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This paper presents some developments related to the idea of covariance in elas-
ticity. The geometric point of view in continuum mechanics is briefly reviewed.
Building on this, regarding the reference configuration and the ambient space as
Riemannian manifolds with their own metrics, a Lagrangian field theory of elastic
bodies with evolving reference configurations is developed. It is shown that even in
this general setting, the Euler-Lagrange equations resulting from horizontal (refer-
ential) variations are equivalent to those resulting from vertical (spatial) variations.
The classical Green-Naghdi-Rivilin theorem is revisited and a material version of it
is discussed. It is shown that energy balance, in general, cannot be invariant under
isometries of the reference configuration, which in this case is identified with a
subset of R3. Transformation properties of balance of energy under rigid transla-
tions and rotations of the reference configuration is obtained. The spatial covariant
theory of elasticity is also revisited. The transformation of balance of energy under
an arbitrary diffeomorphism of the reference configuration is obtained and it is
shown that some nonstandard terms appear in the transformed balance of energy.
Then conditions under which energy balance is materially covariant are obtained. It
is seen that material covariance of energy balance is equivalent to conservation of
mass, isotropy, material Doyle-Ericksen formula and an extra condition that we call
configurational inviscidity. In the last part of the paper, the connection between
Noether’s theorem and covariance is investigated. It is shown that the Doyle-
Ericksen formula can be obtained as a consequence of spatial covariance of
Lagrangian density. Similarly, it is shown that the material Doyle-Ericksen formula
can be obtained from material covariance of Lagrangian density. © 2006 American
Institute of Physics. [DOI: 10.1063/1.2190827]

I. INTRODUCTION

Invariance plays an important role in mechanics and in physics. In any continuum theory one
has some conservation laws; i.e., quantities that are constant in time, such as mass and energy or
balance laws, such as balance of linear and angular momentum. One way of building a continuum
theory is to postulate these conservation or balance laws. On the other hand, as we shall recall
later, conservation laws and even balance laws can be obtained as a result of postulating invari-
ance of a quantity such as energy or Lagrangian density, under some group of transformations.

Traditionally, continuum mechanics is developed using Euclidean space as the ambient space.
This has been motivated by the engineering applications of continuum mechanics and the general
tendency of the engineering community to work with the simplest possible spaces. This is of
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course useful and the implicit simplifying assumptions of continuum mechanics have made it
applicable to many problems of practical importance. However, being restricted to the misleading
and rigid structure of Euclidean space, one should expect to lose important geometric information.
For example, for many years there were debates on different stress rates and whether one stress
rate is “more objective” than the other one. Putting continuum mechanics in the right geometric
setting, one can clearly see that different stress rates in the literature are simply different repre-
sentations of the same Lie derivative.”®

Another basic example of the lack of geometry in the traditional formulation of continuum
mechanics is the dependence of the well-known balance of linear and angular momenta on the
linear structure of Euclidean space. These laws are written in terms of integrals of some vector
fields. Of course, integrating a vector field has no intrinsic meaning and is dependent on a linear
structure or a specific coordinate choice. One can argue that a geometric point of view has proven
useful in, for example, building systematic numerical schemes as well as in bridging length and
time scales. For example, geometry has proven useful in Refs. 25, 6, and 3, although much
remains to be done in the future.

Following Einstein’s idea that physical laws should not depend on any particular choice of
coordinate representation of ambient spaces, Marsden and Hughes28 developed a covariant theory
of elasticity building on ideas originated from the work of Naghdi, Green and Rivilin."” This work
starts from balance of energy, which makes sense intrinsically as it is written in terms of integrals
of scalar fields (or more precisely 3-forms). Then they postulate that balance of energy is invariant
under arbitrary diffeomorphisms of the ambient space. They observe that this invariance assump-
tion gives all the usual balance laws plus the Doyle-Ericksen formula that relates the stress and the
metric tensor.

Our motivation for studying spatial and material covariant balance laws was to gain a better
understanding of the geometry of configurational forces, which are forces that act in the reference
configuration. One may ask the following question. What are the consequences of postulating that
balance of energy is materially covariant? In the process of answering this question we discovered
that such invariance cannot hold in general and this led us to obtain formulas for the way in which
balance of energy transforms under material diffeomorphisms. In this paper we also study the
connection between spatial and material covariance with Noether’s theorem. It will be shown that
spatial and material covariance of a Lagrangian density lead to the spatial and material forms of
the Doyle-Ericksen formula, respectively.

As was mentioned, one of our motivations for this study was to initiate a geometric study of
configurational forces. These forces and their balance laws are important in formulating the evo-
lution of defects in solids in the setting of continuum mechanics. Driving (configurational, mate-
rial and so forth) forces in continuum mechanics were introduced by Eshelby,l&15 and many
researchers have studied them from different points of view. We mention the work of Knowles,22
Abeyaratneh and Knowles'? on driving force on a phase interface, Gurtin’s work®”?! on configu-
rational forces by postulating new balance laws, the work of Maugin31’32 and Maugin and
Trimarco™ on pull-back of balance of standard linear momentum to the reference configuration,
etc. However, even after more than five decades after Eshelby’s original work there does not seem
to be a consensus on the nature of configurational forces and their exact role in continuum
mechanics and there are still some controversies in the literature. We believe that the geometric
ideas in this paper may be helpful in this direction.

This paper is organized as follows. The geometry of continuum mechanics is reviewed in Sec.
II. The Lagrangian field theory of elastic bodies with evolving reference configurations is pre-
sented in Sec. III, where deformed bodies and their reference configurations are treated as Rie-
mannian manifolds. Using this setting, the classical Green-Naghdi-Rivilin theorem and a new
material version of it are discussed in Sec. IV. Spatial covariant energy balance is revisited in Sec.
V. In Sec. VI we obtain the transformation (push-forward) of energy balance under an arbitrary
material diffeomorphism. Then, we investigate the consequences of material covariance of energy
balance. Section VII studies the connection between covariance and Noether’s theorem. It is
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shown that spatial and material covariance of a Lagrangian density result in spatial and material
versions of the Doyle-Ericksen formula, respectively. Conclusions and future directions are given
in Sec. VIII.

Il. GEOMETRY OF CONTINUUM MECHANICS

This section recalls some notation from the geometric approach to continuum mechanics that
will be needed. It is assumed that the reader is familiar with the basic ideas; refer to, for example,
Marsden and Hughes28 for details. See also Refs. 30 and 29.

If M is a smooth n-manifold, the tangent space to M at a point p € M is denoted 7,,M, while
the whole tangent bundle is denoted TM.

We denote by ‘B a reference manifold for our body and by S the space in which the body
moves. We assume that B and S are Riemannian manifolds with metrics denoted by G and g,
respectively. Local coordinates on 9B are denoted by X’ and those on S by x'. The material body
BB is a subset of the material manifold, i.e., BCB.

A deformation of the body is, for purposes of this paper, a C' embedding ¢:B8—S. The
tangent map of ¢ is denoted F=T¢:TB— TS; in the literature it is often called the deformation
gradient. In local charts on B and S, the tangent map of ¢ is given by the Jacobian matrix of
partial derivatives of the components of ¢, which we write as

F=Tp:TB—TS, TeX,V)=(eoX),De(X)-V). (2.1)

If F:B—R is a C! scalar function, X € B and Vy € TyB3, then V[ F] denotes the derivative of
F at X in the direction of Vy, i.e., Vi[F]=DF(X)-V. In local coordinates {X'} on B,

JF
V,[F]= @"'~ (2.2)

For f:S—R, the pull-back of f by ¢ is defined by

e f=rfoe. (2.3)
If F: B— R, the push-forward of F by ¢ is defined by

e:F=Fog ! (2.4)

If Y is a vector field on B, then ¢.Y=T@oYo¢™ !, or using the F notation, ¢:Y=FcYee ! is
a vector field on ¢(B) called the push-forward of Y by ¢. Similarly, if y is a vector field on
©(B)C S, then ¢"y=T(¢ )oyo o is a vector field on B and is called the pull-back of y by ¢.

The cotangent bundle of a manifold M is denoted 7°M and the fiber at a point p € M (the
vector space of one-forms at p) is denoted by T;M . If Bis a one form on S (that is, a section of
the cotangent bundle T°S), then the one-form on B defined as

(‘P*,B)x “Vx= ,8<p(x) (Te-Vy) = B(p(X) -(F-Vy) (2.5)

for Xe B and Vye TxB, is called the pull-back of B by ¢. Likewise, the push-forward of a
one-form a on B is the one form on ¢(B) defined by g.a=(¢™!) a.

We can associate a vector field 8* to a one-form 8 on a Riemannian manifold M through the
equation

BV =U{BLV s (2.6)

where (,) denotes the natural pairing between the one-form B, e TiM and the vector v, € T.M and
where ((,ZS'fCt ,v,)), denotes the inner product between ,B)f e T'\M and v, e T.M. In coordinates, the
components of 8% are given by B'=g"B,.
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Traditionally force is thought of as a vector field in the deformed configuration. For example,
body force B per unit undeformed mass is a vector field on S and its associated one-form can be
defined as

(B, 6w) = ((B, ow)), 2.7)
for all éw e T, S. The pull-back of B is defined as

(@"B)x. 6W)x = (B F W)y = ((B.FSWy))x = ((FTB, 5Wy))x. (2.8)
Therefore F'B is the vector field associated with the pull-back of the one-form associated with B.

A type P -tensor at X € 3 is a multilinear map,
q

T:TyB X -+ X TyBX TyB X -+ X TyB — R.

p copies q copies (2 . 9)

T is said to be contravariant of order p and covariant of order ¢g. In a local coordinate chart,

T(a',...,0"V,....V,)) = T"l""‘pjl...jqa}l afpv{l e Vi, (2.10)
where o € T\BB and V¥ e TyB.

Suppose ¢:B— S is a regular map and T is a tensor of type (p) Push-forward of T by ¢ is
denoted ¢-T and is a (p)—tensor on ¢(B) defined by
q

(e:T)(x)(a!, ...,a" vy, ..., v,)=TX)(¢'a, ...,0" ", @'V, ... ,(p*vq), (2.11)

where of € T.S,v; € T,.S,X=¢ ' (x), 9" (a")-v,=a*- (Te-v)) and ¢ (v)=T(¢")v,. Similarly, pull-
back of a tensor t defined on ¢(B) is given by ¢"t=(¢!).t. In the setting of continuum mechanics
push-forward and pull-back of tensors will have the following forms:

(D) () = Fity (X) - Fioy (OT' Ly (F) )+ (F7)Ys, (),

(‘P*t)llmlpjr'-Jq(X) = (F_l)llil(x) e (F_l)lpip(x)fi"”i”jl--~qujIJ,(X) e qujq(X)-

!

A two-point tensor T of type (j at X e B over a map ¢:B— S is a multilinear map,

!

T:TyB X -+ XTyBXTyBX <+« X TABXT.SX +++ XT.SXT,SX -+ X T,S— R,

p copies q copies p copies q copies (2_ 12)

where x=¢(X).
Let w:U{— TS be a vector field, where /C S is open. A curve ¢:/— S, where [ is an open
interval, is an integral curve of w if

?(r) =w(e(r)) Vrel. (2.13)
t

If w depends on time variable explicitly, i.e., w:U X (—e,&) — TS, an integral curve is defined by

%: w(c(?),1). (2.14)
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Let w:SX1—TS be a vector field. The collection of maps F, such that for each s and x,
t—F, (x) is an integral curve of w and F, ((x)=x is called the flow of w. Let w be a C' vector field
on S, F,its flow,and ta C ! tensor field on S. The Lie derivative of t with respect to w is defined
by

d. .
Lyt= (FL0| (2.15)

1=s

If we hold ¢ fixed in t then we denote

d. .
tt= ED| (2.16)

1=s

which is called the autonomous Lie derivative. Hence

a
Lyt=—t+g,t. (2.17)
ot

Let v be a vector field on S and ¢:8— S a regular and orientation preserving C' map. The
Piola transform of v is
V=J¢'v, (2.18)

where J is the Jacobian of ¢. If Y is the Piola transform of y, then the Piola identity holds,
DivY =J(divy)e° ¢. (2.19)

A k-form on a manifold M is a skew-symmetric ( k)-tensor. The space of k-forms on M is

denoted QX(M). If :M — N is a regular and orientation preserving C' map and a e Q¥(@(M)),

then
f a= f ¢ a. (2.20)
(M) M

Geometric continuum mechanics: We next review a few of the basic notions of continuum
mechanics from the geometric point of view.

A body B is a submanifold of a Riemannian manifold 8 and a configuration of B is a
mapping ¢:B— S, where S is another Riemannian manifold. The set of all configurations of B is
denoted C. A motion is a curve ¢c:R—C;t— ¢, in C.

For a fixed ¢, ¢,(X)=¢(X,?) and for a fixed X, ¢x(t)=¢(X,t), where X is position of material
points in the undeformed configuration B. The material velocity is the map V,: B— R? given by

, d
V(X)=V(X,1)= % = acpx(t). (2.21)

Similarly, the material acceleration is defined by

aVX,1) d
AX)=AX1) = =—Vy(1). 2.22
(X) =AX1) o 3 V0 (2.22)
In components
ave
A= p + YL VPVE, (2.23)

where ;. is the Christoffel symbol of the local coordinate chart {x“}.
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Here it is assumed that ¢, is invertible and regular. The spatial velocity of a regular motion ¢,
is defined as

vie(B) — RS, v,=V,o QDz_l > (2.24)

and the spatial acceleration a, is defined as

=iy (2.25)
a=v=—+V,v. .
g
In components
v Jv?
a’= +—v"+ 9 vhue. 2.26
ar  oxP Voe (2:26)

Let ¢:B— S be a C! configuration of B in S, where B and S are manifolds. Recall that the
deformation gradient is denoted F=T¢. Thus, at each point X € 3, it is a linear map

If {x’} and {X'} are local coordinate charts on S and B, respectively, the components of F are

. o"cpi
F'y(X)=—X). 2.28
50 =2 5) (2.28)
The deformation gradient may be viewed as a two-point tensor,

F(X):T.SXTyB—R; (a,V)—{a,Txe-V). (2.29)

Suppose B and S are Riemannian manifolds with inner products ({,))y and ((,)), based at X € B
and x € S, respectively.
Recall that the transpose of F is defined by

FT:TXS - TXB’ <<FV’ V>>x = <<V,FTV>>X (230)
for all Ve TyB,v e T,S. In components,

(FT(X)); = g;(0) F(X) G'*(X), (2.31)

where g and G are metric tensors on S and B3, respectively. On the other hand, the dual of F, a
metric independent notion, is defined by

F*(x):T.S— TyB; (F'(x)- a,W)=(a,F(X)W) (2.32)

for all a e T.S,W e TyB.

Considering bases e, and E, for S and B, respectively, one can define the corresponding dual
bases e and E. The matrix representation of F* with respect to the dual bases is the transpose of
F*,. F and F" have the following local representations:

9 . d
F:FJKQQOdXK, F'=Fydx¥® Pt (2.33)

The right Cauchy-Green deformation tensor is defined by

C(X):TyB — TyB, C(X)=FX)F(X). (2.34)

In components,
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C'y= (F") F. (2.35)
It is straightforward to show that

Cb=(P*(g), i.e.,CU=(g[j°(p)Fi1Fjj. (236)

From now on, by C we mean the tensor with components Cj;. The Finger tensor is defined as
b=¢,«G, where G is the metric of the reference configuration.

To make ideas more concrete, a comment is in order. In the geometric treatment of continuum
mechanics one assumes that the material body is a Riemannian manifold (B,G). Here B is an
embedding of the material body, i.e., material points are identified with their positions in the
reference configuration. A deformation of the material body is represented by a mapping ¢: B
— &, where (S,g) is the ambient space, which is another Riemannian manifold. If ¢=1Id, the
reference configuration is a trivial embedding of the material body in the ambient space. Physi-
cally, in the deformation process the relative distance of material points change in general. In other
words, in terms of material points X,X+dX and their positions in the deformed configuration
X,x+dx we have

dx-dx=CdX - -dX # dX - dX. (2.37)

This means that in general

g7 ¢opG. (2.38)

The following identities will be used frequently in this paper.

[9gab
IxC =gad’}/}ic+gbd’}/;c’ (239)
X
G
axAcB = Gapl'pe+ Gpplae, (2.40)

where ¥4 and '} are the Christoffel symbols associated to the metric tensors g and G, respec-
tively. The covariant derivative of two-point tensors will also be used frequently in this paper. The
following two examples would be useful to clarify the idea. For definition for an arbitrary two-
point tensor the reader may refer to Marsden and Hughes,28

aA
P = ax® + P“Tg+ PP F o (2.41)
A aQﬂA CTA A e
Oup=" i + CuaTen= O Fs ¥,y (2.42)

Let ¢,: B— S be a regular motion of B in S and PCB a k-dimensional submanifold. The
transport theorem says that for any k-form « on S,

d
— a= L,a, (2.43)
dtJ,p) ¢P)

where v is the spatial velocity of the motion. In a special case when a=fdv and P=U is an open
set,

d d
— fdv= f [—f + div(fv)}dv. (2.44)
drJ o p) P LI

We say that a body B satisfies balance of linear momentum if for every nice open set U C B,
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d q J
— pvdu =
deJ g ¢

where p=p(x,7) is mass density, b=b(x,) is body force vector field and t=t(x,n,7) is the traction
vector. Note that Cauchy’s stress theorem tells us that there is a contravariant second-order tensor
o=0(x,t) (Cauchy stress tensor) with components o/ such that t={(o,)). Note that ((,)) is the
inner product induced by the Riemmanian metric g. Equivalently, balance of linear momentum can
be written in the undeformed configuration as

pb dv + J tda, (2.45)
(2] a‘Pt(Z’{)

t

if pOVdV=f pOBdV+f (P, N))dA4, (2.46)
drJy u au

where, P=J¢" o (the first Piola-Kirchhoff stress tensor) is the Piola transform of Cauchy stress
tensor. Note that P is a two-point tensor with components P¥. Note also that this is the balance of
linear momentum in the deformed (physical) space written in terms of some quantities that are
defined with respect to the reference configuration.

As was mentioned before, balance of linear momentum has no intrinsic meaning because
integrating a vector field is geometrically meaningless. As is standard in continuum mechanics,
this balance law makes use of the linear (or affine) structure of Euclidean space.

A body B is said to satisty balance of angular momentum if for every nice open set UC B,

d

— px X vdv = f px X b dv + f x X {{o,n))da. (2.47)
drJ ¢ ¢ dg)

As with balance of linear momentum, balance of angular momentum makes use of the linear
structure of Euclidean space and this does not transform in a covariant way under a general change
of coordinates.

One says that balance of energy holds if, for every nice open set UC B,

4 p(e + l((v,v)))dv = f p({(b,v)) + r)dv + f ({t,v)) + h)da, (2.48)
drJ o 2 el a1l

where e=e(x,1),r=r(x,1) and h=h(x,n,t) are internal energy per unit mass, heat supply per unit
mass and heat flux, respectively.

The geometry of inverse motions: The study of inverse motions in continuum mechanics was
started by Shield*® and further extended by Ericksen'” and Steinmann.**** Here the idea is to fix
spatial points and look at the evolution of material points under the inverse of the deformation
mapping. It is known that in inverse motion, Eshelby’s tensor has a role similar to that of stress
tensor in direct motion. One should note that formulating continuum mechanics in terms of the
inverse motion is simply a change in describing the same physical system and so, in general,
cannot have any profound consequences. However, in the general relativistic setting, in which it is
desireable to have the fields to be defined on space-time and take values in a bundle over space-
time, inverse configurations are preferred; see Ref. 5 and references therein.

lll. LAGRANGIAN FIELD THEORY OF ELASTIC BODIES WITH EVOLVING REFERENCE
CONFIGURATIONS

Suppose the reference configuration evolves in time and assume that this evolution can be
represented by a one-parameter family of mappings that map BC B (reference configuration at
t=0) to B,C*B (the reference configuration at time 1),

28— B, (3.1)

We call these maps the configurational deformation maps. Note that this is not the most general
form of reference configuration evolution. In general, one should look at the reference configura-
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>

ot Pt

St
FIG. 1. Configurational and standard deformation maps.

tion evolution locally (see Refs. 9 and 8 for some discussions on this). For the sake of simplicity,
we assume a global reference configuration evolution. The configuration space for the evolution of
the reference configuration is

ceo = {E|5:8— B (3.2)

An evolution of the reference configuration is a curve c¢:I1—C" in C°°, It is important to put the
right restrictions on =,. It does not seem necessary for =, to be invertible, in general. Here, we
assume that B, is a diffeomorphism. A standard deformation is represented by a one-parameter
family of mappings,

o:B,—S. (3.3)
The standard configuration space is defined by

C={¢|e:B,— S}. (3.4)

Again, a standard deformation is a curve in the standard configuration space. The total deforma-
tion map is the composition of standard and configurational deformation maps,

¢l=§D,°E,ZB—>S; (3.5)
that is, the following diagram commutes:

BtLS

= T Afziﬁt 0E¢

B

Figure 1 below shows the same idea schematically.
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In terms of mapping the material points, x,=¢,(X,)=¢,°=Z,(X), as is shown in the following
commutative diagram:

Pt
X —— Tt

=i T %ﬁztpt oE¢

X

The configuration space for the total deformation is defined as
CIOt={¢|¢=QD°E,§D - C,E e Cconf}zcocconf' (36)

A deformation is a curve c¢:1— C* in the total configuration space. Note that =,=Id (identity map)
in most of classical continuum mechanics.

Notice that there are two independent deformation mappings ¢, and =, when reference con-
figuration evolves in time (see Fig. 1). These separate mappings represent independent kinematical
processes and hence may correspond to two separate systems of forces, in general.

Definition 3.1 (configurational velocity): The configurational velocity is defined by

IE(X)
Vo X,t) =——. 3.7
olX.1) o (3.7)
Definition 3.2: The total material velocity is defined by
~ dd(X J
Vxp= 20X =2 LFV,=V +FV,, (3.8)
It X fixed Ot
where, as before, F=0d¢,/ X, is the deformation gradient (holding t fixed). Note that
T, =Te,°oTE, or F=FF,. (3.9)
Thus
F,=F'oF. (3.10)

Now we may think about postulating the conservation of configurational mass and balance of
linear and angular configurational momenta.

Conservation of mass is defined in terms of conservation of mass for deformation mappings
E, and ¢, separately or equivalently for =, and ¢, separately. This makes sense as E, and ¢,
correspond to configurational and standard deformations and should preserve the mass of an
arbitrary sub-body.

Definitiion 3.3 (conservation of mass): Suppose B is a body and ¢,=¢,°E, is a deformation

map. We say that the deformation mapping is mass conserving if for every UC B,

d

d
o po(X,,0)dV=0 and & p(x,5)dv =0, (3.11)
1=z w) )

where py(X,,t) is the mass density at point X, € B, and p(x,t) is the mass density at the point X
es.
Localization of the above equations gives the local form of conservation of mass, namely

Ro(X) = po(X,,1)Jo = p(x,1)7, (3.12)

.~ [ . o~ . . . . .
where Jy=det(F,)(Vdet G/\det G,), Fy=TE, is the configurational deformation gradient, G, is
the fixed metric of B, G is the metric of 5, and R is the mass density at X € B and J=det(F)
X (vVdet g/\det G)=JJ,. Note that this is equivalent to
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R():pojo and p():p.]. (313)

One may be tempted to postulate a balance of configurational linear momentum as follows. A
body B satisfies the balance of configurational linear momentum if for any &' C 3,,

d
_f p0V0 dV= f POBO dv+ f P()N dA. (314)
dt u' u' !

Localization of this balance law and using Cauchy’s theorem gives the following local form of the
balance of configurational linear momentum

Div PO + pOBO = pvo. (3 15)

Thinking of configurational deformation mapping =, as a deformation of a fixed reference con-
figuration, this balance law is similar to the standard balance of linear momentum written in the
deformed configuration. Note that postulating such a balance law requires the introduction of two
new quantities, namely P, and B, and does not seem to be of any use at this point.

It should be noted that a configurational change need not be volume preserving. An example
is a phase transformation from cubic to tetragonal which has the following configurational defor-
mation gradient (this is called Bain strain or matrix in martensitic phase transformations),

(3.16)

o
—
Qo S O

where a=b and c¢>a are the tetragonal lattice parameters.

The Lagrangian may be regarded as a map L:7C— R, where C is the space of some sections
(for technical details see Ref. 28), associated to the Lagrangian density £ and a volume element
dV(X) on B and is defined as

L(qoaqb)=f L(X, ¢(X), p(X),F(X),G(X),g(e(X)))dV(X). (3.17)
B

Note that here we have assumed an explicit dependence of £ on the material and spatial metrics
G and g. Let us first revisit the classical Lagrangian field theory of elasticity using the above
Lagrangian density with explicit dependence on material and spatial metrics. The action function
is defined as

g
S(e) = f L(g,¢)dt. (3.18)
fo
Hamilton’s principle states that the physical configuration ¢ is the critical point of the action, i.e.,

dS(¢p) - 59 =0. (3.19)

Note that variation in ¢ leaves the material metric unchanged. The statement of Hamilton’s
principle can be simplified to read

h L aL aL aL
f f <—~5(p+—'-5¢+—:5F+—:5g)dV(X)dt=0. (3.20)
0w B \IP I¢ JF g

After some manipulations the above integral statement results in
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aL g (oL ac\ 4 ac\4 L
== -l=] -|=] Fuf.+2—2g).=0. (3.21)
ae?  dt\d¢p/, IF/ 1 dF /), g .a
Noting that
d( L .
—<—.) = po(8aA” + &b Va9 (3.22)
dt\d¢/,
aL\ 4 A
— | =-PA, (3.23)
JF ],
oL
2—— = pp¢‘ ! - Jo*, (3.24)
agcd
Eq. (3.21) can be written as
A JIL ¢ pA d b
P+ P + (F APy = J0*g40) Voo = PogasA”. (3.25)

Note that if £ depends on F and g through C, then the term in the parentheses would be zero and
hence

aL
d¢?

PaAlA + = pOgabAb’ (326)

which is nothing but the familiar equations of motion. [Also note that in (3.25) use was made of
Doyle-Ericksen formula (3.24). However, for arriving at (3.26) there is no need for using Doyle-
Ericksen formula.]

Now suppose that during the process of deformation the continuum undergoes a continuous
material evolution. This means that the deformation mapping ¢ is the composition of a total
deformation mapping and a referential mapping, i.e.,

e=¢oE' or Pp=¢°E. (3.27)

Note that defining such a composition is ambiguous because there are infinitely many possibilities
for decomposing a given deformation mapping ¢ into two mappings ¢ and =. The new mappings
can represent part of the standard deformation and material evolution. To make sure that ¢ is the
standard part of total deformation mapping, the Lagrangian is written as an integral on the current
reference configuration B,

L(¢,¢)=J LX, ¢(X), ¢(X),F(X), G(X), g(¢(X)))dV(X). (3.28)
B,

It would be more convenient to write the Lagrangian as a functional on B (the fixed initial
reference configuration). Let us denote points on B by U. Note that

H(U) = (¢ E)U) + Te(E(V) - E(U) or (¢°E)U)=dU)-F(EW)) - E(U).
(3.29)
Also

F(E(V)) =F4U)FZ(E(V)). (3.30)
Thus,
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L=L(EU), V), $U) - F,UFZ (E(V)) - E(U),F 4 U)FZ (E(V)),G(E(U)),g($(U))JI=(U),

(3.31)
where
et G
yae
Jz = det(TE)——, (3.32)
Vdet GQ

and where G, is the fixed metric of the fixed reference configuration and G is the metric of 5,. As
before, the action is defined as

S(E, ) = f lL(E,E,qﬁ,d))dt. (3.33)

Hamilton’s principle states that the physical configurations Z and ¢ are the critical points of the
action, i.e.,

dS(E,¢) - (62,64) =0. (3.34)

For the sake of clarity, we look at the two independent variations separately.

A. Vertical variations

Let us first look at vertical variations; that is, we assume that 5= =0 and see if we can recover
the classical Euler-Lagrange equations.

Proposition 3.4: Allowing only vertical variations in Hamilton's principle, one obtains the
following equations of motion

aL  d| IL ac\® aL\ B oL ggbc
-—\—= -\=| -Fsl\ =] +—5 =0 (3.35)
de* dit\dgeE/, \IF/, dF /), dg” ox“

Proof: The derivative of the action with respect to vertical variations is computed as follows:

_ h L oL . e -
dS(E,¢) - (0,6¢) =J f Py=h b+ ———= - (6 - JF 4, U)Fz (EV)) - E(V)))
10 YB (A= dpe g

L L
+ —:5[F¢(U)F"51(E(U))] +—:0go° ¢}JE(U)dV(U)dt =0. (3.36)
JF g
Note that
5(F¢Fél oH) = 5(F¢Fél) o B =T(8¢e E)oE= T(5¢po EeE

= (TSGTE™") o E=DSPFZ ° E. (3.37)

Let us assume coordinates {U%}, {X*}, and {x?} and basis vectors E,, e,, and f, on B, 3,, and S,
respectively. Thus, in coordinates

954°
U

DSp=——f, ® E*. (3.38)

The first part of the second term is simplified as
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fll U)dav(U) = ftlfli( o ) o }(5 “J= dV(U
. =0V == | | |l Ggez) * rgeze W20z avwar

(3.39)
where
d_
W(U)=—E(U). (3.40)
dr
The second part of the second term in (3.36) can be simplified to
g aL
—J fJE ——D3SPFZ' o E - W dV(U)dt
0wJB 0=
h L .
= —— | J=(F2' e E)P,WP | 8¢ dV(U)dt
iy Y B dpo a B
h L
+f f Je| —/——= (FOE)"AV;CWA 8¢ dV(U)dzr. (3.41)
0 JB dpe =/,
Using the Piola identity we have
aL aL
{( : H>JE(F§°E>%WB} =Jal< : H) WA] . (3.42)
(9()00: a |8 (?(,DOE a |A
Also
L J aL aL oL ,
[( : H) WA} =—A(—H) WA+( : H) WA|A_< : H> WAY, FG.
dpe =/, u 9X“\dgeE/, dpe =/, dpe =/,
(3.43)
Therefore (3.41) is simplified to
aL
— WA | —— | W)y |8¢p*I=dV(U)dt. (3.44)
1.6 0"@0»—1 dpo = a =
Note that
L J L d L
( ) —< : H> 05—1__A< : _) o EwA. (3.45)
I\ d¢ dt\dg°E/, IX*\dpeo =/,

Hence adding (3.39) and (3.44) the term corresponding to &¢ is simplified to

ff ar( >5¢“o~ Ldv(X) dr. (3.46)

After some lengthy manipulations, the third term in (3.36) can be written as

JJ ( ) Fe ”( o~ )B;/’ 8¢*J=(U)dV(U)d 3.47
ﬂFo»—« ‘B+ B~ = (?FOE . ac ¢ E( ) ( )t- ( )

The last term is simplified as
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R N R
(9g—¢5g $J= dV(U)dr = s ¢r9“ - 56 AV(U)di = T

L[ac
o BT dV(X)dr = - f f - (8o + 8P Vo) 0 e BT AV(X)dr. (3.48)
n 4B, %8

Therefore, adding the above four simplified terms, we obtain

_ i aL 4L L\t aL\ B oL ggbc
dS(:" ¢) : (0’ 5¢) = a4\ .. “\ - FCB ac\ + bc a 5¢a
w JB L 0¢" dr\dg/, \IF/, ¥/, dg” ox

o B~ dV(X)ds. (3.49)

As S¢* is arbitrary we conclude that

aL d| oL ac\® _ AL\ B oL agh
-—l—= -l = -Fell—=] +— =0, (3.50)
" dt\dge=E/, \IF/, dF /), 9g” ox*

which gives the stated result. U

B. Horizontal variations

Now let us try to find the Euler-Lagrange equations resulting from horizontal variations; that
is, variations of the configurational deformation mapping =.

Proposition 3.5: Allowing only horizontal variations in Hamilton's principle, one obtains the
following configurational equations of motion:

L g (&E) {wB (aﬁ) - } (aﬁ)BFa € a5 g
ot P A=\ A|B+ oF ) clapt2Gep AB G

(3.51)

where FSB is the Christoffel symbol of a local chart in B,.
Proof: The derivative of the action with respect to horizontal variations is computed as
follows:

_ f L L Lo .o e
dS(E, ) - (62,0) = A = -O(F Fz oE-E)+ —:0(F Fz o E) |Jz
tg Y B and

dgeE dF o =2
aL
t G :8G o B + L)z |dV(U)dr (3.52)
Note that
S(F F=' o B) =F ,0(FZ' ° E). (3.53)
But
S(Fz' e E)=-FZ'D(6Z)FZ' o E. (3.54)
Thus
S(F F2' o B) =~ F ,FZ' D(SE)FZ o E=-FD(SE)FZ' o E. (3.55)
Similarly
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. d
5(F¢Fg‘oE-E)=—FD(é‘E)FgoE-W+FoE~cTt(é'E). (3.56)
In coordinates,
—A
=) = B
D(6E) = UP e, ® EP. (3.57)

The second term in (3.52) has two parts which are simplified as follows. The first part is

i L a6z i d | (oL
f J ( : ~) Fyo B (F2 o B)P, WPz dV(U)dr = - J f 5|\ = | Fa|WPsEA
0 IBNIPCE 29 1 r X IQ/,

a

h oL
05! dV(X)dt—f f (a_) W WEpOE e BT dV(X)dr. (3.58)
1 ! P/a

Similarly, the second part is simplified as

g L d N odl|(oc
—f f : H-FOE-—(SE)JEdV(U)dmf f —[(—.) F“A} =40 Z1 dV(X)dr
o JBIPeE dr f Btdt 99/,

I oL
+ f f (-) F WP p6ER dV(X)dr. (3.59)
1o 4B, I¢/ 4

Adding (3.58) and (3.59), the second term of (3.52) can be written as

i aL o hfod|(dL —
- —— 0(F Fz o E-E)Jz dV(U)dt = — | —) F |65" B~ dV(X)dr.
0w JBIPeE w45, dtL\d¢/,

1

(3.60)
After some lengthy manipulations, the third term of (3.52) is simplified to
i aL
-
f f —:0(F Fz o 2)Jz dV(U)dt
o VB F o 2
51 aﬁ B
=f f — | Fo | 622 E1dV(X)dr
1o Y B, JF a |B
3] aﬁ B
+ f f F FO IS 684 271 dV(X)dr. (3.61)
1y Y B, a
The fourth term of (3.52) is simplified to
g L i L
f f —:8G o EJz dV(U)dr = f f 2Gcpl Y y——dV(X)dt. (3.62)
0w J5IG°E 1o 7B, Gpc
Note that
det G
Jz=(detF=)\| ——. (3.63)
- - det GO

where G is the fixed Riemannian metric of the fixed reference configuration. Thus,
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—
odet G 1 odvdetG
8J= = 5(det Fz) +(detFe) g e = s (F2)8,” 5 +(detFH) — e,
\’ det GO X
(3.64)
Note that
INdet G _,0G
X —\/det GG™! x = Vdet det GI'2 551, (3.65)
Hence
=k
8J= =Jz(F2)Py 7+ J=I%y. (3.66)
Thus the last term of (3.52) is simplified to
1 1
f J L8] dV(U)dt = - f f (L) poE" o BT dV(X)dt. (3.67)
g Y B g Y B,

Now substituting the above five simplified terms into (3.52), we have

790 e Ba B
dS(E,¢) - (62,0) = ff PRl 7o) Fl-1c62- F FA‘B =

i aL\ "% . , 0L
o BTl dV(X)dr + o5 Felin+2Gepl iy — D=
1 7B, a BC

o E-1dv(X)dr=0. (3.68)

Because 82" is arbitrary, we conclude that

L g (aL)F {w’f (aﬁ) BF } (aﬁ)B R 2Go? i’ _,
—+— Yl - -\ = “ +| —= st =0.
ax* " ot \ 9¢ Yo\aR/, " M \oF ¢ COEAB 3G

(3.69)

O
We now show that this is equivalent to the classical Euler-Lagrange equations and does not
give us any new information. After some lengthy manipulations, it can be shown that

L (L s (L) 7 L L ac\ A
it Ful-L£6y° -\ —=| F% ol
ox* " at| \ag/, oF ], |B agt o\ ag), ) W
aL ac\*® aL
-\ =] Fau FlS=2Gepl s ——. 3.70
(&F)h AYact gm&} (&F) Ficl'sp cD ABaGBC ( )
O
[It will be seen in Sec. VI that material covariance of internal energy density implies that the
sum of the last two terms is zero. In Sec. VII, it will be shown that material covariance of
Lagrangian density results in the same identity. However, at this point there is no such relation and
the variational principle does not give us any new information.] This result is known for the case
where the underlying metrics are trivial.” In conclusion, we have proved the following proposi-
tion.
Proposition 3.6: In the absence of discontinuities, i.e., when all the fields are smooth, the
configurational and the standard equations of motion are equivalent, even if one is allowed to vary
the referential and spatial metrics.
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IV. THE GREEN-NAGHDI-RIVILIN THEOREM

Green, Rivilin, and Naghdi19 realized that conservation of mass and balance of linear and
angular momenta can be obtained as a result of postulating invariance of energy balance under
isometries of R, i.e., rigid translations and rotations in the deformed configuration. Later Marsden
and Hughes28 extended this idea to Riemannian manifolds and diffeomorphisms of the deformed
configuration showing that this covariant approach gives the Doyle-Ericksen formula for Cauchy
stress as well as conservation of mass and balance of linear and angular momenta. In another
relevant work, gilhavy39 considered all the densities in the energy balance to be volume densities
and assuming (i) invariance of energy balance under Galilean transformations and (ii) bounded-
ness of energy from below, proved the existence of mass, its conservation, balance of linear and
angular momenta, transformation of body forces and the splitting of total energy into internal and
kinetic energies.

Before discussing the covariant approach to elasticity, let us first discuss the classical Green-
Naghdi-Rivilin (GNR) theorem and a nonconventional material form of it. We consider two cases:
(i) material energy balance invariance under spatial isometries of R® and (i) material energy
balance invariance under material isometries of R?>. We call (i) and (ii) the spatial-material and
material-material GNR theorems, respectively.

A. The spatial-material GNR theorem

Consider the material energy balance for a nice subset U/ C 55,

d

—f p0<‘lf+lV-V)dV=f pO(B~V+R)dV+j (T-V+H)A, (4.1)
dt U 2 U a

where W=V (z,X,F) is the free energy density per unit mass of the undeformed configuration.
Now consider an isometry &:R®—R3 of R®. We postulate that the material energy balance is
invariant under §,. For the sake of simplicity we consider translations and rotations separately.

(1) (Rigid translations) A spatial rigid translation is defined by

E(x)=x+(t-1y)c, (4.2)

where ¢ is some constant vector field. We now postulate that the material balance of
energy holds for the deformation mapping ¢, =&, ¢, as well. This balance law is still
written on U but with different fields (primed fields) in general,

d 1
— p(’](\lf’ + =V’ -V’)def po(B’ -V’ +R’)dV+f (T'-V'+H')dA.
dt U 2 U a

(4.3)
Using Cartan’s space-time theory, the primed fields are related to the unprimed quanti-
ties through the following relations:

po(X)=py(X), R'X)=R(X), H'(X)=HX),

d
V'|iz, = Egot’ =(TEV +¢), =V +e,

=1,

T'(X,N) = T(X,N). (4.4)

Also because
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b'—a’'=¢«(b-a) and B-A=(b-a)og,. (4.5)
We have
B -A'=¢(b-a)og). (4.6)
Hence
(B'-A"),=(b-a)og,=(B-A). (4.7)

It can be easily shown that

F'(X) = F(X). (4.8)

The free energy density would have the following transformation:

(1, X,F' (X)) =¥(,X,F(X)). (4.9)
Thus,

d AY
—V'(t,X,F' (X)) = —. 4.10
o v (X)=— (4.10)

Balance of energy for «/ C 3 for the new deformation mapping at =1, can be written as

J 1 ov
fﬂ<‘P+—(V+c)-(V+c))dV+Jp0<—+(V+c)-A’|,:t>dV
u ot 2 u ot 0

=f pO(B'|t=,0-(V+c)+R)dV+f (T-(V+c¢)+H)A, (4.11)
u au

where Div ¢=0 was used. Subtracting the material energy balance of the deformation
¢, for UC B from the above equation and using (4.7) we obtain

9 1
fﬂ<c-V+—c-c)dV+JpOA-ch=Jp0B-ch+f T-cdA.
u ot 2 u u a

(4.12)
Because U/ and c¢ are arbitrary one concludes that
d
P, (4.13)
at
Div P + poB = pyA. (4.14)

(i) (Rigid rotations) Now let us consider a rigid rotation in the ambient space, i.e., &:S
— S, where

£(x) = !0, (4.15)
for some constant skew-symmetric matrix €2. Note that
(1—1p) Q J
T§t|,=,0 =™ |,=,O =Id and —| &(x)=Qx. (4.16)

=1,

Also
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V/(X)|izy, =V + Qx(X). (4.17)

Subtracting the balance of energy for U for deformation mapping ¢, from that of ¢,
=¢§,°0¢, at time 1=t results in

f poQx(X) - (A -B)dV = f TOx(X)dA. (4.18)
u a
But
f TOx(X)dA = J (DivP- Qx+PF:Q)dV. (4.19)
a u
Thus
PF"=FP', (4.20)

where use was made of balance of linear momentum.

B. The material-material GNR theorem

To our best knowledge, there is no study of invariance of energy balance under isometries of
the reference configuration in the literature. It turns out that such an invariance does not hold in
general, even in Euclidean space. In this section we study the transformation of balance of energy
under rigid translations and rotations of the reference configuration in the Euclidean space context.
It will be shown that balance of energy is invariant under translations and rotations of the refer-
ence configuration for isotropic materials that satisfy an internal constraint that we call material
inviscidity.

Again we consider rigid translations and rigid rotations of the reference configuration sepa-
rately.

(1) (Rigid translations) Consider a time-dependent rigid translation of the reference con-
figuration E,: B— B'. Let

X' =X,=5,X)=X+ (- t5)W, (4.21)

for some constant vector field W. Note that

TZ,=1d, X=E'(X)=X,-(t—1)W. (4.22)

Deformation gradient with respect to the new reference configuration is denoted F’ and,

dx=FdX=F'dX'. (4.23)
But, dX’=dX and hence
FdX=F' dX VdX. (4.24)
This means that
F'(X)=F(X) or F' =FoE " (4.25)

In the differential geometry language this means that

F =E.F=FoZ, " (4.26)

The material velocity with respect to the new reference configuration is
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J —— ’ - ’
V’(Xt)=a—t<p,°:,'(X)=Vo:,'(X)—FW. (4.27)
Thus at r=t,

V' =V -FW. (4.28)

Free energy density is assumed to have the following transformation:

(X', FoZ ) =V (X,F). (4.29)

W'(X',F) = WU(X,Fo 5,). (4.30)

[Note that this does not put any restrictions on the material properties as here all we
assume is that under a change of frame the 3-form pyW dV is transformed to a 3-form
po¥’ AV’ =E (py¥ dV).] More precisely,

BV (X', F)=V(X,FoE,). (4.31)
Thus
d av oV JF
VX F)=—+—— = .W. (4.32)
dr gt d(FeoE,) d=,X)
Hence at =1,
d V¥V oV JF
VX, F)=—+—7:1—.W. (4.33)
dr gt JF dX
Material balance of energy for U C B reads
v gmlave [ al e com)
— |+ =V, V) |dV + —V¥ +{((V,A)) |dV
L vV Jave | gl S cvay
=J po(B~V+R)dV+f (T-V+H)A. (4.34)
u au

Let us assume that material balance of energy for /' C 3’ reads

d 1
= p(’)<\lf’+—V’-V’>dV’=f pO(B'-V’+R')dV’+f B,-W,dV’
dt u' 2 u' !

+f (T'"-V'+H')dA', (4.35)

for some vector field B, which will be determined shortly. Note that thinking of the
integrand of the left-hand side of balance of energy as a 3-form «, we have

d d
—f a’:f —(E,a'). (4.36)
dr ),y u dt

But E;a’=p(X)¥(X,Fo=,)dV, thus material balance of energy for U’ C B’ at t=t,
reads
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f%(\lf+l<<V—FW,V—FW>>>dV+j p0<i
u 2 u \dt

. W4+ (V- FW,A'|,=,O>>)dV

t=t0
=f pO(B’|,:tO~(V—FW)+R)dV+f (T-(V—FW)+H)dA+f B,-Wdv,
u a u

(4.37)
where B, is an unknown vector field at this point. Note that
(B'-A'),=B-A. (4.38)
Now subtracting the material balance of energy for &/ C 3 from that of /' C B’ at time
t=t, yields

IF
f(P:—+p0FT(B—A)—BO>~WdV+f F'T-WdA=0 VW. (4.39)
u\ X au

Localization leads to the following conclusion:

oF
B, =Div(F'P) + p,F (B - A) + Pzﬁ. (4.40)
Note that
oF A
P:— =Div(¥I) - —, (4.41)
). X
and
Div(F'P)=F' DivP+P:—. (4.42)
X
Thus (4.40) is equivalent to
IF oF
B,=F'[DivP + py,(B - A)]+2P:— =2P:—. 4.43
o=F'[Div P+ py( )] X X (4.43)

Therefore, the transformed balance of energy is (4.35) with Bj=E(B,).
Invariance of balance of energy under rigid translations of the reference configuration is
equivalent to By=0, i.e.,

JF
P.—=0, (4.44)
JX
which is equivalent to
Div(FP) =F' Div(P). (4.45)

Obviously, if F is independent of X, i.e., if the deformation gradient is uniform then this
condition is satisfied but as we will see in the sequel this is not necessary. Note that (4.43)
is independent of balance of linear momentum. It is seen that an additional constraint must
be satisfied for the material energy balance to be invariant under time-dependent rigid
referential translations. This shows the very different natures of material and spatial mani-
folds. We will show at the end of Sec. VI that (4.45) implies that configurational stress
tensor is hydrostatic. For this reason we call (4.45) the configurational inviscidity
constraint.

Example: Consider a Neo-Hookean rod in uniaxial tension. The deformation gradient is
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)\—]/2 0 0
F=|0 A0 . (4.46)
0 0 N
It can be easily shown that the first Piola-Kirchhoff stress tensor has the following repre-
sentation:
0
00 0
P= , (4.47)
)7
0 0 uN- P

where p=pu(X). It is now an easy exercise to show that (4.45) is satisfied only if \ is
constant, i.e., only if the deformation gradient is uniform. Thus in this case the only
possibility would be a uniform deformation gradient for balance of energy to be invariant
under rigid translations of the reference configuration.

Example: We know that for an isotropic material

SAB= aOGAB+ achB+ ach?CDB, (448)

where o, a;, and «a, are scalar functions of X and S,z are components of the second
Piola-Kirchhoff stress tensor. For the sake of simplicity, suppose a;=a,=0. In terms of P
and F we have

P = ayG*BF?,. (4.49)

When the reference configuration and ambient space are Euclidean the condition
Div(F'P)=F" Div(P) is equivalent to

IF°
aOF“BEf =0. (4.50)
Or
IF',  9F,
Fl—2=F —2=0. 451
B oxA B ox® 0 1)

Note that, in general, this does not imply that the deformation gradient is uniform and it is
simply an internal constraint.
Example: Consider an incompressible perfect fluid (ideal fluid) for which

o?=—pg® and J=1. (4.52)

Thus
PA=— J(F )4, pg. (4.53)

Using Piola identity we have
d

(Div(ETP)Y! = (= pJGA¥) = - J&—;F}’BG"B. (4.54)

Also

. Jdp

(FTDiv(P))* = - g, F 5GP J(pg*®) = - JﬁFbBGAB. (4.55)

Thus (4.45) is satisfied for an ideal fluid.
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(ii)  (Rigid rotations) Consider a time-dependent rigid rotation of the reference configuration
H,:B— B’ defined as

X' =X, = 0ex, (4.56)

for some constant skew-symmetric matrix €2. Note that

V' =V-FQX, F' =F-E " (4.57)

Let us assume that material balance of energy for &/’ C B’ has the following form:

d 1
= pé(‘P’+—V’~V'>dV’:f pO(B’-V’+R’)dV’+f (T'-V' +H')dA’
dt u' 2 u! !

+ (B, QX+ C,:Q)dV’, (4.58)
Z/[,

where C)=E,C, and C, is an unknown vector field at this point. Material balance of
energy for U' CB' at t=t; reads
(9p0 1
— | ¥+ -(V-FQX,V-FQX)) |dV
u ot 2
J d
n it
uPo dr

=f pO(B’|,=,O-(V—FQX)+R)dV+f (T - (V-FQX) + H)dA
u au

P4 (V- FQX,A’|,=,O>>)dV

1=t

+ J (B, - OX + Cy:Q)dV. (4.59)
u

Subtracting the material balance of energy for &/ C B from that of &/’ C B’ at time t=1,
and considering the relation for B, coming from rigid translations of the reference
configuration yields

J (FTP-Cy):QdV=0. (4.60)
u
This means that

F'P-Cy=(F'P-Cy)". (4.61)

Thus Cy=—P'F+8$ for some symmetric tensor S. This symmetric tensor does not con-
tribute to balance of energy and we can choose it to be S=0. Thus the transformed
balance of energy under rigid rotations of the reference configuration is (4.58) where
C)=E(Cy) and Cy=-PTF.

In conclusion, we have proved the following proposition.

Proposition 4.1: Balance of energy is invariant under time-dependent translations and rota-
tions of the reference configuration if By=C;=0, i.e., if the reference configuration is both con-
figurationally inviscid and isotropic.

Thus, balance of energy is invariant under material isometries of the reference configuration only
under some constraints. As an example, it is seen that balance of energy is invariant under material
isometries in the case of ideal fluids.
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V. COVARIANT SPATIAL ENERGY BALANCE

In this section we start by a reappraisal of the concept of covariance in elasticity and its
consequences. We revisit Marsden and Hughes’ theorem®® and clarify some details in their proof.
We then show that the same conclusions can be reached if one assumes that mass density is a
3-form instead of a scalar. A proof is then given for converse of Marsden and Hughes’ theorem,
i.e., assuming conservation of mass, balance of linear and angular momenta and Doyle-Ericksen
formula, balance of energy is invariant under arbitrary spatial diffeomorphisms. At the end of this
section, we show that assuming spatial covariance for material energy balance yields results that
are identical to those obtained by assuming spatial covariance for spatial energy balance.

A. Covariance and the Doyle-Ericksen formula

First recall that the general notion of covariance of a set of equations is as follows.

Definition 5.1 (Covariance): Suppose a theory has some tensor fields U,V ,... defined on a
space A and the governing equations of the theory have the form F(U,V,...)=0. These govern-
ing equations are called covariant if for any diffeomorphism & A— A, €(F(U,V,...))
=F(&U,EV,...). A theory is covariant if all its governing equations are covariant.

The Doyle-Ericksen formula: Doyle and Ericksen’ showed the following interesting relation:

de
o=2p—, (5.1)
og

i.e., Cauchy’s stress tensor is proportional to the partial derivative of the free energy density with
respect to the Riemannian metric in the deformed configuration. [Note that (see Ref. 28, p. 198)

de _9Y

g og
In other words, in Doyle-Ericksen formula internal energy density can be replaced by free energy
density because

(5.2)

e=iy+0s, (5.3)

where 6 is absolute temperature and s is entropy density. Thus

de Y JdYadld 96 Y
—=—+ T+ 5=, (5.4)
Jdg dg d0dg dJg g

as iyl d0=-s).

Doyle and Ericksen’ looked at changes of spatial frame passively, i.e., as changes of coordi-
nates while Marsden and Hughes28 chose the active point of view. The Doyle-Ericksen formula is
known to be the essential condition for covariance of energy balance. Later Simo and Marsden™®
found a material version of Doyle-Ericksen formula, which we discuss next. Here by “material
version” they mean an analogue of the usual Doyle-Ericksen formula that ensures covariance of
material energy balance under spatial diffeomorphisms. [An interesting question to ask would be
the condition(s) that ensures covariance of material energy balance under diffeomorphisms of the
reference configuration. This will be discussed in Sec. VI.] Simo and Marsden consider a general
form of polar decomposition theorem by first associating two Riemannian metrics Gy and G to B,
where G does not change under spatial diffeomorphisms while G does change. The polar decom-
position theorem states that

F=RU, (5.5)

where
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UX):(TxB,Gy) — (TxB,G) (5.6)

is the material stretch tensor (a positive-definite symmetric linear map with respect to the given
metrics) and

R(X)(Txg, G) — (T(P{(X)S,g) (57)

is, for each X € BB, a (G,g)-orthogonal linear transformation. The metric G is arbitrary and can
change under spatial diffeomorphisms,

G=R'(g). (5.8)

The internal energy density per unit mass of the deformed configuration is

e=e(x,1,8(x)). (5.9)
Now define
E(X,1,G) = e(@/(X),1,R(G)). (5.10)
Simo and Marsden®® show that
JE
=2p—, 5.11
3 PG (5.11)

where Y, is the rotated stress tensor defined as

3=R'o or 3%=R) R, (5.12)

In this paper we prove a similar theorem by postulating a balance of energy for an arbitrary
reframing of the reference configuration for a special class of materials. It should be noted that
there are four possibilities for a covariant energy balance law.

(i) Spatial energy balance law for any reframing of the deformed configuration: This gives
the usual Doyle-Ericksen formula.

(i)  Material energy balance law for any reframing of the deformed configuration: This gives
the Doyle-Ericksen formula in terms of Kirchhoff stress tensor.

(ili) Material energy balance law for any reframing of the reference configuration: This
should give a material form of Doyle-Ericksen formula for Eshelby’s stress tensor.

(iv)  Spatial energy balance for any reframing of the reference configuration: This should
give a spatial form of Doyle-Ericksen formula for Eshelby’s stress tensor.

Note that cases (i) and (ii) and also cases (iii) and (iv) are equivalent as the important thing
here is the type of the diffeomorphism.

B. Revisiting Marsden and Hughes’ theorem

Let us first revisit Marsden and Hughes’ covariant energy balance theory.28 These authors
postulate a covariant spatial energy balance, i.e., they consider a motion ¢,: B— S and postulate
that balance of energy still holds for any spatial change of frame. Marsden and Hughes consider
arbitrary changes of frame for the deformed configuration and postulate that energy balance is
invariant under these framings. For a given nice subset ./ C 3, the (spatial) balance of energy reads

d

— p(e + l((v,v)))dv = f p({(b,v)) + r)dv + f ({t,v)) + h)da, (5.13)
) 2 el a

‘Pt(u)

where e, r, and h are the internal energy function per unit mass, the heat supply per unit mass and
the heat flux, respectively. Marsden and Hughes then consider an arbitrary reframing of the
deformed configuration, which can be regarded as a motion of S in S, i.e., §:S— &. Postulating
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the balance of energy (5.13) for such a reframing and considering it for t=f, they obtain (i)
conservation of mass, (ii) balance of linear momentum, (iii) balance of angular momentum, and
(iv) the Doyle-Ericksen formula. Conversely, if (i), (ii), (iii), (iv) and balance of energy hold, then
balance of energy would hold for any change of spatial frame. We will give a proof for the
converse of the theorem in the sequel.

Proposition 5.2 (Transport theorem in a reframing of the deformed configuration): Suppose
f'=&xf is a scalar quantity defined on ¢, (U), i.e., f': @, (U)—R and f: ¢, (U) — R. [Marsden and
Hughes have the following transport theorem on p. 166 of Ref. 28 in the second equation after
their Eq. (2), which needs to be corrected:

d fdv= (f+ fdivv)dv'. (5.14)

deJ yra )
In fact, the first dv should read dv’.] Then,

% fdv' = (f + f div v)dv. (5.15)

1=ty @, (U) @, U)

Proof: The usual transport theorem can be written as

d .
—J S dv’=f (f +f" div' v')dv', (5.16)
drJ g )
where
. afl &f, af/
'=——t+ — v =——+df -V, 5.17
f ar  ox’ v ot fev ( )
and
vVi=€vtw. (5.18)
Therefore,
d af’
—f f’dv’=f [i+df’~(§,*v+w)+f’div’v’ dv’. (5.19)
drJ g gl L It
Note that
J J J J
2 _ o (T, — = (T&) o —. 5.20
PR (T¢) or P (T¢) P (5.20)
This means that
J J
g =£. (5.21)

f=10
Lemma 5.3: If &,:S— S is a diffeomorphism with the properties,
§z|t:t0 =1Id, T§z|z:t0 =1Id. (5.22)
Then
(div’ v’ dv’)|,:,0:divvdv. (5.23)

Proof: We prove the lemma when S is equipped with an arbitrary volume form u. This will
imply the particular case of a Riemannian manifold with the volume form induced by the Rie-
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mannian metric. Recall that the divergence of a vector field X with respect to w is defined as

Lyu = (div, X)u. (5.24)
Under the spatial change of frame v'=&.X+w, u'=§&.u. Thus,

(div, v)u' =Ly(&ep) = E(Lyp), (5.25)

where use was made of Theorem 6.19 of Marsden and Hugheszs. Therefore,

(div’ v’ dv’)|,=,0=divvdv. (5.26)

O

One should be careful with partial time derivatives as df’/dt is not equal to df/dt at t=t,

because the former is partial time derivative for fixed x” while the latter is a partial time derivative
for fixed x. Note that

af’ af’
a _ +df - w,. (5.27)
It Ixfixed 9! |x' fixed
Hence,
af’ d
(i ) Y (5.28)
I |y fixed/ oy Ot
Therefore (5.19) is simplified to
d p .
- fdv' = (F + £ div v)dv. (5.29)
At iy o)) o)
U

Now let us take a more natural approach and assume that we are transporting a 3-form. Note
that this is more general in the sense that we have not chosen a volume form dv a priori.
Proposition 5.4: Suppose o' =& is a 3-form defined on ¢, (U). Then,

J a'=f L,a. (5.30)
1=ty @, (U) ¢ U)

Proof: Using the usual transport theorem for forms we have

d

dt

d
— a' = L, a'. (5.31)
deJ o ¢! W)

Assuming that « transforms objectively, i.e., a’=¢§:a, using Theorem 6.19 of Marsden and

Hughes28 we have

L, o' =§:Lia. (5.32)
Thus,

— a'= f &:Lya. (5.33)
o, U)

Therefore,
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d
- o = L,a. (5.34)
Atz d gl ¢l
O
Now substitute @=f dv, where f is a scalar. Note that
frdv' =" Adv’ = (§xf) A (& dv) = §(f A dv) = &(f dv). (5.35)
The above proposition now reads
d !
— fdv' = L,(fdv). (5.36)
dr 1=tyY o] U) @,
Note that L is a derivation and hence
L,(f dv) = (Lyf)dv + f(L, dv) = (f + div v)dv. (5.37)
Therefore
d p .
a fdv' = (f+fdivv)dv. (5.38)

1=ty @/ (U) @,O(U)

Thus, this approach recovers the same transport equation (5.15).

C. Energy balance in terms of differential forms

In this section we regard p as a 3-form and write the energy balance equation as

4 p(e + %((v,v})) = f p(b,v)) + 1) + f (((t,v)) + h)da. (5.39)

dzJ o) ) )

[Traction can be thought of as a covector-valued 2-form. There are some technical details involved
and we choose to stick to the usual definition of traction.] Under a spatial diffeomorphism &,:S
— &S we postulate that

4 p'(e'+3<<v',v'>>)= f P (b V) + 1) + f (') +h')da’.
deJ 2 ) og )

(5.40)

Let f be the scalar multiplying the density 3-form in the first integrand, i.e., f:=e+ %«V,V». Thus

% pf= Ly(pf) = f (pLyf + fLyp). (5.41)
¢,U) @, U) @, U)
But
| a1 1
L.f=Lye +L,(3((v.v))) =¢é + 5<5<<v,v>>) + d(i«v,v))) v
=é+ <<%,V>> + {(v,Vyv)) = ¢ + ((v,a)). (5.42)
Also,
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d 1 ! 1 ! ! ! ! I
d_ P f = Lv’(p f ) = (P Lv’f +f Lv’p ) (543)
) @,U) @, )

Note that v/ =§,v+w, and thus

Lyp' = §+(Lyp). (5.44)

Also,

. av’ .

Lyf'=e' + <<V’,§ + erv’>> =e¢ +{((v',a")). (5.45)

Thus

! . ae !
(Lv'f )|t=lo =é+_:L,g+ {(v+w,a |l:t0>>’ (5.46)
g
(Lv’p/)|t=t0 = va' (547)
Therefore

dt

d j > J ( 88' ,
= +—:L.g+((v+w,a'|,
=ty so,’<wp ¢,<u>p ‘ Jg 8 <<V wa' 0>>)
1
+f (f+<<V,W>>+ 5<<W,w>>>va. (5.48)
<P,(Z/)

Now subtracting the balance of energy equation for ¢,({/) from that of ¢, (U) at 1=z, we obtain

J

p(j—e:cwg+<<v,a'|t:,0—a>>+<<w,a'|t:t0>>) + J
) g

‘P[(

(v s 2w |1
U

3

- j o, (7Dl =B Cn ) + j ((w.t))da. (5.49)
o U

de(U)

Using the identity (b’~a’)|._, =b—a we have

f p(@:cwg+<<w,a—b>>) . f (<<v,w>>+ l<<w,w>>)va= f (w,t)da.
o) \ 08 o) 2 dpUh)
(5.50)

We know that

f {w,t))da = f (((div o,W)) + 0':1£wg + U:w) dv, (5.51)
d,U) ¢t 2

where w has the coordinate representation w,,= %(wa‘ »=Wp|a)- Let us replace p by p dv in the first
integral of Eq. (5.50),
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f P(%:ng +((w,a— b>>)dv + f <<<V,W>> + l<<w’w>>)va
e (U) &g eith 2

= J (((div o,W)) + o-:l/ng + a:w)dv. (5.52)
et 2

Since w is arbitrary we conclude that

L.p=0, (5.53)
Jd
o=2p—, (5.54)
Jg
div o + pb = pa, (5.55)
o' =o. (5.56)

D. Proof of the converse of Marsden and Hughes’ theorem

Marsden and Hughes28 do not give a proof for the converse of the covariant energy balance
theorem, i.e., when Eqgs. (5.53)—(5.56) are satisfied then energy balance is invariant under &:S
—&. Such a proof is nontrivial and is given here.

Let us assume that Egs. (5.53)—(5.56) are satisfied and define

d 1
AE(g,):d—t p'(e' +5<<v',v'>>g) -f p’(((b',v'>>g+r')—J (((t' v ))g+h")da’.
o W) () de] (U

@

(5.57)
Note that balance of energy for ¢,(1) can be written as AE(Id)=0. We need to prove that for any
diffeomorphism &, AE(,)=0. We know that

e'(x',1,8) = e(x,1,£(g)). (5.58)

Let us denote

d * *
W, i= 5&’ W, =§ (w), g= ¢ (g). (5.59)

Note that by definition

f p'r =f pr, J h' da’ =f hda. (5.60)
) @,U) g, (U) I, (L)

Also note that

f {t',v')gda" = f (&t &V + W) da’ = J {t,v+ Wl>>gt da. (5.61)
g, (U g, (U deU)

A straightforward computation shows that
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d

deJ o1

p'{{&+(a=Db),&xv + Wt>>g = j pia - b’V»gt

(%P,«Vl,vl»g _ p,<<b,,V,>>g> — j
¢ U)

@, )
+ J p<<a_b,wl>>gt7 (562)
(Pr(u)

where use was made of L,p=0. Note that

d r o ’ ’ ’ ’ ’ * ’
d_ pe= [P Lye' +e ft*(va)] = p'Lye = pé (Lyre’).
) o (U) o (U) )
(5.63)
But
* , . de
§(Lye')=é+ —:Ewtg,. (5.64)
g,
Therefore

0 1
AE(£)=AE(1d) + J [<2p—e - a-) SLw g+ o w,} dv - f {(div o+ p(b — a),W,)>grdv
el 98 2 el

=0. (5.65)
(]

E. Spatial covariant material energy balance

Let us consider the material balance of energy

f J P0<E+l<<V,V>>>= j po(((B,V)) +R) + f (T, V) + H)dA, (5.66)
1)y 2 u a

where we have assumed that p, is a 3-form. Physically this is equivalent to the spatial energy
balance; material energy balance is simply the spatial energy balance expressed in terms of
quantities defined with respect to the reference configuration. Let us postulate that the material
energy balance is invariant with respect to diffeomorphisms &,:S— . This is physically equiva-
lent to the postulate of covariant spatial energy balance. The material energy balance for ¢; () CS
is written as

di f p6<E'+l<<V’,V'>>)= f po(((B" V) +R") + f ((T".V)+H')dA.  (5.67)
tJu 2 u a

Note that for both deformations balance of energy is written for the same subset &/ C 3. The
material velocity V' is related to V by the following relation:

V' (X)=T&oV,+w,° ¢(X). (5.68)
Thus
Vm%=V+wo@d (5.69)
We know that
R=J,re¢, R’=J(ptrr’°<p,', r=Jgr' o &. (5.70)

Hence
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J(P;r’O(pt’:(]gtr'0§t)0(pr]¢t:J¢tr0got_ (5.71)
Thus
R'=R. (5.72)
Similarly
H' =H. (5.73)

Note that looking at densities as 3-forms

po(X.1) = @, p(x.1),  py(X.0)=(g]) p' (x',1). (5.74)
But
(@) 'p'(x',0)=(&° @) p (X' ,1) = (@, ° &) ° Eup(X,1) = @, p(X,1). (5.75)
Thus
poX,1) = po(X,1). (5.76)

Because balance of energy is written for the same subset &/ C B the same equality holds for
densities as scalar fields, i.e., one can replace p, and p, by p,dV and p, dV, respectively. Define

EX,1,g) = e(¢,(X),1,g° ¢,(X)). (5.77)
We know that
e'(x',1,g) =e(x,1.Eg). (5.78)
Thus
E'(X,1,g) =¢'(x',1,8) = e(x,1, f;kg) =E(X,t, ffg). (5.79)
Therefore
LB (gog) (5.80)
dr ot og’ wee 8% @) i

1=t

Now the material energy balance for the motion ¢, at r=f, can be written as

9Po ! JE JE.
[ (e sty agvemeefove | [l 2o aee)

+ p0<<V +we (PtOsA, |l=t0>>:| dv

=J po(((B'|.=, V+Weo @ ) +R) dV+f (((T.V+wog,))+H)dA.  (581)
u au

Subtracting the balance of energy for the motion ¢, from (5.81) one arrives at the following
identity:
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J ey 3o euma)ove [ al ssenten b+ ir-ey
u u

- J (puB.wo @ AV -+ f (T.we ) dA. (5.82)
u al

Let us denote W=wo ¢, and note that W is a spatial vector field with components W*.
Lemma 5.5: The surface integral term in (5.82) is transformed to a volume integral as

LM«T,W))dA = L (((DivP,W)) + 720+ 7:k)dV, (5.83)

where, 17 =P“BF§ is the Kirchhoff stress and @ and k have the coordinate representations k,
1 1
=5(Wap+Wyo) and @g,=5(W,=Wp,).
Proof: The integrand has the following component form:

TagabWb = PaCGCDNDgubWb = (PacgabWb)GCDND- (5.84)

Now using divergence theorem the surface integral is transformed to an integral on ¢/ with an
integrand with the following component form:

(P“euW)ic=P*“\cgas W’ + P“g, W' (5.85)

where use was made of the fact that g,,-=0. Note that

awb , , :
WP\ = R VegWF =W F ot o WF = (W o+ L WOF = WP F . (5.86)
Therefore,
(PacgubWb)|C= PaC\CgabWh + PaCWu\dFdC
= Pac‘cgabWh + PaCFdCI:%(Wa‘d'F Wd\a) + %(Wa\d_ Wd\a):l’ (587)
which proves the lemma. O

Substituting (5.83) into (5.82) yields

[ 22wy« Swawn Jave [ (anE - eacav- [ rwav

u
—J ({Div P + poB — pyA,W)) dV =0. (5.88)
u

As W and U C B are arbitrary we conclude that,

J
P _y. (5.89)
ot
JE
r=2py =, (5.90)
Jg
=1, (5.91)
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Div P+ pyB = poA. (5.92)

In conclusion, these computations result in the following proposition.

Proposition 5.6: Energy balance written in material form, but still with the assumption of
spatial covariance yields results that are identical to those of energy balance written in spatial
form, also with covariance under spatial diffeomorphisms.

The converse can be proved similar to what was done in the previous subsection.

VI. TRANSFORMATION OF ENERGY BALANCE UNDER MATERIAL DIFFEOMORPHISMS

As was seen in the preceding section, invariance of balance of energy under an arbitrary
change in spatial frame is equivalent to (1) balance of linear momentum, (2) balance of angular
momentum, (3) conservation of mass, and (4) Doyle-Ericksen formula. To our best knowledge,
there is no material version of this theorem in the literature. Our motivation for studying the
possibility of material invariance of energy balance was to gain a better understanding of configu-
rational forces as they are believed to be related to rearrangements of the reference configuration.
It turns out that, in general, energy balance cannot be invariant under diffeomorphisms of the
reference configuration and what one should be looking for instead is the way in which energy
balance transforms under material diffeomorphisms. In this section we first obtain such a trans-
formation formula under an arbitrary time-dependent material diffeomorphism [see Eq. (6.51)]
and then obtain the conditions under which balance of energy is materially covariant.

A. The energy balance material transformation formula

We begin with a discussion of how energy balance transforms under material diffeomor-
phisms. Define

EX,1,G) =¥ (X,1,C(F(X),g(¢,(X))),G), (6.1)

where =V (X,7,G,C) is the material free energy density. Material (Lagrangian) energy balance
can be written as

diJ Po<E+l<<V,V>>)dV=f Po(((B,V>>+R)dV+f (((T,V)) + H)dA, (6.2)
t u 2 U au

which can be simplified to read

fud%{Po<E+%((V,V»)}dV:fup0(<<B,V))+R)dV+ Lu(<<T,V>>+H)dA, (6.3)

where U is an arbitrary nice subset of the reference configuration 5, B is body force per unit
undeformed mass, V(X,¢) is the material velocity, py(X,?) is the material density, R(X,¢) is the

heat supply per unit undeformed mass, and H (X,t,lcl) is the heat flux across a surface with normal

N in the undeformed configuration (normal to dlf at X e dlf). It is to be noted that this is balance
of energy for a deformed part of the body written in terms of quantities that are defined with
respect to the undeformed (reference) configuration. Here we assume that we have a material
manifold which is a Riemannian manifold (*8,G) and a given reference configuration BC 8.

Change of reference frame: In this paragraph we consider a change of frame for the reference
configuration and look at the transformed quantities for the new reference configuration. A refram-
ing of the reference configuration is a diffeomorphism

=:(8,G) — (B,G). (6.4)

A change of frame can be thought of as a change of coordinates in the reference configuration
(passive definition) or a rearrangement of microstructure (active definition). Under such a framing,
a nice subset U is mapped to another nice subset U’ =2, (/) and a material point X is mapped to

Downloaded 28 Apr 2006 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



042903-36  Yavari, Marsden, and Ortiz J. Math. Phys. 47, 042903 (2006)

SN _
(’B,G) (SB, .:,g*G)

;o =1
Pr = PtO=y

S.8)

FIG. 2. A material reframing and the corresponding deformation maps.

X'=5,X). Note that X is the position of a particle in the reference configuration, i.e., material
points are identified with their positions in the reference configuration (which is arbitrary). The
change of frame is mathematically a mapping between two manifolds and one would expect to
define an object on (*B,G’) as push-forward of the corresponding object on (B,G).

The deformation mapping for the new reference configuration is ¢, =¢;° Et_l. This can be
clearly seen in Fig. 2. The material velocity in U’ is

=1

(9 ’ (9(101 ——] (9:[
VX', )=—¢@(X')=—E(X")+ T, X'). 6.5
( )a[qof() P ; (X')+Te, at() (6.5)
We assume that
— aEt
By =14, —2(X) = W(X.0). (6.6)

Note that W is the infinitesimal generator of the rearrangement Z,. It can be shown that at t=t¢,,

=

— X" =-W(X,). (6.7)
at

=1,

Thus, at t=t,,

V' =V -FW. (6.8)

To find the relation between G and G’ we note that the Finger tensor b=¢,.G is a spatial tensor
and hence independent of framing of the reference configuration. Thus,

b=¢.:G=(¢):G'. (6.9)
That is,

G =(¢°E ) e 0uG=(E") o ¢ °p:G=(E;")G=E.G=(TE) G(TE)™".
(6.10)

Note that for an arbitrary X, € B,
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F(Xo):Tx B— Ty x,)S and F’(X(')):TX(;B — T(P;(X(r))S .
Given dX e TXOB,
dx=F(Xy)-dX and dX'=TE,-dX.
Hence,
dx=F'(X() -dX' =F'(X{) o TE, - dX =F(X,) - dX
for all dX e TXOB. Thus,
F'=E,.F, (6.11)
where
EF=Fo(TE,)". (6.12)
The easier way of proving this is the following:
F'=Tg =T(¢,°5;) =Tg,°(E)"' =Fo(E)". (6.13)
The material internal energy density is assumed to have the following tensorial property:

E'(X',1,G") = E(X,1,G). (6.14)

Note that this is different from assuming local covariance for internal energy density. This is
simply the material analogue of (5.78); all that (6.14) says is that internal energy density at X’
evaluated by the transformed metric G’ is equal to the internal energy density at X evaluated by
the metric G. We know that G’ =Z -G, thus

E'(X',1,G) = E(X,,E,G). (6.15)
This means that
d E'(X',1,G) ok L oG (6.16)
— 4.G)=—+—: . .
dt o aG W

1=t

Remark: Marsden and Hughes28 defined covariant constitutive equations by looking at isom-
etries of TXOB at a given point X, € B. This is why they did not need to consider an explicit
dependence of ¥ on G. Another more general way of defining material covariance for the strain
energy function ¥ is to assume that for any local diffeomorphism A:TXOB — TA(XO)A(B) that
leaves X fixed,

¥(X0,G,C) =¥ (X0, A"G,A™C). (6.17)

Note that this is different from the implication of Cartan’s space-time, e.g.,

vX'.G',C)=VYX,E'G,EC),

for an arbitrary diffeomorphism = :98 — B. We emphasize that this relation and similarly (6.14)
do not put any restrictions on material properties. Ju and Papadopoulos%’27 proved that a conse-
quence of (6.17) is the following infinitesimal covariance condition:

G— +C— =0, (6.18)

which is equivalent to
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v 1,0V 1. 1
—=-GC—==--G"CS=--F'P. (6.19)
aG aC 2 2
We will obtain this condition in the sequel as a consequence of assuming material covariance of
energy balance.
Example: Consider a (materially uniform) Neo-Hookean material with the following energy
density

¥ (X,G,C) = u[tr(C) - 3] = u(C,G" - 3). (6.20)

We now show that this is an example of a materially covariant material. Note that

a\P)J
C- o) =unCxGY. 6.21)
%),
Also
av\’ IGMN u
<G£> = ,LLG,KCMN—&G =— ECMVGM(GMKGJN_,_ GMJGKN) - _ MCIKGKJ’ (6.22)
1 KJ

ie.,

C—+G—=0. (6.23)

0

Spatial covariance of strain energy function (material-frame-indifference) can be defined simi-
larly (see Ref. 41). However, one should note that this is different from Marsden and Hughes point
of departure for developing a covariant theory of elasticity; in Marsden and Hughes’ theory28
balance of energy is assumed to be covariant and not the energy function. In covariant energy
balance, a global diffeomorphism is considered and energy balance is assumed to be invariant
under this global diffeomorphism.

Balance of energy for reframings of the reference configuration: One way to obtain the
governing balance equations of a continuum is to use the homogeneity of the ambient space and
postulate that if a deformed body satisfies the balance of energy, any framing of it should satisfy
the balance of energy as well. This is a postulate and cannot be proved. But, one can justify it (or
motivate it) by the fact that the ambient space S is homogeneous. Invariance of energy balance
under framings of the reference configuration is less obvious and, in general, it turns out not to
hold. The following is the main conclusion of this section. Under referential diffeomorphisms,
material energy balance has some extra terms in it. The extra terms correspond to some forces
that contribute to the rate of change of energy when the reference configuration evolves.

Consider a deformation mapping ¢,: B— S and a referential diffeomorphisms E,: 95 — . The
mapping ¢ =¢,c =" : B’ — S, where B’ =E,(B), represents the deformation of the new (evolved)
reference configuration. We are interested in understanding the form of material energy balance for
E,U)C B’ for any nice U/ C BB. In addition to contributions from the mapping ¢,, in general, one
should expect to see contributions from the referential mapping =, as well, i.e., evolution of
reference configuration may, in general, contribute to the energy balance. Now the balance of
energy should include the following two groups of terms:

(1) Looking at ¢, as the deformation of B’ in S, one has the usual material energy balance
for E,(U). Transformation of fields from (8,G) to (28,G’) follows Cartan’s space-time
theory.

(i)  Nonstandard terms may appear to represent the energy associated with the material
evolution.
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Here a comment is in order. The mapping that represents all the physical processes is ¢,. This
mapping is the composition of ¢, and E, and hence it is expected that, in general, both ¢, and E,
represent part of the physical processes. This means that standard deformation represented by ¢,
and evolution of microstructure (or any other material evolution) represented by =, should con-
tribute to balance of energy. (This is similar to Gurtin’s idea”?! of including both standard and
nonstandard terms in the expression of working. However, here we consider the full balance of
energy.) This rough picture should be enough to convince the reader that the lack of invariance of
energy balance under =, should not be surprising. Lack of invariance implies the appearance of
some new terms that are work-conjugate to W,=(d/dt)E,. Let us denote the volume and surface
forces conjugate to W by B, and T, respectively.

Instead of looking at spatial framings, we fix the deformed configuration and look at framings
of the reference configuration. We postulate that energy balance for each nice subset ¢’ has the
following form:

d 1
ar (E’+_P6(<V’,V'>>>dV'=f Pé(((B',V'>>+R')dV'+f (((T", V') + H")dA’
1 u' 2 u' a

o[ s wyav+ f (T WA, (6.24)
u' a'’

where U’ =E,(U) and B), and T, are unknown vector fields at this point. Using Cartan’s space-time
theory, it is assumed that the primed quantities have the following relations with the unprimed
quantities

AV’ =EpdV (J(E)dV' =dV), R'(X’,))=R(X.),
po(X'.1) = po(X), H'(X'.N'.1)= HX,N,1), (6.25)
T'(X',N',1) = TE,(X) - T(X,N, 7).

We know that

B’ —A'=E(B-A). (6.26)

Thus

(B’—A’)|,:,O:B—A. (6.27)

Note that if « is a 3-form on I/, then

Jo=d
a = -
=ty u’ Z/{dt

d .
" =), (6.28)

(
t=l0

where U'=Z,(U). Thus

d d
E'dV' = —
=ty U’ u dr

(E/E"dAV f (aE E o G)dV (6.29)
— =4 = —+ — . .
dt ! u GV

=1,

Material balance of energy for &' C B’ at t=t, reads
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9po ( 1 ) f (aE IE , )
—I|E+—-(V-FW,V-FW)) |dV + — 4+ —LwG+{(V-FW,A'|_ dv

L o LR D)V | ool T+ g EnG iy
= f po{(B'[=,, V =FW)) + R)dV + f (((T,V-FW)) + H)dA + f ((Bo, WH)dV
u au u

+ f (T, W))dA. (6.30)
oA

Note that T, and B, are defined on B and T/, and B, are the corresponding quantities defined on
E,(B). Here we assume that T)=E T, and B,=E:B,. Subtracting balance of energy for U/ from
this and noting that (A’~B’),., =A—B we obtain

9o _ 1 9E _
L ax( <<V,FW))+2<<FW,FW>>)dV+ fupo(aG.EWG <<FW,A>>)dV

=—f ((pOB,FW))dV—f ((T,FW))dA+f ((BO,W>>dV+f ((To, W))dA.
u au u a

(6.31)
Cauchy’s theorem implies that
(T.FW)) = (FW.(P.N)))), (6.32)
where P is the first Piola-Kirchhoff stress tensor. Similarly
To=((Po.N)). (6.33)

Lemma 6.1: The surface integral in material energy balance has the following transformation:

f (FTT,W))dA = f Div((FTP,W))dV = f [((Div(F'P),W)) + FTP:Q + FTP:K]dV,
au u Uu

(6.34)
where
Qu = %(GIKWKlj - GJKWKV) = %(WI\J - Wju) > (6.35)
Ky= %(GIKWKV + GJKWK|I) = %(WI\J + WJ\I)’ K= %SWG' (6.36)
Proof: In components the integrand can be written as
(FN)A,T°G .z WE. (6.37)
But
T = P“GcpNP. (6.38)
Hence in components the integrand reads
(FN)A PUCG WP G pNP . (6.39)

Using the divergence theorem the surface integral is transformed to an integral on U with the
following integrand in components:
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(FD PGy WP e = (FTP)AGusWP) o= (FTP)A1cGyWP + (FTPY G 1 WP
= (FTP)AC\CGABWB + (FTP)AC[%(GABWB\C + GCBWB\A) + %(GABWB\C
- GCBWB\A):I’ (6.40)
where use was made of the fact that G,p=0. (]

Similarly,

f (o, W))dA = f Div((Py, W))dV = f [(Div(Py),W)) + Pp:Q + PuKIdV.  (6.41)
au u Uu

By definition, at time =t the transformed balance of energy should be the same as the balance of
energy for Y. Subtracting the material balance of energy for ¢/ from the above balance law and
considering conservation of mass, we obtain

f poﬁ:SWGdV+ f {poFT(B = A),W))dV — J (poBo, W))dV + J ((FTT - Tp,W))dA =0.
u G u u a

(6.42)
Thus

JE 1
f <2p0— +F'P- PO) —LwGdV + f (FTP - P,):QdV + J {poF"(B-A) - B, +Div(F'P)

— Div P, W))dV =0. (6.43)

Now using the balance of linear momentum the identity (6.43) simplifies to
oE T 1 - R T
200——=+F P-Py|:=LwGdV+ | (FP-P)):QdV+ | (Div(F'P-Py)-F'DivP

-B,,W))dV=0. (6.44)

Because U and W are arbitrary

Po=2p0 L +FTP (6.45)

0= poaG ’ .
(FTP-P)"=F'P-P,, (6.46)
B, =Div(F'P-P,) —F' Div P. (6.47)

Note that (6.46) is trivially satisfied after having (6.45). Thus we have

Po=2py 0 + FTP (6.48)
= — 4+ R .
0 PO&G

B, =Div(F'P - P,) — F' Div P. (6.49)

Note that P is a measure of anisotropy (deviation from material Doyle-Ericksen formula). This is
an interesting result that in a natural way shows the contribution of some nonstandard terms to
balance of energy when reference configuration evolves.

Thus we have proven the following theorem.

Theorem 6.2: Under a referential diffeomorphism =,:98 — B, and assuming that material
energy density transforms tensorially, i.e.,
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E'(X',1,G)=EX,.E,G), (6.50)

material energy balance has the following transformation:

1
(E’ + Ep6<<V’,V’>>)dV/ — J; P(,)(«B/,V'» +Rl)dvl +f (<<T,,V,>> +H/)dA,

drJ =

=21 J=,U)
+ J ((Bo, WhHdV' + J (To, W)dA', (6.51)
=20} =)
where
T, =% [<<2 L L ¥p N>>] (6.52)
0= =r* PoaG > ) .
B{ = Z,:[ Div(FP - Py) - F" Div P], (6.53)

and the other quantities are already defined.

B. Consequences of assuming invariance of energy balance

This section shows the consequences of assuming material covariance of energy balance. It
turns out that energy balance, in general, cannot be materially covariant.

Material energy balance is invariant under material diffeomorphisms if and only if the fol-
lowing relations hold between the nonstandard terms:

JE
P,=0 or 2p,—=-F'P, (6.54)
0G

By=0 or Div(F'P)=F' DivP. (6.55)

Equation (6.54) is the material Doyle-Ericksen formula and (6.55) is the configurational inviscid-
ity constraint, which will be defined in the sequel. Let us now start with the “naive” assumption
that energy balance is materially covariant and see what its consequences are.

Material covariance of energy balance: Let us postulate that the balance of energy is invariant
under a diffeomorphism =,: 8 — B, i.e.,

di p(')(E’+l<<V',V'>>>dV'=f pé(((B’,V’>>+R’)dV’+f ({T', V")) +H')dA'.
ty 2 u' a'
(6.56)

Proposition 6.3: If material energy balance is invariant under arbitrary material diffeomor-
phisms B,:B — B, then

9po
— =0, 6.57
o (6.57)

JE
2p0— =—-FTP, 6.58
pO&G ( )
F'P=P'F, (6.59)
Div(F'P) =F' Div P. (6.60)
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Conversely, if the above four conditions hold, then material energy balance is invariant under any
material diffeomorphism.
Proof: Material balance of energy for U’ C 5’ at t=t, reads

o L _ JE  IE B ,
L o (E+2<<V FW,V FW}))dV+ fup()( (%+8G.SWG+<<V FW,A |,=t0>>)dV
= f po({(B' |, V= FW)) + R)AV + f (((T,V-FW)) + H)dA. (6.61)
u o

Subtracting balance of energy for &/ C 3 from this and noting that (A’ —B’),=,0=A—B we obtain
Jd 1 E
J ﬂ(— {V,FW)) + —<<FW,FW>>>dV+ f p0<—:£WG - <<FW,A>>)dV
u ot 2 u \0G
= —f (poB,FW))dV — f (T, FW))dA. (6.62)
u a
We know that
1
f (FTT,W))dA = f {((Div(FTP),W» +FP:Q+ FTP:ELEWG] dv. (6.63)
a U
Thus, (6.62) simplifies to
1% 1 JoE 1
f ﬂ<—<<V,FW>>+ —<<FW,FW>>)dV+ f <2p0— +FTP>:—£WG dv+ f F'P:Q dV
u ot 2 u G 2 u
+ f ((Div(FP) + p,FT(B—A),W)) dV=0. (6.64)
a

As U and W are arbitrary, we have

d
ZPo _, (6.65)

ot

JE

20— =—F'P, 6.66

PoaG ( )
F'P=P'F, (6.67)
Div(FTP) + poF "B = p,F'A. (6.68)

Equation (6.65) is nothing but material conservation of mass. Equation (6.66) is the material
Doyle-Ericksen formula. This is what Lu and Papadopoulos26 call infinitesimal material covari-
ance. Equation (6.67) is balance of configurational angular momentum or isotropy of the material.
[Note that if (6.66) holds then (6.67) holds trivially.] Finally, Eq. (6.68) is a condition that must be
satisfied for the balance of energy to be invariant under material diffeomorphisms. This constraint
is equivalent to

Div(F'P) =F' Div P. (6.69)

Assuming the above four conditions, it is easy to show that material energy balance is invariant
under arbitrary material diffeomorphisms.
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Ideal fluids do satisfy all these conditions. In fact, their transformation properties under ma-
terial diffeomorphisms gives rise to Kelvin’s circulation theorem and it is a key ingredient in the
geometric approach to fluid mechanics; see the introduction to the Marsden and Ratiu book?? for
a discussion and references to the literature.

C. Material energy balance and defects

We now make a connection between (6.69) and Eshelby’s idea of force on a defect. The idea
of a driving force in continuum mechanics goes back to Eshelbyn’15 and this notion is important
in developing evolution laws for the movement of defects, including dislocations, vacancies,
interfaces, cavities, cracks, etc. Driving forces on these defects cause climb and glide of disloca-
tions, diffusion of point defects, migration of interfaces, changing the shape of cavities and
propagation of cracks, to mention a few examples. Eshelby defined the force on a defect as the
generalized force corresponding to position of the defect (in the reference configuration), which is
thought of as a generalized displacement. Eshelby studied inhomogeneities in elastostatic and
elastodynamic systems by considering the explicit dependence of the elastic energy density on
position in the reference configuration.

Defect forces: Suppose the elastic energy density has an explicit dependence on X (the posi-
tion of material points in the undeformed configuration), i.e.,

W=W(e,F,X), (6.70)

where ¢ and F are the deformation mapping and the deformation gradient, respectively. Consider
an open neighborhood () of an isolated defect. Force on the defect in the sense of Eshelby is
defined as

defect _ ﬂ/ — : — N
defect — dv=| DivEdv=| ENdA, 6.71)
Q X explicit Q Q)

where E=WI-FTP is Eshelby’s energy-momentum tensor. It turns out that for a crack (thought of
as a defect) F9*! is related to the celebrated J—integrall;37 J is the component of Féft in the
direction of crack propagation.

The following proposition makes an explicit connection between (6.69) and Eshelby’s idea of
force on a defect.

Proposition 6.4: Suppose an elastic material in an isothermal and quasistatic deformation
satisfies the internal constraint Div(FTP)=FDiv P. In the absence of body forces, force on a
defect in the sense of Eshelby would be

ow <
Fdefect=f <_) dV:f DivEdV=f WN dA. (6.72)
Q X explicit Q Q)

Proof: Note that
Fdefectzf E&dAZJ W&dA_f FTDIVPdV:f W&dA
a0 a0 Q o0

This means that the configurational traction on d() is normal to () at all points, i.e., the configu-
rational stress is hydrostatic. For this reason we call the internal constraint Div(F'P)=F' Div P,
the configurational inviscidity constraint.

If there is a stationary surface G across which deformation gradient and other quantities have
jump discontinuities, the balance of standard forces reads

[PIN=0. (6.73)

Now let us look at the normal jump in Eshelby’s energy-momentum tensor,
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[EIN = [¥I - FTP]N = [¥]N - [FT[(P)N - (FT)[P]N, (6.74)

where (-) denotes average of inner and outer traces. Using Hadamard’s compatibility equations,

[FIt=0 for all T such that i- N =0, (6.75)

it can be easily shown that

N-[EIN=[¥]-[FIN-PN, i -[E]N=-Ft-[P]N. (6.76)

Now if the balance of standard forces hold one concludes that

t-[EIN=0. (6.77)

This means that jump in configurational traction on d() is always normal to J{). However, the
previous remark shows that in the absence of body forces the condition Div(F'P)=F' Div P
implies that the configurational traction itself is normal to J().

Are configurational forces newtonian?: There have been doubts and discussions concerning
the nature of configurational forces in the literature already starting from Eshelby himself. Eshelby
strongly believed that force on a defect is fictitious and is different from the usual forces in
mechanics. He defined force on a defect to be the thermodynamic force conjugate to the general-
ized coordinates defining the defect, for example, the crack tip position in the case of a crack.
Eshelby16 observed that the configurational force on a disclination in a liquid crystal is a real
force. A similar observation was made by Nabarro® for dislocations. Kroner” and Ericksen'"?
have similar discussions. Batra®* argues that force on a defect is equal to the standard force exerted
on the boundary of a subbody embracing the defect. Steinmann*” introduces the spatial signature
of a material force. One should note that this viewpoint is not in agreement with Gurtin’s theory
in which standard and configurational forces have their own balance laws.

Batra® proves a theorem that states that force on a defect is equal to the resultant of tractions
on the boundary of any region enclosing this single defect. This seems to be a very surprising
result. First of all, if body forces are considered resultant of tractions on different regions em-
bodying the defect cannot be independent of the region as in this case stress tensor is not diver-
gence free. Barta suggests that problems involving the J-integral could be reinterpreted using his
theorem. As a matter of fact, the J-integral can serve as a counter example for Batra’s theorem.
The reason is that in the case of a linear elastic material in mode I fracture, for example, the
J-integral is quadratic in K; while the stress is linear in K; and hence the resultant of tractions
acting on the boundary of a small region enclosing the crack would be linear in K;. This means
that the J-integral, which is the component of configurational force in the direction of crack
growth, cannot be a real force. The incorrectness of Batra’s theorem is because of the way he
defines force on a defect. Force on a defect in the sense of Eshelby is the rate of change of
potential energy of the elastic body with respect to changes in the position of the defect in the
reference configuration. Batra defines force on a defect to be the rate of change of energy with
respect to changes of position of the defect in the current configuration. This is the source of his
surprising result. One should note that direct and inverse motions describe the same physical
process and cannot lead to different conclusions regarding forces. Having the duality picture is
useful but one should note that positions of defects in the reference and current configurations are
not related by the standard deformation mapping as the evolution of defects is an independent
kinematical process.

Standard forces in continuum mechanics are one forms in the deformed configuration, i.e., at
each point x € S, force is an element of TiS. Configurational forces on the other hand are one
forms in the reference configuration, i.e., at each point X € B, configurational force is an element
of T;B. Therefore, geometrically it is meaningless to ask if a configurational force is a real force

Downloaded 28 Apr 2006 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



042903-46  Yavari, Marsden, and Ortiz J. Math. Phys. 47, 042903 (2006)

very much like asking whether the deformation gradient (a two-point tensor) is symmetric. This is
why arguments like the one proposed by Steinmann*® where he defines a spatial signature for a
material force do not make sense from the geometric standpoint.

Plasticity and embeddings: A traditional means of introducing configurational forces is based
on remapping the reference configuration of the body. However, this approach tacitly assumes that
the reference configuration can be embedded in Euclidean space. This approach fails when there
is no natural embedding of the reference configuration. A case in point is provided by multiplica-
tive plalsticity,24 where the total deformation gradient at a point x has the representation: F(x)
=F°(x)F?(x), where F¢(x) and FP(x) are the elastic and plastic deformation gradients, both of
which fail to be a gradient in general. The plastic deformation mapping F”(x) defines an inferme-
diate configuration that defines the reference configuration for the elasticity of the material. In
particular, the elastic energy density is assumed to be of the form W(F¢,x). Since F’(x) is not the
derivative of a mapping, the intermediate configuration cannot be embedded in Euclidean space.
Therefore, remapping cannot be applied to deriving configurational forces directly from W(F¢,x).
By contrast, the present approach can be applied for that purpose, for example, by equipping the
intermediate configuration with a constant metric.

The derivation of certain conserved integrals, such as the L-integral that gives the configura-
tional torque on isotropic subbodies, relies on the metric structure of the embedding Euclidean
space. In addition, the conventional formulation of material symmetry also presumes the existence
of an Euclidian embedding. Such an embedding may not be natural or available in certain models
of materials, such as liquid crystals or smectic polymers, where the reference configuration may
include a unit director field.

VIl. NOETHER’S THEOREM AND BALANCE OF CONFIGURATIONAL FORCES

As is well known, there is a strong connection between conservation laws and symmetries. If
the Euler-Lagrange equations are satisfied and the Lagrangian density of a system is invariant
under a group of transformations, Noether’s theorem gives the corresponding conserved quantity.
In this sense, conservation laws are related to symmetries of a given system. Marsden and
Hughes28 consider material invariance in elasticity (in the absence of body forces) and show that
invariance of Lagrangian density under rigid translations in the reference configuration results in
the following conservation law

(%(%L:-Dd»W)+DIV((9F£-D¢-W—£W):O. (7.1)

This has been obtained assuming that the flow of W is volume-preserving and that £ does not
explicitly depend on X. For a constant W, this equation in our notation reads

1 d
Div[(‘l’— 5p0|V|2)I—FTP] =- E(pOFTV). (7.2)

It is seen that this is identical to balance of configurational linear momentum if p, and ¥ are
independent of X (note that this is stronger that homogeneity of £). Ignoring the inertial effects,
Noether’s theorem results in

Div(YI-F'P) =0. (7.3)

Roughly speaking, Noether’s theorem states that when the Euler-Lagrange equations are sat-
isfied, any symmetry of the Lagrangian density corresponds to a conserved quantity. Here we
revisit Noether’s theorem for nonlinear elasticity assuming that undeformed and deformed con-
figurations are Riemannian manifolds. Writing action in the reference configuration, Lagrangian
density has the following explicit independent variables:
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L= 'C(XA’ (Pa’ ¢a’FaA’GAB’gab) . (74)

For the sake of clarity, we consider spatial and material symmetries of the Lagrangian density
separately.

A. Spatial covariance of Lagrangian density

Theorem 7.1: If the Lagrangian density is spatially covariant, then the following hold: (i)
spatial homogeneity of the Lagrangian density and (ii) the Doyle-Ericksen formula.
Proof: Suppose i, is a flow on S generated by a vector field w, i.e.,

d
4 e pmwe. 75)
ds s=0
Invariance of £ means that
(9170? . ﬁlﬂ; (?wc alﬁj a a 'a
£<XA’ I’V:((p),—bgob, be ’GAB’_ o d 4.5 8cd =‘C(XA’(P P F A’GAB’gab)' (76)
ox ox ox“ ox

[This reminds us of the definition of covariance for internal energy density. So, it would be very
natural to expect some connection between Noether’s theorem and covariant balance laws.] Now
differentiating the above relation with respect to s and then evaluating it at s=0 [This is somewhat
similar to subtracting two balance relations and evaluating the result at 7=1,], one obtains

L AL b AL\ 4 owe b L owe
uWa+ N 28 R bFA_z__agbL‘:O' (77)
dp d¢” ox JoF /], ox g ap OX
Note that
L ow' 9L \ 9[dL)
VP A dowl Brno Uall el Gontl LA (7.8)
d¢t dx I\ d¢ I\ d¢
After some manipulations, it can be shown that
L\ Aaw® aL\ 4 aLy aL\ 4
— =) owr| =] we= o Fe e (7.9)
JF a ox JF a |A JF a |A JF b
Also
L gwe oL aL oL
2 8pe =" {2—gb6(F‘1)ach} + [2—8;;@(17_1),/‘} + 2 8pa VoW
agah ox ﬁgab |A agub |A agah

(7.10)

Therefore, symmetry of £ implies that

aL g (aL aL\ A aL\ 4 L a (oL
a” o\ oL N\ —\ = FLA ac + 2_gbd’}/¢bzc wit — . w
ae"  dt\d¢/), \IF/,, \dF/, 98 cq dt\ 9¢*

()] o] it ee o
+| = w'| —|[2—gp(F),/ W +|2—gn(F )| w=0. .
JF a |A I8ab g A I8 ab g |A

Note that the term multiplied by w* is zero if the Euler-Lagrange equations are satisfied. Thus,
Noether’s theorem states that
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a( L aLc\ 4 L LA L A
N ] W - 20 8nc(F)S | +| 27—, (F7), " | w=0.
AN ¥/, A 98ab lA 98ab A

(7.12)
Note that
56) ] ) e ) e o
P a — - a+ - a . .
oF ), " 1T \aR ), TR ), AT
Also
oL -1\ A IL -1\ A c IL c
z_gbc(F )a we = 2_gbc(F )a w +2_gbcw a (7]4)
I8ap |A 98ap A 98ap

Therefore (7.12) is simplified to

g oL aL\ 4 AL\ gw? aL\ 4 L
—\—+|= wit | — + =] Fa—27—8uw |w'.=0. (7.15)
at\ 9¢” ¥/, |a agt) ot JoF/, Igpe

Note that

owt  ow?

ot ox©

¢ = ¢w — it (7.16)

Therefore statement of Noether’s theorem, Eq. (7.12) can be rewritten as

a(aﬁ) (aﬁ)A M)ﬂ , (aﬁ) AF oL 2a£ 0
. +| — _ c ay _ <+ c_ a =,
I\ 3¢t IF/ymn 0¢" ac® W aF ), AT 960 ® T Tag, B M

(7.17)
Note that
L e
29 = Po8ar® ¢ (7.18)
¢
If Lagrangian density is covariant, i.e., if w is arbitrary then (7.17) implies that
5 2 (a/:) AF b OL (7.19)
_— = cl —— a + C ~a’ .
&gab # JF c ATs ‘;(PC(P
gL ac\ A oL
—( : >+(—> - % =0. (7.20)
at\ag?) "\ dF ), | a¢
Equation (7.19) can be rewritten as
14 aw\ A
2—=gb0< ) Fe,, (7.21)
98ab JF c

which is nothing but the Doyle-Ericksen formula. [Note that this includes balance of angular
momentum.| Note that
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gL acL\ 4 oL L aL\ 4 aL L
( )+( ) )/j@c _( ) FCA ac+2 gbdyzc_ .b(lbc’)éc'
a |A b agcd &(P

o) \ar ), e 5
(7.22)
But
(aﬁ) AF ) aL aL (7.23)
o e At 2 8= —¢". .
aF ), A &nggbd a(p,,@
Thus
g (oL ac\t oL L
—( : )+<—) - = (7.24)
at\ 9¢* ¥y 09 dg!
Hence (7.20) implies that
oL
~=0. (7.25)
I
U

Note that this theorem implies that arbitrary flows and in particular rigid translations cannot be
transitive (in the sense of Gotay ef al.'”'®) for arbitrary Lagrangian densities.

B. Material covariance of Lagrangian density

Let us first consider the case of Euclidean spaces. Consider a flow A, on B generated by a
vector field W. Invariance of £ with respect to this flow means that

oA )‘1]3 )
. Fig | = L(XA, ¢, ¢ F%y). (7.26)
X A B A

A .
E<As (X),cp“,cp“7[<
Differentiating the above relation with respect to s and evaluating the result at s=0, one obtains

aL . AL GWP

—WA =
axA JF, x4

F=0. (7.27)

If W is a constant, then

oc 0 (7.28)
axt '
i.e., the Lagrangian density must be materially homogeneous. This is also what Nelson® ob-

tains. After some manipulation and assuming that Euler-Lagrange equations are satisfied (7.27)
can be rewritten as

d d d( L IWA
A - B TNt A AT oaA =Y :
S| cw FW? FOWh | = L——=0 (7.29)
X JF*, I\ 9¢° X

where use was made of the fact that W is time independent. For a volume-preserving flow this
gives us
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J L0 s d( 9L \
_A EW - FaBW - FaAW =0, (730)
¢ aF, ar\ 9¢*

which is what Marsden and Hughes28 obtain. Now let us consider the general case of Riemannian
manifolds and assume that A is a flow on the Riemannian manifold (8 ,G) generated by a vector
field W, i.e.,

AX)=W(X), XebB. (7.31)
ds

5s=0

Theorem 7.2: If the Lagrangian density is materially covariant then the following hold: (i)
material homogeneity of the Lagrangian density and (ii) material Doyle-Ericksen formula.
Proof: Invariance of £ with respect to A; means that

dpnee [ (5G] ol ()] ()T )
s( )’QD @, aX B B>8ab> IX B IX R CD

= L(XY, ¢ ¢“ . F4,8u-Gap)- (7.32)

Differentiating the above relation with respect to s and evaluating the result at s=0, one obtains

oL - L aWBFa 5 aLc G IWC 0 (7.33)
axt"  gF ox* P TaGp PCoxK T '
Note that
L gwe oL oL aL
- —AF“B=—(F“B - WB> +<F“B ) WP+ F T WP (7.34)
0FA07X (9FA ‘A [7FA |A &FA
and
L IWE oL aL L
-2 Gpe—or ——(2 GDCWC) +(2 GDC) WE+2——Gppl 2, WE.
(?GDK (?X élGDK IK &GDK IK (9GDK
(7.35)
Also
L JIF° L oL L
(F“BﬁFa ) WB=< f—FaCrgA> —WE+F, ( - ) +—Fpy. [WA
A ‘A z9X ﬂFA (9FB ‘B (?FB
(7.36)

Assuming that Euler-Lagrange equations are satisfied and using the above identities after a lengthy
series of simplifications, one obtains

L L
(L’WA— WB) —£<F“A
A

L L
WA>—L‘WA —(2—(; WC) +(2—G ) wC=0.
|A G DC K 0Gpx DC K

IF, o\ “o¢ dGpx
(7.37)
Note that
aL oL oL
- (2 GDCWC> + (2 GDC> WE==2——GpWi. (7.38)
dGpk K dGpk K dGpk

Therefore in this case Noether’s theorem states that
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aL J oL L
(LWA— WB) ——(Fj; ,aWA) - LW, =2——Gp W =0. (7.39)
&FaB IA ﬁt (9@ ﬁGDK
Note that
L J aL L L
Fe WB) =—<F“ —)WB F* WP+ Fy——(WPT§ . - WETE,).
( BO,)FQA . axA Bé,FaA + B(?F“A + B(QFQA( AC CA)

(7.40)

Using the above relation and some lengthy simplifications, one can rewrite (7.39) as

oL (MF“ 2§£G )FB wA (ﬁEF” 2(9£G )WB 0. (7.41)
axA "t IF, BY 3G BC) A" T IF°, B 2560 Bt T '

If £ is materially covariant, i.e., if W is arbitrary, then

9~ ( oL F' +2 oL G )FB 0 (7.42)
+ + =0, .
ox* T \gFe. P TG, TC)AC
oL oL
FaB+2 GBC=O‘ (7.43)
aF*, 9G ¢
Or equivalently
oL
— =0, 7.44
X (7.44)
ow ow
Fio+2 Ggpr=0, 7.45
ope 26 Gac (7.45)

where W is the material potential energy density. Note that (7.45) is nothing but the material
Doyle-Ericksen formula (6.66). O

Remarks: There are some differences between covariant energy balance (CEB) and Lagrang-
ian density covariance (LDC):

(1) CEB is global while LDC is local.

(i)  In CEB the arbitrary vector fields w and W are time-dependent (being velocities), in
general, while in LDC they are time independent.

(iii)  In writing balance of energy in CEB for a material diffeomorphism spatial quantities
contribute to energy balance. But in LDC a material flow does not affect the spatial
quantities.

VIIl. CONCLUSIONS AND FUTURE DIRECTIONS
The results of this paper can be summarized as follows.

(1) We studied continuum mechanics of bodies with global referential evolutions by enlarg-
ing the configuration manifold to two Riemannian manifolds with their own metrics. A
deformation is then a pair of referential evolution, i.e., a motion in the referential mani-
fold, and a standard motion. We showed that in the absence of discontinuities, configu-
rational and standard equations of motion are equivalent even if the metrics are allowed
to vary.
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(i1) The classical theorem of Green, Naghdi, and Rivilin'® was revisited and a material
version of it was investigated. We showed that under a referential isometry balance of
energy cannot be invariant, in general, and obtained its transformation.

(iii)  The idea of covariance in elasticity was reviewed. We revisited a theorem by Marsden
and Hughes28 and some of the details of its proof were clarified and a proof was given
for its converse. It was also shown that spatial covariance of material energy balance
leads to identical results.

(iv)  We posed the question that whether energy balance can be materially covariant. It was
shown that, in general, energy balance cannot be invariant under referential diffeomor-
phisms. We obtained the transformation of energy balance under arbitrary material dif-
feomorphisms. We found conditions under which energy balance is materially covariant.
It was shown that in the absence of body forces the nontrivial condition for material
covariance of balance of energy is equivalent to configurational stress tensor (Eshelby’s
stress tensor) being hydrostatic. It was shown that for ideal fluids energy balance is
materially covariant.

(v)  An explicit relation between covariance and Noether’s theorem was found. We showed
that spatial covariance of a Lagrangian density implies spatial homogeneity of the La-
grangian density and the Doyle-Ericksen formula. Similarly, material covariance of a
Lagrangian density implies its material homogeneity and the material Doyle-Ericksen
formula.

In summary, spatial covariance is reasonable and holds for most materials. The transformation
properties of energy balance under material reframings was obtained. However, material covari-
ance of energy balance only holds for special materials, such as ideal fluids.

The main application of the ideas presented in this paper will be in gaining a better under-
standing of the continuum theory of defects. In particular, if one repeats some of the developments
presented in this paper in a space-time setting, one should, in principle, be able to obtain dynamic
equations for evolution of defects. Another important relevant problem would be the study of
covariance and its meaning in discrete systems. This may lead to a better understanding of “stress”
in discrete systems.
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