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Abstract
This paper develops the theory of Abelian Routh reduction for discrete
mechanical systems and applies it to the variational integration of mechanical
systems with Abelian symmetry. The reduction of variational Runge–Kutta
discretizations is considered, as well as the extent to which symmetry reduction
and discretization commute. These reduced methods allow the direct simulation
of dynamical features such as relative equilibria and relative periodic orbits
that can be obscured or difficult to identify in the unreduced dynamics. The
methods are demonstrated for the dynamics of an Earth orbiting satellite with
a non-spherical J2 correction, as well as the double spherical pendulum. The
J2 problem is interesting because in the unreduced picture, geometric phases
inherent in the model and those due to numerical discretization can be hard to
distinguish, but this issue does not appear in the reduced algorithm, where one
can directly observe interesting dynamical structures in the reduced phase space
(the cotangent bundle of shape space), in which the geometric phases have been
removed. The main feature of the double spherical pendulum example is that it
has a non-trivial magnetic term in its reduced symplectic form. Our method is
still efficient as it can directly handle the essential non-canonical nature of the
symplectic structure. In contrast, a traditional symplectic method for canonical
systems could require repeated coordinate changes if one is evoking Darboux’
theorem to transform the symplectic structure into canonical form, thereby
incurring additional computational cost. Our method allows one to design
reduced symplectic integrators in a natural way, despite the non-canonical
nature of the symplectic structure.
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1. Introduction

This paper addresses reduction theory for discrete mechanical systems with Abelian symmetry
groups and its relation to variational integration. To establish the setting of the problem, a few
aspects of the continuous theory are first recalled (see [29] for general background).

1.1. Continuous reduction theory

Consider a mechanical system with configuration manifold Q and a symmetry group G (with
Lie algebra g) acting freely and properly on Q and hence, by cotangent lift on T ∗Q, with
the corresponding (standard, equivariant) momentum map J : T ∗Q → g∗. Recall from
reduction theory (see [25, 36], and references therein) that, under appropriate regularity and
nonsingularity conditions, the flow of a G-invariant Hamiltonian H : T ∗Q → R naturally
induces a Hamiltonian flow on the reduced space Pµ = J−1(µ)/Gµ, where Gµ is the isotropy
subgroup of a chosen point µ ∈ g∗. In the Abelian case, if one chooses a connection A on
the principal bundle Q → Q/G, then Pµ is symplectically isomorphic to T ∗(Q/G) carrying
the canonical symplectic structure modified by magnetic terms, that is terms induced from the
µ-component of the curvature of A.

The Lagrangian version of this theory is also well developed. In the Abelian case, it goes
by the name of Routh reduction (see, for instance, [29], section 8.9). The reduced equations
are again equations on T (Q/G) and are obtained by dropping the variational principle,
expressed in terms of the Routhian, from Q to Q/G. The non-Abelian version of this theory
was originally developed in [32, 33], with important contributions and improvements given
in [15, 30].

Of course, reduction has been enormously important for many topics in mechanics, such
as stability and bifurcation of relative equilibria, integrable systems, etc. We need not review
the importance of this process here as it is extensively documented in the literature.

1.2. Purpose, main results and examples

This paper presents the theory and illustrative numerical implementation for the reduction of
discrete mechanical systems with Abelian symmetry groups. The discrete reduced space has
a similar structure as in the continuous theory, but the curvature will be taken in a discrete
sense. The paper studies two examples in detail, namely, satellite dynamics in the presence
of the bulge of the Earth (the J2 effect) and the double spherical pendulum (which has a
non-trivial magnetic term). In each case the benefit of studying the numerics of the reduced
problem is shown. Roughly, the reduced computations reveal dynamical structures that are
hard to pick out in the unreduced dynamics in a way that is reminiscent of the phenomena
of pattern evocation, as in [34, 35]. Another interesting application of the theory is that of
orbiting multibody systems, studied in [41, 42].

We refer to [37] for a review of discrete mechanics, its numerical implementation, some
history, as well as references to the literature. The value of geometric integrators has been
documented in a number of references, such as [9]. In the present paper, we shall focus, to
be specific, on discrete Euler–Lagrange and variational symplectic Runge–Kutta schemes and
their reductions. One could, of course, use other schemes as well, such as Newmark, Störmer-
Verlet or Shake schemes. However, we wish to emphasize that without theoretical guidelines,
coding algorithms for the reduced dynamics need not be a routine procedure since the reduced
equations are not in canonical form because of non-trivial magnetic terms. For example,
using Darboux’ theorem to put the structure into canonical form so that standard algorithms
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can be used is not practical. We also remind the reader that there are real advantages to taking
the variational approach to the construction of symplectic integrators. For example, as in [23],
the variational approach provides the design flexibility to take different time steps at spatially
different points in an asynchronous way and still retain all the advantages of symplecticity
even though the algorithms are not strictly symplectic in the naive sense; such an approach is
well known to be useful in molecular systems, for instance.

1.3. Motivation for discrete reduction

Besides its considerable theoretical interest, there are several practical reasons for carrying
out discrete Routh reduction. These are as follows.

(i) Features that are clear in the reduced dynamics, such as relative equilibria and
relative periodic orbits, can be obscured in the unreduced dynamics, and ap-
pear more complicated through the process of reconstruction and associated
geometric phases. This is related to the phenomenon of pattern evocation that
is an important practical feature of many examples, such as the double spher-
ical pendulum [34, 35] and the stepping pendulum [12]. Going to a suitable
(but non-obvious) rotating frame can ‘evoke’ such phenomena (see the movie at
http://www.cds.caltech.edu/˜marsden/research/demos/movies/Wendlandt/pattern.mpg).
This is essentially a window to the reduced dynamics, which the theory in the present
paper allows one to compute directly.

(ii) While directly studying the reduced dynamics can yield some benefits, it can be difficult
to code using traditional methods. In particular, the presence of magnetic terms in the
reduced symplectic form, as is the case with the double spherical pendulum, means that
traditional symplectic methods for canonical systems do not directly apply; if one attempts
to do so, it may result (and has in the literature) in many inefficient coordinate changes
when evoking Darboux’ theorem to put things into canonical form.

(iii) Although simulating the reduced dynamics involves an initial investment of time in
computing geometric quantities symbolically, these additional terms do not appreciably
affect the sparsity of the system of equations to be solved. As such, direct coding of the
reduced algorithms can be quite efficient, due to its reduced dimensionality.

1.4. Two obvious generalizations

The free and proper assumption that we make on the group action means that we are dealing
with nonsingular, that is, regular reduction (see [38] for the general theory of singular reduction
and references to the literature). It would be interesting to extend the work here to the case
of singular reduction but already the regular case is non-trivial and interesting. While our
examples have singular points and the dynamics near these points is interesting, there is no
attempt to study this aspect in the present paper.

Secondly, it would be interesting to generalize the present work to the case of non-Abelian
groups and to develop a discrete version of non-Abelian Routh reduction (as in [15, 30]). We
believe that such a generalization will require the further development of the theory of discrete
connections, which is currently part of the research effort on discrete differential geometry
(see [20], and references therein). Other future directions are discussed in the conclusions.

1.5. Other discrete reduction results

We briefly summarize some related results that have been obtained in the area of reduction
for discrete mechanics. First of all, there is the important case of discrete Euler–Poincaré and

http://www.cds.caltech.edu/~marsden/research/demos/movies/Wendlandt/pattern.mpg
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Lie–Poisson reduction that were obtained in [2, 27, 28]. This theory is appropriate for rigid
body mechanics, for instance.

Another important case is that of discrete semidirect product reduction that was obtained
in [3, 4] and applied to the case of the heavy top, with interesting links to discrete elastica.
This case is of interest in the present study since with the heavy top, as with the general theory
of semidirect product reduction (see [13, 31]), one can view the S1 reduction of this problem
as Routh reduction. Linking these two approaches is an interesting topic for future research.

1.6. Outline

After recalling the notation from continuous reduction theory, section 2 develops discrete
reduction theory, derives a reduced variational principle and proves the symplecticity of
the reduced flow. The relationship between continuous- and discrete-time reduction is also
discussed. How the variational (and hence symplectic) Runge–Kutta algorithm induces a
reduced algorithm in a natural way is shown in section 3. In section 4, we put together in
a coherent way the main theoretical results of the paper up to that point. In section 5, the
numerical example of satellite dynamics about an oblate Earth is given, and in section 6, the
example of the double spherical pendulum, which has a non-trivial magnetic term, is given.
Lastly, in section 7, we address some computational and efficiency issues.

2. Discrete reduction

In this section, it is assumed that the reader is familiar with continuous reduction theory as
well as the theory of discrete mechanics; reference is made to the relevant parts of the literature
as needed. It will be useful to first recall some facts about discrete mechanical systems with
symmetry (see, for instance, [37] for proofs).

2.1. Discrete mechanical systems with symmetry

Let G be a Lie group (which shortly will be assumed to be Abelian) that acts freely and properly
(on the left) on a configuration manifold Q. Given a discrete Lagrangian Ld : Q×Q → R that
is invariant under the diagonal action of G on Q × Q, the corresponding discrete momentum
map Jd : Q × Q → g∗ is defined by

Jd(q0, q1) · ξ = D2Ld(q0, q1) · ξQ(q1), (1)

where D2 denotes the derivative in the second slot and where ξQ is the infinitesimal generator
associated with ξ ∈ g. The map Jd is equivariant with respect to the diagonal action of G on
Q × Q and the coadjoint action on g∗. The discrete Noether theorem states that the discrete
momentum is conserved along solutions of the DEL (discrete Euler–Lagrange) equations,

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0. (2)

Note that

Jd(q0, q1) · ξ = J(D2Ld(q0, q1)) · ξ,

where J : T ∗Q → g∗ is the momentum map on T ∗Q; i.e., Jd = J ◦ FLd, where
FLd = D2Ld : Q × Q → T ∗Q is the discrete Legendre transform. Thus, for µ ∈ g∗,
we have FLd

(
J−1

d (µ)
) ⊂ J−1(µ). The symplectic algorithm (usually called the position-

momentum form of the algorithm) obtained on T ∗Q from that on Q × Q via the discrete
Legendre transform thus preserves the standard momentum map J.
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There will be a standing assumption in this paper, namely that the given discrete
Lagrangian Ld is regular; that is, for a point (q, q) ∈ Q × Q on the diagonal, the iterated
derivative D2D1Ld(q, q) : TqQ × TqQ → R is a non-degenerate bilinear form. By the
implicit function theorem, this implies that a point (qk−1, qk) near the diagonal and the DEL
equations (2) uniquely determine the subsequent point qk+1 in a neighbourhood of the
diagonal in Q × Q (or, if one prefers, for small time steps); in other words, the DEL
algorithm is well defined by the DEL equations. Regularity also implies that the discrete
Legendre transformation FLd = D2Ld : Q × Q → T ∗Q is a local diffeomorphism from a
neighbourhood of the diagonal in Q×Q to a neighbourhood in T ∗Q. For a detailed discussion,
see [37].

2.2. Reconstruction

The following lemma gives a basic result on the reconstruction of discrete curves in the
configuration manifold Q from those in shape space, defined to be S = Q/G. The lemma
is similar to its continuous counterpart, as in, for example, [15], lemma 2.2. The natural
projection to the quotient will be denoted by πQ,G : Q → Q/G; q �→ x = [q]G (the
equivalence class of q ∈ Q). Let Ver(q) denote the vertical space at q, namely the space of
all vectors at the point q that are infinitesimal generators ξQ(q) ∈ TqQ or, in other words,
the tangent space to the group orbit through q. We say that the discrete Lagrangian Ld is
group-regular if the bilinear map D2D1Ld(q, q) : TqQ×TqQ → R restricted to the subspace
Ver(q) × Ver(q) is nondegenerate. In addition to regularity, we shall make group-regularity a
standing assumption in the paper. The following result is fundamental for what follows.

Lemma 2.1 (Reconstruction lemma). Fix µ ∈ g∗ and let x0, x1, . . . , xn be a sufficiently
closely spaced discrete curve in S. Let q0, q1 ∈ Q be such that [q0]G = x0, [q1]G = x1 and
Jd(q0, q1) = µ. Then there is a unique closely spaced discrete curve q1, q2, . . . , qn such that
[qk]G = xk and Jd(qk−1, qk) = µ, for k = 1, 2, . . . , n.

Proof. We must construct a point q2 close to q1 such that [q2]G = x2 and Jd(q1, q2) = µ; the
construction of the subsequent points q3, . . . , qn then proceeds in a similar fashion.

To do this, pick a local trivialization of the bundle πQ,G : Q → Q/G, where locally
Q = S × G, and write points in this trivialization as q0 = (x0, g0) and q1 = (x1, g1), etc.
Given the points q0 = (x0, g0), q1 = (x1, g1) with Jd(q0, q1) = µ, we seek a near identity
group element k ∈ G such that q2 := (x2, kg1) satisfies Jd(q1, q2) = µ. According to
equation (1), this means that we must satisfy the condition D2Ld(q1, q2) · ξQ(q2) = 〈µ, ξ 〉 for
all ξ ∈ g. In the local trivialization, this reads

D2Ld((x1, g1), (x2, kg1)) · (
0, T Rkg1ξ

) = 〈µ, ξ 〉, (3)

where Rg is right translation on G by g. Consider solving the equation

D2Ld((x̄1, ḡ1), (x̄2, kḡ1)) · (
0, T Rkḡ1ξ

) = 〈µ, ξ 〉, (4)

for k as a function of the variables ḡ1, x̄1, x̄2 with µ fixed. By assumption, there is a solution
for the case x̄1 = x0, x̄2 = x1 and ḡ1 = g0, namely k = k0 = g1g

−1
0 (a near identity group

element). The implicit function theorem shows that when the point g0, x0, x1 is replaced by
the nearby point g1, x1, x2, there will be a unique solution for k near k0 provided that the
derivative of the defining relation (3) with respect to k at the identity is invertible, which is
true by group regularity. Since group regularity is G-invariant, the above argument remains
valid as ki drifts from the identity. �
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Note that the above lemma makes no hypotheses about the sequences xn or qn satisfying
any discrete evolution equations.

To carry out reconstruction in the continuous case, in addition to the requirements that
the lifted curve in TQ lie on the momentum surface, and that it projects to the reduced curve
x(t) ∈ S under πQ,G, one also requires that it be second order, which is to say that it is of the
form (q(t), q̇(t)). If a connection is given, then the lifted curve is obtained by integrating the
reconstruction equation—again, see [15] for details. The discrete analogue of the second-order
curve condition is explained as follows. Consider a given discrete curve as a sequence of points,
(x0, x1), (x1, x2), . . . , (xn−1, xn), in S × S. Lift each of the points in S × S to the momentum
surface J−1

d (µ) ⊂ Q × Q. This yields the sequence,
(
q0

0 , q0
1

)
,
(
q1

0 , q1
1

)
, . . . ,

(
qn−1

0 , qn−1
1

)
,

which is unique up to an overall diagonal group action. The discrete analogue of the second-
order curve condition is that this sequence in Q × Q defines a discrete curve in Q, which
corresponds to requiring that qk

1 = qk+1
0 , for k = 0, . . . , n − 1, which is clearly possible in the

context of the reconstruction lemma.
Discrete reconstruction naturally leads to issues of discrete geometric phases, and it would

be interesting to express the discrete geometric phase in terms of the discrete curvature on
shape space; this will surely involve some ideas from the currently evolving subject of discrete
differential geometry and so we do not attempt to push this idea further at this point.

While many of the computations we present in this paper are in the setting of local
trivializations, the results are valid globally through the construction given below.

2.3. Identification of the quotient space

Now assume that G is Abelian so that G = Gµ acts on J−1
d (µ) and that the quotient

space J−1
d (µ)/G makes sense. We assume the above regularity hypotheses and freeness

and properness of the action of G so that this quotient is a smooth manifold. It is clear that the
map ϕµ : J−1

d (µ)/G → S ×S given by [(q, q ′)]G → (x, x ′) is well defined, where the square
brackets denote the equivalence class with respect to the given G action, and where x = [q]G.
The argument given in the reconstruction lemma shows that for a point (q0, q1) ∈ J−1

d (µ), ϕµ

is a local diffeomorphism in a neighbourhood of the point [(q0, q1)]G. In fact, the uniqueness
part of that argument shows that for two nearby points (q1, q2) and (q ′

1, q
′
2) in J−1

d (µ), if
q1 = g1q

′
1 and q2 = g2q

′
2, then g1 = g2. Thus, there is a neighbourhood U of a given a chain

of closely spaced points lying in J−1
d (µ) with this property. Saturating this neighbourhood

with the group action, we can assume that U is G-invariant. Restricted to U, ϕµ becomes a
diffeomorphism to a neighbourhood of the diagonal of S × S.

Assume, as above, that Ld : Q × Q → R is a discrete Lagrangian that is invariant under
the action of an Abelian Lie group G on Q × Q. In view of the preceding discussion, Ld

restricted to J−1
d (µ) (and in the neighbourhood of a given chain of points in this set) induces

a well-defined function L̂d(x0, x1) of pairs of points (x0, x1) in S × S. This discrete reduced
Lagrangian will play an important role in what follows.

2.4. Discrete reduction

Let q := {q0, . . . , qn} be a solution of the discrete Euler–Lagrange (DEL) equations. Let
the value of the discrete momentum along this trajectory be µ. Let xi = [qi]G, so that
x := {x0, . . . , xn} is a discrete shape space trajectory. Since q satisfies the discrete variational
principle, it is appropriate to ask if there is a reduced variational principle satisfied by x.

An important issue in dropping the discrete variational principle to the shape space is
whether we require that the varied curves are constrained to lie on the level set of the momentum
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map. The constrained approach is adopted in [15], and the unconstrained approach is used in
[30]. In the rest of this section, we will adopt the unconstrained approach of [30] and show that
the variations in the discrete action sum, when evaluated on a solution of the discrete Euler-
Lagrange equations without assuming that the variations at the endpoints vanish, depends only
on the quotient variations, and therefore drop to the shape space without constraints on the
variations.

If q is a solution of the DEL equations, the interior terms in the variation of the discrete
action sum vanish, leaving only the boundary terms; that is,

δ

n−1∑
k=0

Ld(qk, qk+1) = D1Ld(q0, q1) · δq0 + D2Ld(qn−1, qn) · δqn. (5)

Given a principal connection A on Q, there is a horizontal–vertical split of each tangent
space to Q denoted by vq = hor vq + ver vq for vq ∈ TqQ. Thus,

D2Ld(qn−1, qn) · δqn = D2Ld(qn−1, qn) · hor δqn + D2Ld(qn−1, qn) · ver δqn.

As in continuous Routh reduction, we will rewrite the terms involving vertical variations using
the fact that we are on a level set of Jd . Namely, write the vertical variation as ver δqn = ξQ(qn),
where ξ = A(δqn) and use definition (1) of Jd to give

D2Ld(qn−1, qn) · ver δqn = D2Ld(qn−1, qn) · ξQ(qn) = Jd(qn−1, qn) · ξ

= 〈µ, ξ 〉 = 〈µ,A(δqn)〉 = Aµ(qn) · δqn. (6)

Thus, the boundary terms can be expressed as

D2Ld(qn−1, qn) · δqn = D2Ld(qn−1, qn) · hor δqn + Aµ(qn) · δqn, (7)
D1Ld(q0, q1) · δq0 = D1Ld(q0, q1) · hor δq0 − Aµ(q0) · δq0, (8)

and so (5), the variation of the discrete action sum, becomes

δ

n−1∑
k=0

Ld(qk, qk+1) = D1Ld(q0, q1) · hor δq0 + D2Ld(qn−1, qn) · hor δqn

+ Aµ(qn) · δqn − Aµ(q0) · δq0, (9)

when restricted to solutions of the discrete Euler–Lagrange equations.
Motivated by the preceding equation, introduce the 1-form A on Q × Q defined by

A = π∗
2 Aµ − π∗

1 Aµ, (10)

where π1, π2 : Q × Q → Q are projections onto the first and the second components
respectively. This allows us to expand the boundary terms involving Aµ into a telescoping
sum, and rewrite (9) in terms of the 1-form A as
n−1∑
k=0

(DLd − A)(qk, qk+1) · (δqk, δqk+1) = D1Ld(q0, q1) · hor δq0 + D2Ld(qn−1, qn) · hor δqn.

(11)

We now drop (11) to the reduced space S × S. Consider the projection maps π : Q × Q →
(Q×Q)/G and πµ,d : J−1

d (µ) → J−1
d (µ)/G, and the inclusion maps ιµ,d : J−1

d (µ) ↪→ Q×Q

and ι̃µ,d : J−1
d (µ)/G ↪→ (Q × Q)/G. Then clearly, the following diagram commutes:
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By the G-invariance, Ld drops to a function L̃d on the quotient (Q×Q)/G so that Ld = L̃d ◦ π .
The pullback (in this case, the restriction) of L̃d to J−1

d (µ)/G is called the discrete reduced
Lagrangian and is denoted by as L̂d . Thus, L̂d = L̃d ◦ ι̃µ,d ; identifying J−1

d (µ)/G with S × S

this definition agrees with L̂d as defined earlier.

Lemma 2.2. The 1-form A on Q × Q restricted to J−1
d (µ) drops to a 1-form Â on J−1

d (µ)/G

and induces (for closely spaced points), via the map ϕµ, a 1-form that we denote by the same
letter, on S × S. Similarly, the 1-form DLd − A on Q × Q restricted to the momentum level
set J−1

d (µ) then drops to the 1-form DL̂d − Â on on J−1
d (µ)/G and induces, via the map ϕµ,

a 1-form that we denote by the same letter, on S × S.

Proof. The equivariance of the projections πi with respect to the diagonal action on Q × Q

and the given action on Q, together with the invariance of the 1-form Aµ on Q, implies that A
is invariant. Since Aµ vanishes on vertical vectors for the bundle Q → Q/G, it follows that
A vanishes on vertical vectors for the bundle Q × Q → (Q × Q)/G. Therefore, there is a
1-form Ã on (Q × Q)/G such that A = π∗Ã.

Since Ld = L̃d ◦ π , and the exterior derivative commutes with pullback, it follows that
dLd = π∗dL̃d . From π ◦ ιµ,d = ι̃µ,d ◦ πµ,d , we get ι∗µ,dA = ι∗µ,dπ

∗Ã = π∗
µ,d ι̃

∗
µ,dÃ. Thus,

the 1-form A restricted to J−1
d (µ) drops to the 1-form Â = ι̃∗µ,dÃ on J−1

d (µ)/G. Similarly,

ι∗µ,ddLd = π∗
µ,d ι̃

∗
µ,ddL̃d and so dLd restricted to J−1

d (µ) drops to the 1-form ι̃∗µ,ddL̃d = dL̂d

on J−1
d (µ)/G. These 1-forms push forward under the map ϕµ : J−1

d (µ)/G → S × S in the
manner that was explained earlier. �

With the preceding lemma, and equation (11), we conclude that
n−1∑
k=0

(DL̂d − Â)(xk, xk+1) · (δxk, δxk+1) = D1Ld(q0, q1) · hor δq0

+ D2Ld(qn−1, qn) · hor δqn. (12)

Assuming that δx vanishes at the endpoints, hor δq0 = 0, and hor δq1 = 0 and consequently,
the boundary terms vanish and we obtain the reduced discrete variational principle

δ

n−1∑
k=0

L̂d(xk, xk+1) =
n−1∑
k=0

Â(xk, xk+1) · (δxk, δxk+1). (13)

In an analogous fashion to rewriting DL̂d(xk, xk+1) · (δxk, δxk+1) as D1L̂d(xk, xk+1) · δxk +
D2L̂d(xk, xk+1) · δxk+1, we do the same for the Â term by defining

Â(x0, x1) · (δx0, δx1) = Â1(x0, x1) · δx0 + Â2(x0, x1) · δx1.

Then, equating terms involving δxk on the left-hand side of (13) to the corresponding terms
on the right-hand side, we get the discrete Routh (DR) equations giving dynamics on S × S:

D2L̂d(xk−1, xk) + D1L̂d(xk, xk+1) = Â2(xk−1, xk) + Â1(xk, xk+1). (14)

Note that these equations depend on the value of momentum µ. Thus, if q is a discrete curve
satisfying the discrete Euler–Lagrange equations, the curve x obtained by projecting q down
to S satisfies the DR equations (14).

Now consider the converse, the discrete reconstruction procedure: given a discrete curve
x on S that satisfies the DR equations, is x the projection of a discrete curve q on Q that satisfies
the DEL equations?

Let the pair (q0, q1) be a lift of (x0, x1) such that Jd(q0, q1) = µ. Let q = {q0, . . . , qn} be
the solution of the DEL equations with initial condition (q0, q1). Note that q has momentum
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µ. Let x′ = {x ′
0, . . . , x

′
n} be the curve on S obtained by projecting q. By our arguments above,

x′ solves the DR equations. However, x′ has the initial condition (x0, x1), which is the same
as the initial condition of x. By uniqueness of the solutions of the DR equations, x′ = x.
Thus, x is the projection of a solution q of the DEL equations with momentum µ. Also, for
a given initial condition q0, there is a unique lift of x to a curve with momentum µ. Such a
lift can be constructed using the method described in lemma 2.1. Thus, lifting x to a curve
with momentum µ yields a solution of the discrete Euler–Lagrange equations, which projects
down to x.

We summarize the results of this section in the following theorem.

Theorem 2.3. Let x be a discrete curve on S, and let q be a discrete curve on Q with momentum
µ that is obtained by lifting x. Then the following are equivalent.

1. q solves the DEL equations.
2. q is a solution of the discrete Hamilton’s variational principle

δ

n−1∑
k=0

Ld(qk, qk+1) = 0

for all variations δq of q that vanish at the endpoints.
3. x solves the DR equations

D2L̂d(xk−1, xk) + D1L̂d(xk, xk+1) = Â2(xk−1, xk) + Â1(xk, xk+1).

4. x is a solution of the reduced variational principle

δ

n−1∑
k=0

L̂d(xk, xk+1) =
n−1∑
k=0

Â(xk, xk+1) · (δxk, δxk+1)

for all variations δx of x that vanish at the endpoints.

Note that for smooth group actions, the order of accuracy will be equal for the reduced
and unreduced algorithms.

2.5. Preservation of the reduced discrete symplectic form

The DR equations define a discrete flow map F̂k : S × S → S × S. We already know that
the flow of the DEL equations preserves the symplectic form �Ld

on Q × Q. In this section,
we show that the reduced flow F̂k preserves a reduced symplectic form �µ,d on S × S, and
that this reduced symplectic form is obtained by restricting �Ld

to J−1
d (µ) and then dropping

to S × S. In other words, π∗
µ,d�µ,d = ι∗µ,d�Ld

. The continuous analogue of this equation is
π∗

µ�µ = i∗µ�Q.

Recall from continuous reduction theory on the Hamiltonian side that in the case of
cotangent bundles, the projection πµ : J−1(µ) → T ∗S can be defined as follows: if
αq ∈ J−1(µ), then the momentum shift αq − Aµ(q) annihilates all vertical tangent vectors at
q ∈ Q, as shown by the following calculation:

〈αq − Aµ(q), ξQ(q)〉 = J (αq) · ξ − 〈µ, ξ 〉 = 〈µ, ξ 〉 − 〈µ, ξ 〉 = 0.

Thus, αq − Aµ(q) induces an element of T ∗
x S and πµ(αq) is defined to be this element.

Let F
′ : J−1

d (µ) → J−1(µ) be the restriction of FLd to J−1
d (µ). Thus F

′ ◦ ιµ = ιµ,d ◦FLd ,
where ιµ : J−1(µ) → T ∗Q and ιµ,d : J−1

d (µ) → Q × Q are inclusions. Define the map
F̂ : S ×S → T ∗S by F̂(x0, x1) = D2L̂d(x0, x1)− Â2(x0, x1). By equation (6) and lemma 2.2,
this map is well defined. The map F̂ will play the role of a reduced discrete Legendre transform,
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and in contrast to the continuous theory, the momentum shift appears in the map F̂, as opposed
to the projection πµ,d . As in the continuous theory, �µ,d does involve magnetic terms.

Lemma 2.4. The following diagram commutes:

Proof. Let (q0, q1) ∈ J−1
d (µ). Thus D2Ld(q0, q1) ∈ J−1(µ), and

πµ(F′(q0, q1)) = πµ(D2Ld(q0, q1)).

As noted above, πµ(D2Ld(q0, q1)) is the element of T ∗
x1

S determined by (D2Ld(q0, q1)−
Aµ(q1)). For δq1 ∈ Tq1Q, we have

〈D2Ld(q0, q1) − Aµ(q1), δq1〉 = (DLd − A)(q0, q1) · (0, δq1)

= (DL̂d − Â)(x0, x1) · (0, δx1)

= D2L̂d(x0, x1) · δx1 − Â2(x0, x1) · δx1,

where in the second equality, we used lemma 2.2. Thus,

πµ(D2Ld(q0, q1)) = D2L̂d(x0, x1) − Â2(x0, x1),

which means F̂ ◦ πµ,d = πµ ◦ F
′. �

Theorem 2.5. The flow of the DR equations preserves the symplectic form

�µ,d = F̂
∗
(�S − π∗

T ∗S,Sβµ),

where βµ is the 2-form on S obtained by dropping dAµ.
Furthermore, �µ,d can be obtained by dropping to S ×S the restriction of �Ld

to J−1
d (µ).

In other words, π∗
µ,d�µ,d = ι∗µ,d�Ld

.

Proof. We give an outline of the steps involved; the details are routine to fill in. The strategy
is to first show that the restriction to J−1

d (µ) of the symplectic form �Ld
drops to a 2-form

�µ,d on S × S. The fact that the discrete flow on Q × Q preserves the symplectic form �Ld

is then used to show that the reduced flow preserves �µ,d . The steps involved are as follows.

(i) Consider the 1-form 
Ld
on Q × Q defined by 
Ld

(q0, q1) · (δq0, δq1) = D2Ld(q0, q1) ·
δq1. The 1-form 
Ld

is G-invariant, and thus the Lie derivative LξQ×Q

Ld

is zero.
(ii) Since �Ld

= −d
Ld
,�Ld

is G-invariant. If ιµ,d : J−1
d (µ) → Q × Q is the inclusion,


′
Ld

= ι∗µ,d
Ld
and �′

Ld
= ι∗µ,d�Ld

are the restrictions of 
Ld
and �Ld

respectively to

J−1
d (µ). One checks that 
′

Ld
and �′

Ld
are invariant under the action of G on J−1

d (µ).
(iii) If ξJ−1

d (µ) is an infinitesimal generator on J−1
d (µ), then

ξJ−1
d (µ) �′

Ld
= −ξJ−1

d (µ) d
′
Ld

= −Lξ
J−1
d

(µ)

′

Ld
+ dξJ−1

d (µ) 
′
Ld

= 0.

This follows from the G-invariance of 
′
Ld

, and the fact that 
′
Ld

· ξJ−1
d (µ) = 〈µ, ξ 〉.

(iv) By steps 2 and 3, the form �′
Ld

drops to a reduced form �µ,d on J−1
d (µ)/G ≈ S × S.

Thus, if πµ,d : J−1
d (µ) → S × S is the projection, then π∗

µ,d�µ,d = �′
Ld

. Note that the
closure of �µ,d follows from the fact that �′

Ld
is closed, which in turn follows from the

closure of �Ld
and the relation �′

Ld
= ι∗µ,d�Ld

.
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(v) If Fk : Q × Q → Q × Q is the flow of the DEL equations, let F ′
k be the restriction of

this flow to J−1
d (µ). We know that F ′

k drops to the flow F̂k of the DR equations on S × S.
Since Fk preserves �Ld

, F ′
k preserves �′

Ld
. Using this, it can be shown that F̂k preserves

�µ,d . Note that it is sufficient to show that π∗
µ,d(F̂

∗
k �µ,d) = π∗

µ,d�µ,d .
(vi) It now remains to compute a formula for the reduced form �µ,d . Using lemma 2.4, it

follows that

π∗
µ,d�µ,d = ι∗µ,d�Ld

= ι∗µ,dFL∗
d�Q = (F′)∗i∗µ�Q

= (F′)∗π∗
µ(�S − π∗

T ∗S,Sβµ) = π∗
µ,d F̂

∗
(�S − π∗

T ∗S,Sβµ).

Thus π∗
µ,d�µ,d = π∗

µ,d F̂
∗
(�S − π∗

T ∗S,Sβµ), from which it follows that �µ,d = F̂
∗
(�S −

π∗
T ∗S,Sβµ). Incidentally, this expression shows that �µ,d is nondegenerate provided the

map F̂ = D2L̂d − Â2 is a local diffeomorphism. �

One can alternatively prove symplecticity of the reduced flow directly from the reduced
variational principle—see section 2.3.4 of [21].

2.6. Relating discrete and continuous reduction

As shown in [37], if the discrete Lagrangian Ld approximates the Jacobi solution of the
Hamilton–Jacobi equation, then the DEL equations give us an integration scheme for the EL
equations. In our commutative diagrams we will denote the relationship between the EL and
DEL equations by a dashed arrow as follows:

This arrow can thus be read as ‘the corresponding discretization’. By the continuous and
discrete Noether theorems, we can restrict the flow of the EL and DEL equations to J−1

L (µ)

and J−1
d (µ), respectively. The flow on J−1

L (µ) induces a reduced flow on J−1
L (µ)/G ≈ TS,

which is the flow of the Routh equations. Similarly, the discrete flow on J−1
d (µ) induces a

reduced discrete flow on J−1
d (µ)/G ≈ S×S, which is the flow of the discrete Routh equations.

Since the DEL equations give us an integration algorithm for the EL equations, it follows that
the DR equations give us an integration algorithm for the Routh equations.

To numerically integrate the Routh equations, we have two options.

(i) First solve the DEL equations to yield a discrete trajectory on Q, which can then be
projected to a discrete trajectory on S.

(ii) Solve the DR equations to directly obtain a discrete trajectory on Q.

Either approach yields the same result, which we express by the commutative diagram:

(15)

3. Reduction of the symplectic Runge–Kutta algorithm

A well-studied class of numerical schemes for Hamiltonian and Lagrangian systems is the
symplectic partitioned Runge–Kutta (SPRK) algorithms (see [10, 11] for history and details).
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We will adopt a local trivialization to express the SPRK method in which the group action
is addition. Given a connection A on Q, it can be represented in local coordinates as
A(θ, x)(θ̇ , ẋ) = A(x)ẋ + θ̇ . By rewriting the symplectic partitioned Runge–Kutta algorithm
in terms of this local trivialization, and using the local representation of the connection, we
obtain the following algorithm on T ∗S:

x1 = x0 + h
∑

bj Ẋj (16a)

s1 = s0 + h
∑

j

b̃j Ṡj +


h

∑
j

(
b̃jµ

∂A

∂x
(Xj )Ẋj

)
− (µA(x1) − µA(x0))


 (16b)

Xi = x0 + h
∑

aij Ẋj (16c)

Si = s0 + h
∑

j

ãij Ṡj +


h

∑
j

(
ãijµ

∂A

∂x
(Xj )Ẋj

)
− (µA(Xi) − µA(x0))


 (16d)

Sj = ∂R̂µ

∂ẋ
(Xj , Ẋj ) (16e)

Ṡj = ∂R̂µ

∂x
(Xj , Ẋj ) − iẊj

βµ(Xj ), (16f )

This system of equations is called the reduced symplectic partitioned Runge–Kutta (RSPRK)
algorithm. A detailed derivation can be found in section 2.5 of [21]. As we obtained this
system by dropping the symplectic partitioned Runge–Kutta algorithm from J−1(µ) to T ∗S,
it follows that this algorithm preserves the reduced symplectic form �µ = �S − π∗

T ∗S,Sβµ

on T ∗S.
Since the SPRK algorithm is an integration algorithm for the Hamiltonian vector field

XH on T ∗Q, the RSPRK algorithm is an integration algorithm for the reduced Hamiltonian
vector field XHµ

on T ∗S. The relationship between the cotangent bundle reduction and the
reduction of the SPRK algorithm can be represented by the following commutative diagram:

The dashed arrows here denote the corresponding discretization, as in (15). The SPRK
algorithm can be obtained by pushing forward the DEL equations by the discrete Legendre
transform. See, for example, [37]. By lemma 2.4, this implies that the RSPRK algorithm can
be obtained by pushing forward the DR equations by the reduced discrete Legendre transform
F̂ = D2L̂d − Â2. These relationships are shown in the following commutative diagram:
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4. Putting everything together

The relationship between Routh reduction and cotangent bundle reduction can be represented
by the following commutative diagram:

We saw in section 2.6 that if Ld approximates the Jacobi solution of the Hamilton–Jacobi
equation, discrete and continuous Routh reduction is related by the following diagram:

The dashed arrows mean that the DEL equations are an integration algorithm for the EL
equations, and that the DR equations are an integration algorithm for the Routh equations.

Pushing forward the DEL equation using the discrete Legendre transform FLd yields the
SPRK algorithm on T ∗Q, which is an integration algorithm for XH . This is depicted by

The SPRK algorithm on J−1(µ) ⊂ T ∗Q induces the RSPRK algorithm on J−1(µ)/G ≈ T ∗S.
As we saw in section 3, this reduction process is related to cotangent bundle reduction and to
discrete Routh reduction as shown in the following diagram:

Putting all the above commutative diagrams together into one diagram, we obtain figure 1.

5. Example: J2 satellite dynamics

5.1. Configuration space and Lagrangian

An illustrative and important example of a system with an Abelian symmetry group is that of
a single satellite in orbit about an oblate Earth. The general aspects and background for this
problem are discussed in [40], and some interesting aspects of the geometry underlying it are
discussed in [7].

The configuration manifold Q is R
3, and the Lagrangian is

L(q, q̇) = 1
2Ms‖q̇‖2 − MsV (q),
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J−1(µ),XH
�������

πµ

��

J−1(µ), SPRK

πµ

��

J−1
L (µ), EL ��������

FL

��������������

πµ , L

��

J−1
d (µ),DEL

FLd

��������������

πµ , d

��

T ∗S,XHµ
��� ����� T ∗S,RSPRK

TS,R ����������

FR̂µ

��������������
S × S,DR

F̂

��������������

Figure 1. Complete commutative cube. The dashed arrows represent discretization from the
continuous systems on the left face to the discrete systems on the right face. The vertical arrows
represent reduction from the full systems on the top face to the reduced systems on the bottom
face. The front and back faces represent Lagrangian and Hamiltonian viewpoints, respectively.

where Ms is the mass of the satellite and V : R
3 → R is the gravitational potential due to the

Earth truncated at the first term in the expansion in the ellipticity

V (q) = GMe

‖q‖ +
GMeR

2
e J2

‖q‖3

(
3

2

(q3)2

‖q‖2
− 1

2

)
.

Here, G is the gravitational constant, Me is the mass of the Earth, Re is the radius of the Earth,
J2 is a small non-dimensional parameter describing the degree of ellipticity and q3 is the third
component of q. In non-dimensional coordinates,

L(q, q̇) = 1

2
‖q̇‖2 −

[
1

‖q‖ +
J2

‖q‖3

(
3

2

(q3)2

‖q‖2
− 1

2

)]
. (17)

This corresponds to choosing space and time coordinates in which the radius of the Earth is 1
and the period of orbit at zero altitude is 2π when J2 = 0 (spherical Earth).

5.2. Symmetry action

The symmetry of interest to us is that of rotation about the vertical (q3) axis, so the symmetry
group is the unit circle S1. Using cylindrical coordinates q = (r, θ, z) for the configuration,
the symmetry action is φ : (r, θ, z) �→ (r, θ + φ, z). Since ‖q‖, ‖q̇‖, and q3 = z are all
invariant under this transformation, so too is the Lagrangian.

This action is clearly not free on all of Q = R
3, as the z-axis is invariant for all group

elements. This is not a serious obstacle as the lifted action is free on T (Q\(0, 0, 0)) and this
is enough to permit the application of the intrinsic Routh reduction theory. Alternatively, one
can simply take Q = R

3\{(0, 0, z) | z ∈ R} and then the theory literally applies.
The shape space S = Q/G is thus the half-plane S = R

+ ×R and we will take coordinates
(r, z) on S. In doing so, we are implicitly defining a global diffeomorphism S ×G → Q given
by ((r, z), θ) �→ (r, θ, z).

The Lie algebra g for G = S1 is the real line g = R, and we will identify the dual with
the real line itself g∗ ∼= R. For a Lie algebra element ξ ∈ g, the corresponding infinitesimal
generator is given by ξQ : (r, θ, z) �→ ((r, θ, z), (0, ξ, 0)). The Lagrange momentum map
JL : TQ → g∗ is given by JL(vq) · ξ = 〈FL(vq), ξQ(q)〉, which in our case is a scalar quantity,
the vertical component of the standard angular momentum JL((r, θ, z), (ṙ, θ̇ , ż)) = r2θ̇ .
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Consider the Euclidean metric on R
3, which corresponds to the kinetic energy norm in

the Lagrangian. From this metric we define the mechanical connection A : TQ → g given by
A((r, θ, z), (ṙ, θ̇ , ż)) = θ̇ . The 1-form Aµ on Q is thus given by Aµ = µ dθ . The exterior
derivative of this expression gives dAµ = µ d2θ = 0, and so the reduced 2-form is βµ = 0.

5.3. Equations of motion

The Euler–Lagrange equations for the Lagrangian (17) give the equations of motion,

q̈ = −∇q

[
1

‖q‖ +
J2

‖q‖3

(
3

2

(q3)2

‖q‖2
− 1

2

)]
.

To calculate the reduced equations, we begin by calculating the Routhian

Rµ(r, θ, z, ṙ, θ̇ , ż) = L(r, θ, z, ṙ, θ̇ , ż) − Aµ(r, θ, z) · (ṙ, θ̇ , ż)

= 1

2
‖(ṙ, θ̇ , ż)‖2 −

[
1

r
+

J2

r3

(
3

2

z2

r2
− 1

2

)]
− µθ̇.

We choose a fixed value µ of the momentum and restrict ourselves to the space J−1
L (µ), on

which θ̇ = µ. The reduced Routhian R̂µ : TS → R is the restricted Routhian dropped to the
tangent bundle of the shape space. In coordinates this is

R̂µ(r, z, ṙ, ż) = 1

2
‖(ṙ, ż)‖2 −

[
1

r
+

J2

r3

(
3

2

z2

r2
− 1

2

)]
− 1

2
µ2.

Recalling that βµ = 0, the Routh equations can be evaluated to give

(r̈, z̈) = −∇(r,z)

[
1

r
+

J2

r3

(
3

2

z2

r2
− 1

2

)]
,

which describes the motion on the shape space.
To recover the unreduced Euler–Lagrange equations from the Routh equations one uses

the procedure of reconstruction. This is covered in detail in [25, 26, 30].

5.4. Discrete Lagrangian system

We discretize this system with a high-order discrete Lagrangian. Recall that the pushforward
discrete Lagrange map associated with this discrete Lagrangian is a symplectic partitioned
Runge–Kutta method.

Given a point (q0, q1) ∈ Q × Q, we will take (q0, p0) and (q1, p1) to be the associated
discrete Legendre transforms. As the discrete momentum map is the pullback of the canonical
momentum map, we have that JLd

(q0, q1) = (pθ )0 = (pθ )1. Take a fixed momentum map
value µ and restrict Ld to the set J−1

Ld
(µ). Dropping this to S × S now gives the reduced

discrete Lagrangian L̂d : S × S → R. More explicitly, Ld depends on (rk, θk, zk) and
(rk+1, θk+1, zk+1), but group invariance implies that the group variables only enter in the
combination (θk+1 − θk). The condition Jd(qk, qk+1) = µ can be inverted to eliminate the
dependence of Ld on (θk+1−θk), and Ld can be expressed in terms of µ, (rk, zk) and (rk+1, zk+1),
which yields L̂d .

As discussed in section 3, the fact that we have taken coordinates in which the group
action is addition in θ means that the pushforward discrete Lagrange map associated with
the reduced discrete Lagrangian is the reduced method given by (16a)–(16f ). In fact, as the
mechanical connection has A(r, z) = 0 and βµ = 0, the pushforward discrete Lagrange map
is exactly a partitioned Runge–Kutta method with Hamiltonian equal to the reduced Routhian.
These are generically related by a momentum shift, rather than being equal.
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Figure 2. Unreduced (left) and reduced (right) views of an inclined elliptic trajectory for the
continuous time system with J2 = 0 (spherical Earth).

Given a trajectory of the reduced discrete system, we can reconstruct the unreduced
discrete trajectory by solving for θ . Correspondingly, a trajectory of the unreduced discrete
system can be projected onto shape space to give a trajectory of the reduced discrete system.

5.5. Example trajectories

We compute the unreduced trajectories using the fourth-order SPRK algorithm, and the reduced
trajectories using the corresponding fourth-order RSPRK algorithm.

5.6. Solutions of the spherical Earth system

Consider initially the system with J2 = 0. This corresponds to the case of a spherical Earth,
and so the equations reduce to the standard Kepler problem. A slightly inclined circular
trajectory is shown in figure 2, in both the unreduced and reduced pictures. Note that the
graph of the reduced trajectory is a quadratic, as ‖q‖ = √

r2 + z2 is a constant.
We will now investigate the effect of two different perturbations to the system, one due

to taking non-zero J2 and the other due to the numerical discretization.

5.7. The J2 effect

Taking J2 = 0.05 (which is close the actual value for the Earth), the system becomes near-
integrable and experiences breakup of the KAM tori. This can be seen in figure 3, where the
same initial condition is used as in figure 2.

Due to the fact that the reduced trajectory is no longer a simple curve, there is a geometric-
phase-like effect which causes precession of the orbit. This precession can be seen in the
thickening of the unreduced trajectory.

5.8. Solutions of the discrete system for a spherical Earth

We now consider the discrete system with J2 = 0, for the second-order Gauss–Legendre
discrete Lagrangian with the step size of h = 0.3. The trajectory with the same initial
condition as above is given in figure 4.

As can be seen from the reduced trajectory, the discretization has caused a similar breakup
of the periodic orbit as was produced by the non-zero J2. This induces precession of the orbit
in the unreduced trajectory, in a way which is difficult to distinguish from the perturbation
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Figure 3. Unreduced (left) and reduced (right) views of an inclined elliptic trajectory for the
continuous time system with J2 = 0.05. Observe that the non-spherical terms introduce precession
of the near-elliptic orbit in the symmetry direction.
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Figure 4. Unreduced (left) and reduced (right) views of an inclined trajectory of the discrete
system with step size h = 0.3 and J2 = 0. The initial condition is the same as that used in
figure 2. The numerically introduced precession means that the unreduced picture looks similar to
that of figure 3 with non-zero J2, whereas only by considering the reduced picture we can see the
correct resemblance to the J2 = 0 case of figure 2.

above due to non-zero J2 if only the unreduced picture is considered. If the reduced pictures
are consulted, however, then it is immediately clear that the system is much closer to the
continuous time system with J2 = 0 than to the system with non-zero J2.

5.9. Solutions of the discrete system with J2 effect

Finally, we consider the discrete system with non-zero J2 = 0.05. The resulting trajectory is
shown in figure 5, and it is clearly not easy to determine from the unreduced picture whether
the precession is due to the J2 perturbation, the discretization, or some combination of the
two.

Taking the reduced trajectories, however, immediately shows that this discrete time system
is structurally much closer to the non-zero J2 system than to the original J2 = 0 system. This
confusion arises because both the J2 term and the discretization introduce perturbations which
act in the symmetry direction.

While this system is sufficiently simple that one can run simulations with such small time
steps that the discretization artefacts become negligible, this is certainly not generally possible.
This example demonstrates how knowledge of the geometry of the system can be important in
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Figure 5. Unreduced (left) and reduced (right) views of an inclined trajectory of the discrete
system with step size h = 0.3 and J2 = 0.05. The initial condition is the same as that used in
figure 3. The unreduced picture is similar to those of figures 3 and 4. By considering the reduced
picture the correct resemblance to 3.

understanding the discretization process, and how this can give insight into the behaviour of
numerical simulations. In particular, understanding how the discretization interacts with the
symmetry action is extremely important.

5.10. Coordinate systems

In this example we have chosen cylindrical coordinates, thus making the group action addition
in θ . One can always do this, as an Abelian Lie group is isomorphic to a product of copies
of R and S1, but it may sometimes be preferable to work in coordinates in which the group
action is not addition. For example, Cartesian coordinates in the present example. Reasons
for choosing a different coordinate system might include ease of computation, or simplicity
of the expressions.

If we adopt a coordinate system wherein the group action is not expressed in terms of
addition, the RSPRK method is not applicable, but we can still apply the Discrete Routh
equations to obtain an integration scheme on S × S. The push forward of this under F̂ yields
an integration scheme on T ∗S. The trajectories on the shape space that we obtain in this
manner could be different from those we would get with the RSPRK method. However, in
both cases we would have conservation of symplectic structure, momentum, and the order of
accuracy would be the same. One could choose whichever approach is cheaper and easier.

6. Example: double spherical pendulum

6.1. Configuration space and Lagrangian

We consider the example of the double spherical pendulum which has a non-trivial magnetic
term and constraints. The configuration manifold Q is S2 × S2, and the embedding linear
space V is R

3 × R
3. The position vectors of each pendulum with respect to the pivot point

are denoted by q1 and q2. These vectors are constrained to have lengths l1 and l2 respectively,
and the pendula masses are denoted by m1 and m2. The Lagrangian is

L(q1, q2, q̇1, q̇2) = 1
2m1‖q̇1‖2 + 1

2m2‖q̇1 + q̇2‖2 − m1gq1 · k − m2g(q1 + q2) · k,

where g is the gravitational constant, and k is the unit vector in the z direction. The constraint
function c : V → R

2 is given by c(q1, q2) = (‖q1‖ − l1, ‖q2‖ − l2). Using cylindrical



Discrete Routh reduction 5539

coordinates qi = (ri, θi, zi), L becomes

L(q, q̇) = 1
2m1

(
ṙ2

1 + r2
1 θ̇2

1 + ż2
1

)
+ 1

2m2
{
ṙ2

1 + r2
1 θ̇2

1 + ṙ2
2 + r2

2 θ̇2
2

+ 2(ṙ1ṙ2 + r1r2θ̇1θ̇2) cos ϕ + 2(r1ṙ2θ̇1 − r2ṙ1θ̇2) sin ϕ + (ż1 + ż2)
2
}

−m1gz1 − m2g(z1 + z2),

where ϕ = θ2 − θ1. Furthermore, we can automatically satisfy the constraints by performing

the substitutions, zi = (
l2
i − r2

i

)1/2
, and żi = −ri ṙi

(√
l2
i − r2

i

)−1/2
.

6.2. Symmetry action

The symmetry of interest to us is the simultaneous rotation of the two pendula about the
vertical (z) axis, so the symmetry group is the unit circle S1. Using cylindrical coordinates
qi = (ri, θi, zi) for the configuration, the symmetry action is φ : (ri, θi, zi) �→ (ri, θi + φ, zi).
Since ‖qi‖, ‖q̇i‖, ‖q̇1 + q̇2‖ and qi · k are all invariant under this transformation, so too is the
Lagrangian.

This action is clearly not free on all of V = R
3 ×R

3, as the z-axis is invariant for all group
elements. However, this does not pose a problem computationally, as long as the trajectories
do not pass through the downward hanging configuration, corresponding to r1 = r2 = 0.
To treat the downward handing configuration properly, we would need to develop a discrete
Lagrangian analogue of the continuous theory of singular reduction described in [38].

We will now show the geometric structures involved in implementing the RSPRK
algorithm. See section 2.10.2 of [21] for a detailed derivation. The Lie algebra g for
G = S1 is the real line g = R, and we will identify the dual with the real line itself
g∗ ∼= R. For a Lie algebra element ξ ∈ g, the corresponding infinitesimal generator is
given by ξQ : (r1, θ1, z1, r2, θ2, z2) �→ ((r1, θ1, z1, r2, θ2, z2), (0, ξ, 0, 0, ξ, 0)). As such, the
momentum map is given by

JL((r1, θ1, z1, r2, θ2, z2), (ṙ1, θ̇1, ż1, ṙ2, θ̇2, ż2))

= (m1 + m2) r2
1 θ̇1 + m2r

2
2 θ̇2 + m2r1r2(θ̇1 + θ̇2) cos ϕ + (r1ṙ2 − r2ṙ1) sin ϕ,

which is simply the vertical component of the standard angular momentum.
The locked inertia tensor is given by [25]

I(q1q2) = m1

∥∥q⊥
1

∥∥2
+ m2‖(q1 + q2)

⊥‖2 = m1r
2
1 + m2

(
r2

1 + r2
2 + 2r1r2 cos ϕ

)
.

The mechanical connection as a 1-form is given by

α(q1, q2) = [
m1r

2
1 + m2

(
r2

1 + r2
2 + 2r1r2 cos ϕ

)]−1[
(m1 + m2)r

2
1 dθ1 + m2r

2
2 dθ2

+ m2r1r2(dθ1 + dθ2) cos ϕ + (r1 dr2 − r2 dr1) sin ϕ
]
.

The µ-component of the mechanical connection is given by

αµ(q1, q2) = µ
[
m1r

2
1 + m2

(
r2

1 + r2
2 + 2r1r2 cos ϕ

)]−1

×{[
(m1 + m2)r

2
1 + m2r1r2 cos ϕ

]
dθ1 +

[
m2r

2
2 + m2r1r2 cos ϕ

]
dθ2

}
.

Taking the exterior derivative of this 1-form yields a non-trivial magnetic term on the reduced
space, which drops to the quotient space to yield

βµ = µm2
[
2(m1 + m2)r1r2 +

(
m1r

2
1 + m2

(
r2

1 + r2
2

))
cos ϕ

]
× [

m1r
2
1 + m2

(
r2

1 + r2
2 + 2r1r2 cos ϕ

)]−2
dϕ ∧ (r2 dr1 − r1 dr2).
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The local representation of the connection is given by

A(r1, r2, ϕ) = m2
(
m1r

2
1 + m2

(
r2

1 + r2
2 + 2r1r2 cos ϕ

))−1


 −r2 sin ϕ

r1 sin ϕ

r2
2 + r1r2 cos ϕ




T

,

and the amended potential Vµ has the form

Vµ(q) = −m1g
(
l2
1 − r2

1

)1/2 − m2g
[(

l2
1 − r2

1

)1/2
+

(
l2
2 − r2

2

)1/2]
+ 2−1µ2

[
m1r

2
1 + m2

(
r2

1 + r2
2 + 2r1r2 cos ϕ

)]−1
.

The Routhian on the momentum level set is given by Rµ = 1
2‖hor(q, v)‖2 − Vµ. Recall that

hor(vq) = vq − ξQ(vq), where ξ = α(vq) and ξQ(vq) = (0, ξ, 0, 0, ξ, 0). Then we obtain

hor(vq) = vq − (0, α(vq), 0, 0, α(vq), 0) = (ṙ1, θ̇1 − α(vq), ż1, ṙ2, θ̇2 − α(vq), ż2).

The kinetic energy metric has the form


m1 + m2 0 0 m2 cos ϕ −m2r2 sin ϕ 0
0 (m1 + m2)r

2
1 0 m2r1 sin ϕ m2r1r2 cos ϕ 0

0 0 m1 + m2 0 0 0
m2 cos ϕ m2r1 sin ϕ 0 m2 0 0

−m2r2 sin ϕ m2r1r2 cos ϕ 0 0 m2r
2
2 0

0 0 0 0 0 m2




.

This together with the expression for hor(vq) allows us to compute 1
2‖hor(q, v)‖2, and when

combined with the formula for the amended potential Vµ gives the Routhian Rµ. Note that
all our expressions are in terms of the reduced variables on TS, so they trivially drop to yield
R̂µ. These expressions can then be directly substituted into the RSPRK algorithm in equations
(16a)–(16f ) to obtain the example trajectories presented in the following subsection.

6.3. Example trajectories

We have computed the reduced trajectory of the double spherical pendulum using the fourth-
order RSPRK algorithm on the Routh equations. We first consider the evolution of r1, r2 and
ϕ using the RSPRK algorithm on the Routh equations, as well as the projection of the relative
position of m2 with respect to m1 onto the xy plane as seen in figure 6.

Figure 7 illustrates that the energy behaviour of the trajectory is very good, as is typical of
variational integrators, and does not exhibit a spurious drift. In contrast, the non-symplectic
fourth-order Runge–Kutta applied to the unreduced dynamics has a systematic drift in the
energy, even when using time steps that are smaller by a factor of 4.

7. Computational considerations

7.1. Reduced versus unreduced simulations

The reduced dynamics can either be computed directly, by using the discrete Routh or RSPRK
equations, or by computing in the unreduced space, and projecting onto the shape space. We
discuss the relative merits of these approaches.

Given a configuration space and symmetry group of dimensions n and m, respectively,
we can either use a simpler algorithm in 2n dimensions, or a more geometrically involved
algorithm in 2(n − m) dimensions. The reduced algorithm involves curvature terms that need
to be symbolically precomputed, but these do not affect the sparsity of the system of equations,
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Figure 6. Time evolution of r1, r2, ϕ, and the trajectory of m2 relative to m1 using RSPRK.
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Figure 7. Relative energy drift (E − E0)/E0 using RSPRK (left) compared to the relative energy
drift in a non-symplectic RK (right).

and the lower dimension results in computational saving that are particularly evident in the
repeated, or long-time simulation of problems with a shape space of high codimension.

An example which is of current engineering interest is the dynamics of connected networks
of systems with their own internal symmetries, such as coordinated clusters of satellites
modelled as rigid bodies with internal rotors. If the systems to be connected are all identical,
the geometric quantities that need to be computed, such as the mechanical connection, have a
particularly simple repeated form, and the small additional upfront effort in implementing the
reduced algorithm can result in substantial computational savings due to the lower dimension
of the reduced system.

7.2. Intrinsic versus non-intrinsic methods

Non-intrinsic numerical schemes, such as SPRK applied to the classical Routh equations,
can have undesirable numerical properties due to the need for coordinate-dependent local
trivializations and the presence of coordinate singularities in these local trivializations, as is
the case when using Euler angles for rigid body dynamics.
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In the case of non-canonical symplectic forms, frequent computationally expensive
coordinate changes are necessary when using standard non-intrinsic schemes, as documented
in [39, 44], due to the need to repeatedly apply Darboux’ theorem to put the symplectic
structure into canonical form. In contrast, intrinsic methods do not depend on a particular
choice of coordinate system, and allow for the use of global charts through the use of containing
vector spaces with constraints enforced using Lagrange multipliers.

Coordinate singularities can affect the quality of the simulation in subtle ways that may
depend on the numerical scheme. In the simulation of the double spherical pendulum, we
notice spikes in the energy corresponding to times when r1 or r2 are close to 0. These errors
accumulate in the non-symplectic method, but remain well behaved in the symplectic method.
Alternatively, sharp spikes can be avoided altogether by evolving the equations on a constraint
surface in R

3 × R
3, as opposed to choosing local coordinates that automatically satisfy the

constraints. Here, the increased cost of working in the containing linear space with constraints
is offset by not having to transform between charts of S2

l1
× S2

l2
, which can be significant

if the trajectories are chaotic. An extensive discussion of the issue of representations and
parametrizations of rotation groups and its implications for computation can be found in [5].

Methods which exhibit local conservation properties on each chart may still exhibit a
drift in the conserved quantity across coordinate changes. As discussed in [1], only methods
in which the local representatives of the algorithm commute with coordinate changes exhibit
geometric conservation properties that are robust. In particular, intrinsic methods retain their
conservation properties through coordinate changes.

Another promising approach is to use the exponential map to update the numerical
solution, which is the basis of Lie group integrators, see [14]. The Lie group approach can yield
rigid body integrators that are embedded in the space of 3×3 matrices but automatically evolve
on the rotation group, without the use of constraints or reprojection. In [16, 17], analogues
of the explicit Newmark and midpoint Lie algorithm are presented that automatically stay on
the rotation group, and exhibit good energy and momentum stability. A method based on
generating functions and the exponential on Riemannian manifolds is introduced in [19]. In
the variational setting, a Lie group variational integrator for rigid body dynamics is described
in [18], and higher-order generalizations can be found in [21].

8. Conclusions and future work

This paper derives the discrete Routh equations on the discrete shape space S × S, which
are symplectic with respect to a non-canonical symplectic form, and retains the good energy
behaviour typically associated with variational integrators. Furthermore, when the group
action can be expressed as addition, we obtain the reduced symplectic partitioned Runge–
Kutta algorithm on T ∗S, which can be considered as a discrete analogue of cotangent bundle
reduction. By providing an understanding of how the reduced and unreduced formulations are
related at a discrete level, we enable the user to freely choose whichever formulation is most
appropriate, and provides the most insight to the problem at hand.

Certainly one of the obvious things to do in the future is to extend discrete reduction to the
case of non-Abelian symmetry groups following the non-Abelian version of Routh reduction
given in [15, 30]. There are also several problems, including the averaged J2 problem, in
which one can carry out discrete reduction by stages and relate it to the semidirect product
work of [4]. This is motivated by the fact that the semidirect product reduction theory of [13]
is a special case of reduction by stages (at least without the momentum map constraint), as
was shown in [6].
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In further developing discrete reduction theory, the discrete theory of connections on
principal bundles developed in [22] is particularly relevant, as it provides an intrinsic method
of representing the reduced space (Q × Q)/G as (S × S) ⊕ G̃, where G̃ = Q ×G G with
G acting by conjugation on G. Indeed, such a construction can be viewed as a connection on
a Lie groupoid, and it is natural to express discrete mechanics on Q × Q in the language of
pair groupoids, as originally proposed in [43]. Generalizations of this approach to arbitrary
Lie groupoids, as well as a discussion of the role of discrete connections in yielding a discrete
analogue of the Lagrange–Poincaré equations, can be found in [24].

Another component that is needed in this work is a good discrete version of the calculus
of differential forms. Note that in our work we found, being directed by mechanics, that the
right discrete version of the magnetic 2-form is the difference of two connection 1-forms.
It is expected that we could recover such a magnetic 2-form by considering the discrete
exterior derivative of a discrete connection form in a finite discretization of spacetime, and
taking the continuum limit in the spatial discretization. Developing a discrete analogue of
Stokes’ theorem would also provide insight into the issue of discrete geometric phases. Some
preliminary work on a discrete theory of exterior calculus can be found in [8].
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