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Abstract. We study a simple model for an asteroid pair, namely a planar system
consisting of a rigid body and a sphere. This model is interesting because it is
one of the simplest that captures the coupling between rotational and translational
dynamics. By assuming that the binary is in a relative equilibria of the system, we
construct a model for the motion of a spacecraft about this asteroid pair without
affecting its motion (that is, we consider a restricted problem). This model can be
studied as a perturbation of the standard Restricted Three Body Problem (RTBP).
We use the stable zones near the triangular relative equilibrium points of the binary
and a normal form of the Hamiltonian to compute stable periodic and quasi-periodic
orbits for the spacecraft, which enable it to observe the binary while the binary orbits
around the Sun.

1. Introduction. In August 1993, the Galileo probe approached 243 Ida, the sec-
ond asteroid ever encountered by a spacecraft. The greatest discovery from this
Galileo fly-by was that Ida has a natural satellite. This moon has been named
Dactyl and is the first natural satellite of an asteroid ever found. Since then, over
50 binary asteroids have been discovered and the interest in studying asteroid pairs
has grown significantly.

Thus, the study of spacecraft motion about an asteroid pair is an extremely
relevant topic for future missions to asteroids. An important question is to find
stable zones and orbits for the spacecraft to observe the binary as the pair orbits
around the Sun. See Figure 1.
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Figure 1. (a) Schematic diagram showing the two stable zones for the space-
craft (gray circles) to observe the binary (M and m) as the asteroid pair orbits
around the Sun (S). (b) A high inclination observation orbit for the spacecraft.
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In solving this problem, we draw on some basic facts of the circular Restricted
Three Body Problem (RTBP) which describes the motion of a massless particle
under the gravitational attraction of two point masses. As it is well known, the
three-body system has two triangular fixed points (see [8]) that are linearly stable
if the mass ratio between the primaries is small. In this paper, we study how these
equilibria are perturbed in two important ways:

1. When one of the primaries is not a point mass any more but an extended rigid
body and

2. When the effect of orbiting the Sun is also considered.
We use a simple model for the asteroid pair, a planar system of a rigid body and

a sphere (known as the “sphere restriction” of the Full Two Body Problem [7]).
The potential of the rigid body will be approximated by the gravitational potential
of three (rigidly) connected masses, as shown in Figure 1(a). As a model for the
spacecraft motion, we assume the binary to be in a relative equilibria and we also
consider only the direct effect of the Sun on the spacecraft.

The basic tools used in the paper come from geometric mechanics and dynamical
systems theory. The use of Hamiltonian reduction methods allows us to reduce the
dimension of the problem and Normal Form techniques are central to our numerical
exploration. The software (adapted from [3] and [1]) is “handcrafted” and uses an
algebraic manipulator to obtain high-order expansions. These expansions cannot
be achieved with a commercial-type manipulator and are crucial, for instance, to
obtain relatively high inclination observation orbits for the spacecraft.

The paper is organized as follows: In §2, we derive the reduced equations for the
asteroid pair via reduction theory and make a preliminary study of this reduced
model. In §3, we construct the models for the spacecraft motion based on a partic-
ular solution of the asteroid pair. In §4, we study the dynamics of these models in
the vicinity of the stable triangular points and use this study to find stable periodic
and quasi-periodic orbits for the spacecraft to observe the binary, while the binary
orbits the Sun.

2. Reduced Model of Asteroid Pair.

2.1. Reduced Equations for the Binary. Consider the mechanical system of a
rigid body and a sphere in a plane, as in Figure 2.
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Figure 2. (a) Ida and Dactyl. (b) Gravitational interaction of a rigid body
and a sphere in the plane.
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Reduction of the translational symmetry. Relative to a given inertial frame,
the kinetic energy of the binary system is

K =
1
2
m‖ṙ‖2 +

1
2
M‖Ṙ‖2 +

1
2
Izz θ̇

2

where r and R are the positions of the sphere’s center and the rigid body’s barycen-
ter, m and M are the masses of the sphere and the rigid body, Izz is the inertia
tensor of the rigid body and the angle θ is as shown in Figure 2(b).

After reducing the translational symmetry (using the fact that mr+MR = 0 at
the system’s center of masses), the kinetic energy can be re-written as

K =
1
2

mM

m + M
‖q̇‖2 +

1
2
Izz θ̇

2

where q = r−R. Furthermore, if the unit of mass is defined such that mM
m+M = 1,

the unit of time such that G(m+M) = 1, and the unit of length as the longest axis
of inertia of the rigid body, the kinetic energy can be simplified as

K =
1
2
‖q̇‖2 +

1
2
Izz θ̇

2.

Notice that the configuration space Q of this reduced system is the planar Euclid-
ean group SE(2). Its Lagrangian is of the type kinetic minus potential and can be
written locally as

L(q, θ, q̇, θ̇) =
1
2
‖q̇‖2 +

1
2
Izz θ̇

2 − V (q, θ). (1)

From the Lagrangian, one can define the momenta corresponding to the variables
(q, θ) via the Legendre transformation: p = ∂L

∂q̇ = q̇, pθ = ∂L
∂θ̇

= Izz θ̇. Thus, its
corresponding Hamiltonian is

H =
1
2
‖p‖2 +

1
2Izz

p2
θ + V (q, θ). (2)

This system still has an overall rotational symmetry which we would like to reduce
next.

Reduction of the rotational symmetry. Let us first perform two preliminary
(canonical) changes of variables that will trivialize the action of the symmetry group
G = S1 on the configuration space Q = SE(2). The first change is the introduction
of the polar coordinates

qx = r cos φ, px = pr cos φ− pφ

r
sin φ,

qy = r sin φ, py = pr sin φ +
pφ

r
cosφ.

The second one is the use of the relative angles

α = φ− θ, pα = pφ,

β = θ, pβ = pφ + pθ.

See Figure 2(b). These changes are the first steps in rewriting the equations of the
system using the body frame of the rigid body. After performing these changes, the
Lagrangian is

L =
1
2
ṙ2 +

1
2
r2α̇2 +

1
2
(r2 + Izz)β̇2 + r2α̇β̇ − V (r, α)

where the potential does not depend on the “orientation” angle θ of the rigid body
due to its invariance under rotations. Notice that the group action on the (r, α, β)
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variables is trivial: Φϕ(r, α, β) = (r, α, β + ϕ). Moreover, the Hamiltonian in these
new coordinates is given by

H =
1
2
p2

r +
(

1
2r2

+
1

2Izz

)
p2

α +
1

2Izz
p2

β −
1

Izz
pαpβ + V (r, α) (3)

where pα = r2α̇+ r2β̇ and pβ = r2α̇+(r2 + Izz)β̇. Notice that β is a cyclic variable
of the Hamiltonian (3). Hence, its conjugate momenta pβ is conserved.

To perform the reduction on the Hamiltonian side, we apply the theory in [4]
and [5]. The momentum map is given by

J(r, α, β, pr, pα, pβ) = pβ

which correspond to the angular momentum of the system. The locked inertia
tensor is I(r, α, β) = r2 + Izz which is the instantaneous tensor of inertia when the
relative motion of the two body is locked. The mechanical connection 1-form can
be written as

A(r, α, β) =
r2

r2 + Izz
dα + dβ.

For a fixed pβ = γ, we can perform the momentum shift from J−1(γ) to J−1(0) as

p̃r = pr, p̃α = pα − γr2

r2 + Izz
, p̃β = 0.

The reduced Hamiltonian in J−1(0)/S1 has only two degrees of freedom

H =
1
2
p̃2

r +
1
2

(
1
r2

+
1

Izz

)
p̃2

α + V (r, α) +
γ2

2(r2 + Izz)
(4)

with the non-canonical reduced symplectic form given by

ωγ = dr ∧ dp̃r + dα ∧ dp̃α − 2γIzzr

(r2 + Izz)2
dr ∧ dα. (5)

Finally, the reduced Hamiltonian equations can be easily derived from the Hamil-
tonian (4) and the symplectic form (5). It is a two degrees of freedom system which
describes the motion of the sphere in the body frame of the rigid body.

Simple potential of the rigid body. For simplicity, we approximate the potential
of the rigid body by the gravitational potential of three masses stuck together by
two massless rods as a stand-in, or an approximate model for the potential of an
ellipsoid-type body. See Figure 3.
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Figure 3. Simple model for the potential of the rigid body. (a) Unreduced
system. (b) Body-frame.
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Following the results in the last section, the Hamiltonian with this potential is:

H =
1
2
p̃2

r +
1
2

(
r2 + Izz

r2Izz

)
p̃2

α + Vγ(r, α) (6)

where

Vγ = −1− 2µ

r
− µ

(
1
ru

+
1
rd

)
+

γ2

2(r2 + Izz)
.

Here,
µ =

ms

mb + 2ms
, ν =

m

m + M
,

r2
u = r2 + 2dr cos α + d2, and r2

d = r2 − 2dr cos α + d2.

See Figure 3(b). The moment of inertia of the system is Izz = µ
2ν .

2.2. Relative Equilibria for the Binary. The relative equilibria of the asteroid
pair in the reduced system can be obtained from the Hamiltonian (6). They satisfy
the following conditions:

p̃r = p̃α = 0,
∂Vγ

∂r
=

∂Vγ

∂α
= 0.

After simple computation, we have

pr = 0, pα =
γr2

r2 + Izz
, µdr sinα

(
1
r3
d

− 1
r3
u

)
= 0. (7)

The last equation has two class of solutions:
1. Collinear configurations, with sin α = 0, α ∈ {0, π}; and
2. T -configurations, with rd = ru, which is equivalent to α = ±π/2.
In this paper, we do not intend to study the stability of these relative equilibria.

Instead, we will just offer a few observations of this topic and its dependency on the
parameters of the problem (For more details, see [6]). The collinear configurations
are likely to be linearly stable and the T -configurations unstable if the sphere is
a “big” body and the rigid body plays the role of a small satellite (this is known
for the ν = 1 limit, that corresponds to the usual theory of gravity gradient stabi-
lization). On the other extreme, if the rigid body is “big” (ν << 1), the collinear
configurations are unstable and the T -configurations may be linearly stable if the
rotation is not too fast (i.e., small γ).

In the next section, we will use these qualitative observations to choose appro-
priate values of the parameters so that the T -configuration is linearly stable.

Reconstruction of relative equilibrium solution. Since we are interested in
visualizing the relative equilibria in the initial configuration space, we need to re-
construct the dynamics from the reduced coordinates. In our case, it is not difficult
to see that the reconstruction equations for the group variables are given by

θ̇ =
pθ

Izz
, pθ = γ − pα. (8)

If a solution in the reduced space (r(t), α(t), p̃r(t), p̃α(t)) is known, one may integrate
equation (8) to obtain the evolution of the orientation angle of the rigid body θ(t).

For instance, if the reduced system is in one of the relative equilibria described
above, the conjugate momenta of the orientation variable is constant, pθ = constant,
and the equation for the orientation angle (8) is trivial to integrate:

θ̇ =
pθ

Izz
≡ ωL =⇒ θ = ωLt + θ0.
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Hence, in the unreduced system, the equilibrium points are periodic orbits of period
TL = 2π/ωL. For example, for one of the T -configuration points (r ≡ rL, α = π/2),
the solution for a rigid body and a sphere is a T -shaped object which is rotating
uniformly at rate ωL. See Figure 4(a).
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Figure 4. (a) Relative equilibria for the T -configuration visualized in the
unreduced reference frame. The system is rotating uniformly with angular
velocity ωL. (b) Basic T -model for the spacecraft (S/C).

3. Models for the Motion of the Spacecraft. In this section, we will construct
models for the motion of a spacecraft near the asteroid pair. Let us assume that
the binary is in a T -configuration relative equilibria, i.e., we choose the solution
with α = π/2 in (7), and the system is rotating uniformly with frequency ωL, as in
Figure 4(a). In the first model, we will assume that the motion of the spacecraft
is affected only by the gravitational interaction of the asteroid pair. In the second
model, we will add the perturbation of the Sun to the motion of the spacecraft.

3.1. Basic T -model. Let us suppose that R0 and {Ru,Rd} are, respectively, the
position vectors of the central and the two external masses of the rigid body in an
inertial reference frame centered at the system’s barycenter. Let us also call Rs the
position of the sphere and R the position of the spacecraft in the same frame. In
this inertial reference frame, the equations of motion for the spacecraft are

R̈ = −∂V

∂R
, with V = −G

(
mb

‖R0p‖ +
ms

‖Rup‖ +
ms

‖Rdp‖ +
m

‖Rsp‖
)

.

Here, M = mb + 2ms, ν = m/(m + M), and Rjp = R−Rj , for j = 0, u, d, s.
We now perform a rotation to fix the rigid body’s longest principal axis orthog-

onal to the x-axis: R = RθLq, where q = (x, y, z) and RθL is the counterclockwise
rotation of angle θL = ωLt+θ0 in the xy plane. In this rotating frame, the equations
of motion for the spacecraft are

ẋ = px + θ̇Ly, ẏ = py − θ̇Lx, ż = pz,

ṗx = θ̇Lpy − ∂V

∂x
, ṗy = −θ̇Lpx − ∂V

∂y
, ṗz = −∂V

∂z
,

where

V = −G

(
mb

‖q0p‖ +
ms

‖qup‖ +
ms

‖qdp‖ +
m

‖qsp‖
)

.
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Here, θ̇L = ωL, and qjp = q − qj , for j = 0, u, d, s. Note that qj are known
from the T -configuration relative equilibria: q0 = (−νrL, 0, 0), qu = (−νrL, 1/2, 0),
qd = (−νrL,−1/2, 0) and qs = ((1 − ν)rL, 0, 0). These equations are Hamiltonian
(in a canonical way) with the following Hamiltonian

H =
1
2

(
p2

x + p2
y + p2

z

)
+ ωL (ypx − xpy) + V (x, y, z).

Let us redefine non-dimensional units for this problem as follows: take the new
unit of length to be the distance between the center of masses of the rigid body and
the sphere, the unit of time such that ωL = 1 and the asteroid pair does a complete
revolution in 2π units of time, and the unit of mass such that GmM = 1. Then, the
Hamiltonian for the motion of the spacecraft can be written as a O(µ)-perturbation
of the RTBP with mass-ratio ν

H =
1
2

(
p2

x + p2
y + p2

z

)
+ (ypx − xpy) + V (x, y, z)

where

V = − (1− ν)(1− 2µ)
r1

− ν

r2
− µ(1− ν)

(
1
ru

+
1
rd

)
.

Here, r2
1 = (x + ν)2 + y2 + z2, r2

2 = (x − (1 − ν))2 + y2 + z2, along with r2
u =

(x+ν)2 +(y−d)2 +z2, r2
d = (x+ν)2 +(y+d)2 +z2, and d = 1

2rL
. See Figure 4(b).

3.2. T -Model: Perturbation of the Sun. We now take into consideration the
direct effect of Sun’s perturbation on the spacecraft. For simplicity, we assume that
the uniform rotation of the binary is not affected by the Sun and that the center of
masses of the binary is also rotating uniformly around the Sun with a different rate,
say ωs. See Figure 5(b). This idea is similar to the construction of the well-known
Bicircular Problem (BCP) that has been used to model some restricted four-body
problems in the Solar System (see [2]). In a similar way as it is derived for the BCP,
we can add Sun’s effect on the spacecraft in the T -model and write it as a periodic
perturbation of the T -model:

H =
1
2

(
p2

x + p2
y + p2

z

)
+ (ypx − xpy)− ms

a2
s

(x cos θs − y sin θs) + Vs(x, y, z, θs),

where

Vs = − (1− ν)(1− 2µ)
r1

− ν

r2
− µ(1− ν)

(
1
ru

+
1
rd

)
− ms

rs
.

Here, r2
s = (x + as cos θs)2 + (y − as sin θs)2 + z2.

4. Nonlinear dynamics for the Spacecraft models. In order to study the
motion of a spacecraft near an asteroid pair, the parameters of the problem are
chosen in such a way that the binary is in a linearly stable relative equilibria. The
mass ratio between the sphere and the rigid body is taken as a typical value for
certain type of binaries, ν = m/(m + M) = 0.001, which assumes that about 5%
of the rigid body’s mass is on the extreme part (µ = 0.02). The moment of inertia
Izz = 20 and the angular momentum of the system γ = 4 are chosen so that the T -
configuration is linearly stable. With this parameters, the T -configuration solution
is found at rL ≈ 5.08 times the largest dimension of the rigid body.

When the perturbation of the Sun is taken into account, we assume that the
binary is in the main asteroid belt (as ≈ 3 A.U.) and that its total mass is the one
of a medium/large size asteroid (1017 kg). That give us the rest of the parameters
for the second model in adimensional units: as = 1.5× 106 and ms = 1013.
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Figure 5. (a) Schematic diagram showing the triangular equilibria of the
RTBP persist when one of the primaries is not a point mass but an extended
rigid body. (b) Perturbation of the Sun on the T -model.

Using these parameter values in the actual computations, we proceed to make a
local study of the dynamics for the spacecraft near the Lagrangian stable regions,
knowing that the qualitative results will be valid for a wide range of parameters.
It can be shown by using the Implicit Function Theorem that, if the perturbations
are small and under some non-resonance conditions, the RTBP triangular points
persist in the basic T -model and are replaced by stable periodic orbits after taking
into consideration of the Sun’s perturbation. See Figure 5.

In this paper, we will focus on the L4 case, although the same results can be
obtained for L5. The new fixed point that substitutes L4 in the T -model will be
called L′4 and the periodic orbit that has the same period as the Sun’s perturbation
Ts = 2π

ws
will be named PO(L′4).

4.1. Study of the T -model at L′4 and PO(L′4). It is not difficult to compute
the eigenvalues of the linear vector field at L′4 or the Floquet modes of the periodic
orbit PO(L′4). For the actual example, they correspond to elliptic objects and their
frequencies are displayed in Table 1. Thus, the T -model system is linearly elliptic
at L′4 and around PO(L′4) and we can study the nonlinear dynamics around these
objects by constructing a high-order Normal Form around the fixed point L′4 and
around the periodic orbit PO(L′4). The Normal Form expansion of the Hamiltonian
at the equilibrium points provides a way to obtain all possible motions in a vicinity
of these points. Let us briefly describe the main points of the procedure as follows
(readers can consult [3] and [1] for details): (1) Translate the origin of coordinates to
L′4 or PO(L′4) (in the second case, the translation depends periodically on time). (2)
Construct the quadratic Normal Form using the real Jordan form of the linearization
of the vector field in the autonomous case and the Floquet Theorem in the time-
periodic case. (3) Perform an expansion of the Hamiltonian in a Taylor series
(Fourier–Taylor series in the time-periodic case) up to degree N . (4) Construct a
high-order Normal Form with a Lie series method (see [3]).

Quadratic Normal Form. The Normal Form up to degree 2 only contains mono-
mials of order 2. The order 0 term is irrelevant in the equations of motion and the
order 1 terms are eliminated because the origin is a fixed point after the translation.
So, the normal form up to the degree two is a quadratic form

H2 = iω1q1p1 + iω2q2p2 + iω3q3p3,

where the values for the frequencies can be found in Table 1.
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L′4 PO(L′4)

ω1 −0.10702011607983 −0.10702058242758

ω2 0.99366842989866 0.99366615570514

ω3 1.00058470215019 1.00058692342681

Table 1. Normal frequencies for the linear oscillators around the elliptic
objects L′4 and PO(L′4).
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Figure 6. Examples of stable orbits near the Lagrangian zones of the as-
teroid pair. Left: Periodic orbit in the autonomous case. Center/Right: Two
examples of 3D tori for the time-periodic case.

High-order Normal Form. To build the Normal Form of order higher than 2,
Lie series method is implemented as in [3]. We use a hand-made software with an
algebraic manipulator that is able to deal with the Taylor and Fourier-Taylor series
appearing in the computations. To give a flavor of the method, we sketch one step
of the process for the time-periodic case. For the autonomous case, just skip the
dependence of time.

Let us assume that the Hamiltonian is already in normal form up to degree r−1:

H = ωspθs + H
(n)
2 (qp) +

r−1∑

j=4, j=2̇

H
(n)
j (qp) + Hr(q, p, θs) + Hr+1(q, p, θs) + · · ·

where Hr(q, p, θs) =
∑
|k|=r hk

r (θs)qk1
pk2

, θs = ωst+ θ0 and k = (k1, k2) ∈ Z3×Z3.
The extra term ωspθs has been inserted to autonomize the Hamiltonian and pθs is
the momenta conjugated to the θs variable.

We want to make a change of variables that removes the maximum number of
terms of Hr(q, p, θs) and autonomizes all the monomials. This canonical change is
given by the following generating function

Gr = Gr(q, p, θs) =
∑

|k|=r

k1 6=k2

−hk
r (θs)

〈ω, k2 − k1〉q
k1

pk2
,

where 〈·, ·〉 denotes the dot product. The new Hamiltonian obtained with this
change of variables is

H ′ = H + {H, Gr}+
1
2!
{{H,Gr}, Gr}+ · · ·

and it is of the following form

H ′ = ωspθs + H
(n)
2 (qp) +

r−1∑

j=4, j=2̇

H
(n)
j (qp) + H(n)

r (qp) + H ′
r+1(q, p, θs) + · · ·
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After performing all this changes up to high-order, N = 32 in the first case and
N = 24 in the time-periodic case, we write the final Hamiltonian in action-angle
variables by defining Ij = iqjpj

H = N (I) +R(I, ϕ, θs) , N (I) =
N/2∑

|k|=1

hkIk1
1 Ik2

2 Ik3
3 .

Since the Normal Form Hamiltonian only depends on actions, it is trivially inte-
grable. All motions in a (small) vicinity of L′4 and PO(L′4) are periodic or quasi-
periodic. They take place on invariant tori of dimensions 1, 2 and 3 (autonomous
case) or 2, 3 and 4 (periodic case). See Figure 6 for some examples.

4.2. Parking Orbits for the Spacecraft. Some of these practically stable or-
bits are very interesting because we can use them to “park” the spacecraft to do
observations of the binary as the pair orbits around the Sun. For instance, if obser-
vations of the asteroid pair with relatively high inclinations are required, one could
select I1 = I2 = 0 to minimize the planar motion and maximize the vertical one,
and choose I3 = 0.02 to make the error in the Normal Form small. The result is
a periodic orbit (in the autonomous case) or a 2-D invariant torus (in the periodic
case) that are quite extended in the vertical direction. See Figure 7. Ongoing work
is devoted to apply the ideas developed in this paper to more realistic potentials.
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Figure 7. Spacecraft orbits suitable for binary observations. Left: Periodic
orbit for the autonomous case. Right: 2D torus for the time-periodic case.
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