L
�GCD

GBC�	AC
B 
WA − � �L

�Fa
A

Fa
B + 2

�L
�GAC

GBC�WB = 0. �7.41�

f L is materially covariant, i.e., if W is arbitrary, then

�L
�XA + � �L

�Fa
C

Fa
B + 2

�L
�GCD

GBC�	AC
B = 0, �7.42�

�L
�Fa

A

Fa
B + 2

�L
�GAC

GBC = 0. �7.43�

r equivalently

�L
�XA = 0, �7.44�

�W

�Fa
A

Fa
B + 2

�W

�GAC
GBC = 0, �7.45�

here W is the material potential energy density. Note that �7.45� is nothing but the material
oyle-Ericksen formula �6.66�. �

Remarks: There are some differences between covariant energy balance �CEB� and Lagrang-
an density covariance �LDC�:

�i� CEB is global while LDC is local.
�ii� In CEB the arbitrary vector fields w and W are time-dependent �being velocities�, in

general, while in LDC they are time independent.
�iii� In writing balance of energy in CEB for a material diffeomorphism spatial quantities

contribute to energy balance. But in LDC a material flow does not affect the spatial
quantities.

III. CONCLUSIONS AND FUTURE DIRECTIONS

The results of this paper can be summarized as follows.

�i� We studied continuum mechanics of bodies with global referential evolutions by enlarg-
ing the configuration manifold to two Riemannian manifolds with their own metrics. A
deformation is then a pair of referential evolution, i.e., a motion in the referential mani-
fold, and a standard motion. We showed that in the absence of discontinuities, configu-
rational and standard equations of motion are equivalent even if the metrics are allowed

to vary.
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�ii� The classical theorem of Green, Naghdi, and Rivilin19 was revisited and a material
version of it was investigated. We showed that under a referential isometry balance of
energy cannot be invariant, in general, and obtained its transformation.

�iii� The idea of covariance in elasticity was reviewed. We revisited a theorem by Marsden
and Hughes28 and some of the details of its proof were clarified and a proof was given
for its converse. It was also shown that spatial covariance of material energy balance
leads to identical results.

�iv� We posed the question that whether energy balance can be materially covariant. It was
shown that, in general, energy balance cannot be invariant under referential diffeomor-
phisms. We obtained the transformation of energy balance under arbitrary material dif-
feomorphisms. We found conditions under which energy balance is materially covariant.
It was shown that in the absence of body forces the nontrivial condition for material
covariance of balance of energy is equivalent to configurational stress tensor �Eshelby’s
stress tensor� being hydrostatic. It was shown that for ideal fluids energy balance is
materially covariant.

�v� An explicit relation between covariance and Noether’s theorem was found. We showed
that spatial covariance of a Lagrangian density implies spatial homogeneity of the La-
grangian density and the Doyle-Ericksen formula. Similarly, material covariance of a
Lagrangian density implies its material homogeneity and the material Doyle-Ericksen
formula.

In summary, spatial covariance is reasonable and holds for most materials. The transformation
roperties of energy balance under material reframings was obtained. However, material covari-
nce of energy balance only holds for special materials, such as ideal fluids.

The main application of the ideas presented in this paper will be in gaining a better under-
tanding of the continuum theory of defects. In particular, if one repeats some of the developments
resented in this paper in a space-time setting, one should, in principle, be able to obtain dynamic
quations for evolution of defects. Another important relevant problem would be the study of
ovariance and its meaning in discrete systems. This may lead to a better understanding of “stress”
n discrete systems.
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