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Abstract. This paper provides a precise sense in which the time t map for the Euler
equations of an ideal fluid in a region in R

n (or a smooth compact n-manifold with
boundary) is a Poisson map relative to the Lie-Poisson bracket associated with the group
of volume preserving diffeomorphism group. This is interesting and nontrivial because
in Eulerian representation, the time t maps need not be C1 from the Sobolev class Hs to
itself (where s > (n/2) + 1). The idea of how this difficulty is overcome is to exploit the
fact that one does have smoothness in the Lagrangian representation and then carefully
perform a Lie-Poisson reduction procedure.

1. Introduction

Hamiltonian structures play a fundamental role in mathematical physics. It’s enough
to recall a few examples: classical mechanics, electrodynamics, quantum mechanics, hy-
drodynamics and general relativity. However, when applying the classical methods and
technics of symplectic geometry to PDEs, one faces significant difficulties, both analytical
and conceptual.

Part of the problem is that symplectic forms that arise in many applications are weak
symplectic forms on infinite dimensional manifolds. More importantly, often integral curves
of PDEs are not differentiable in time in the function spaces one would normally use; in the
linear case, this corresponds to the fact that the operators involved are unbounded. Stock
examples include the Euler and Klein-Gordon equations. When dealing with such systems
one has to pay careful attention to domains of definitions as many standard formulas become
only formal relationships. Their justification is often cumbersome and requires some ad hoc
methods.

The goal of this paper is to contribute to the development of techniques that are useful
for the treatment of nonlinear PDEs with non-differentiable (in time) solutions and build a
framework that allows a systematic and rigorous study of such systems and is applicable to
the broad range of physical phenomena. Previous work in this vein is Chernoff and Marsden
[1974].

Specifically, this article is devoted to the study of the Euler equations for an ideal fluid
on the compact manifold, the example that provides the main inspiration and motivation.
The goal is to understand in what exact sense (if any) the flow generated by Euler’s equation
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consists of Poisson maps. Since the classic work of Arnold Arnold [1966], it has been known
that formally the Euler equation could be viewed as a Hamiltonian system. (Expositions of
this may be found in Arnold and Khesin [1998] and Marsden and Ratiu [1999]).

The work of Ebin and Marsden [1970] showed the remarkable fact that in appropriate
function spaces, the flow of the Euler equations in Lagrangian representation (in Sobolev
function spaces Hs for s > (n/2) + 1) is given by a smooth vector field and hence all
the difficulties are resolved in that context. This work also shows that one can perform a
reduction (Euler-Poincaré reduction) to Eulerian representation to rigorously derive that the
solutions obtained this way satisfy the Euler equations (taking into account one derivative
loss due to the reduction procedure).

¿From the work of Ebin and Marsden [1970], the reduced flow of the Euler equations in
Hs are known to form a continuous flow in Hs (both in time and in the initial velocity field),
and regarded as maps from Hs to Hs−1, they are C1. Another remarkable property of the
solutions also follows from this same work—namely that the individual particle trajectories
are C∞ in time, a fact not so easy to see directly in Eulerian representation (see Kato
[2000]).

While a version of the symplectic nature of the flow of the Euler equations follows directly
from the results in Ebin and Marsden [1970] (taking into account the loss of one derivative),
it is not so clear that there is a well defined Poisson sense for the results. In fact, the
work of Lewis, Marsden, Montgomery, and Ratiu [1986] (and many subsequent papers by
other authors) shows that in the Poisson context, this derivative loss is a nontrivial issue in
defining a good sense in which one has a Poisson manifold and in which the Euler equations
then define a Hamiltonian system in the Poisson sense. The main purposes of this paper
is to fill this gap by means of a nonsmooth Lie-Poisson reduction procedure on appropriate
classes of functions.

This article has the following structure. In §2 we give important background infor-
mation on Euler equation and manifolds of diffeomorphisms. Then, we recall the basic
ideas of Poisson reduction in §3. Our results are presented in next two sections. In §4 we
prove that tangent bundle of a weak Riemannian manifold carries a Poisson structure in an
appropriate sense, provided that the manifold possesses a smooth Riemannian connection.
The later requirement is fulfilled on the groups of diffeomorphisms according to the work of
Ebin and Marsden [1970]. In §5 we utilize this result to show that the flow of Euler equation
is Poisson in an appropriate sense. We conclude with short discussion of presented results
in §6.

2. Solutions of the Euler Equation

In this section we present some classical results concerning the Euler equation that
motivated our study. The notation and exposition follows Ebin and Marsden [1970].

The Euler equations on compact manifold are traditionally formulated in the following
way. Let M be a compact Riemannian n-manifold possibly with boundary ∂M . Find a
time dependent vector field u, (which has an associated flow denoted ηt) such that

(1) u0 is a given initial condition with div u0 = 0
(2) The Euler equations hold:

(2.1)
∂ut
∂t

+ ∇ut
ut = − gradpt

for some scalar function pt : M → R (the pressure),
(3) div ut = 0, and
(4) u is parallel to ∂M .

It is standard that above equation can be formally rewritten as an ODE on the space of
divergence free vector fields with a derivative loss. But it was discovered by Ebin and Marsden
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[1970] that this is literally true with no derivative loss in Lagrangian representation. We
recall how this proceeds. Let µ be a volume form on the manifold M . Let Hs(M,N) denote
the space of mappings of Sobolev class s from an n-manifold M to a manifold N . For
s > n/2 + 1, let

Ds = {η ∈ Hs(M,M) | η is bijective and η−1 ∈ Hs(M,M)} and

Ds
µ = {η ∈ Ds | η∗µ = µ}.

Then both Ds,Ds
µ are smooth infinite dimensional manifolds and topological groups, more-

over Ds
µ is a closed submanifold and a subgroup of Ds.

Let τ̃ : TDs
µ → Ds

µ and τ : TM → M be the canonical projections and let e : M →
M, e(m) = m be the identity element of the groups Ds

µ,D
s. Then

TηD
s = {u ∈ Hs(M,TM) | τ ◦ u = η and u‖∂M},

TeD
s
µ = X

s
div(M) = {u ∈ Hs(M,TM) | τ ◦ u = e, div u = 0 and u‖∂M},

where X
s
div(M) denotes the space of Hs divergence free vector fields on M that are parallel

to the boundary.
A given Riemannian metric on M induces a right invariant weak Riemannian metric on

Ds
µ given by

(2.2) 〈X,Y 〉η =

∫

M

〈X(m), Y (m)〉η(m) µ(m)

for X,Y ∈ TηD
s
µ where scalar product under the integral sign is taken in M .

As was shown in Ebin and Marsden [1970], Ds
µ possesses a smooth Riemannian connec-

tion and, as a consequence, a smooth spray, which we will denote S.

Proposition 2.1. (Ebin and Marsden [1970]) For s > (n/2)+1, the weak Riemannian
metric (2.2) has a C∞ spray S : TDs

µ → TTDs
µ. Let Ft : TDs

µ → TDs
µ be the (local, C∞)

flow of S. Let vt = Ft(u0) (the material velocity field) and ηt = τ̃ (vt) (the particle position
field). Then the solution of the Euler equation with initial condition u(0) = u0 is given by

ut = vt ◦ η
−1
t .

¿From the properties of the diffeomorphism group, one sees that this result shows that
the Euler equations (2.1) are well-posed in Hs in Eulerian representation.

3. Motivation: The Poisson Reduction Theorem

First, recall the following basic and simple result about Poisson reduction (see, for
example, Marsden and Ratiu [1999]).

Suppose that G is a Lie group that acts on a Poisson manifold P and that for each
g ∈ G the action map Φg : P → P is a Poisson map. Suppose that the quotient P/G is a
smooth manifold and the projection π : P → P/G is a submersion. Then, there is a unique
Poisson structure {·, ·} on P/G such that π is a Poisson map. It is given by

{f, k} ◦ π = {f ◦ π, k ◦ π}P ∀k, f ∈ F(P/G),

where {·, ·}P is a Poisson bracket in P and F(P/G) is a set of smooth functions on P/G.
If XH is a Hamiltonian vector field for a G-invariant Hamiltonian H ∈ F(P ), then π

also induces reduction of dynamics. There is a function h ∈ F(P/G) such that H = h ◦ π.
Since π is a Poisson map it transforms XH on P to Xh on P/G, that is, Tπ ◦XH = Xh ◦π.
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Denoting the flow of XH by Ft and the flow of Xh by F̃t we obtain commutative diagram

P
Ft−−−−→ P

yπ
yπ

P/G
F̃t−−−−→ P/G

Our strategy is to apply the above procedure to the context of fluids. To do so, define
the map π : TDs

µ → X
s
div via

π(η, v) = v ◦ η−1,

where η ∈ Ds
µ; (η, v) ∈ TηD

s
µ; τ ◦ v = η. Let F̃t : X

s
div → X

s
div be given by

F̃t(v) = π ◦ Ft(v)

for v ∈ X
s
div. By Proposition 2.1, F̃t is the flow of Euler equation on X

s
div, i.e. ut = F̃t(u0)

satisfies the Euler equations (2.1).
It is clear from the preceding developments that Ft (as a flow of a spray) is a flow of

Hamiltonian vector field on TDs
µ. The following commutative diagram

TDs
µ

Ft−−−−→ TDs
µyπ

yπ

TeD
s
µ

F̃t−−−−→ TeD
s
µ

suggests that the flow of Euler equation itself, which is obtained from Ft via Poisson reduc-
tion, should be a Hamiltonian flow in the sense of Poisson manifolds and this is certainly
formally true (see, for instance Lewis, Marsden, Montgomery, and Ratiu [1986] for both the
case considered here as well as the case of free boundary problems).

However, as noted in this reference and elsewhere, there are difficulties in finding the
right class of functions so that one gets a Poisson structure in a precise sense. To justify
the formal insight in precise function spaces, one has to overcome two hurdles.

The first hurdle is that TDs
µ is only a weak symplectic manifold, and therefore does not

necessary carry a Poisson bracket in any obvious way without special ad hoc hypotheses such
as “the needed functional derivatives exist” which have long been recognized as awkward at
best.

The second hurdle is that TDs
µ is not a Lie group in the usual sense (left multiplication

is not smooth), and π is not a smooth map (inversion in Ds
µ is not smooth). Therefore,

the well developed theory of Poisson and Lie-Poisson reduction is not directly applicable in
this case, even though the loss of derivatives one suffers from these transformations is well
understood.

The main point of this paper is to resolve these difficulties in what we believe is a
satisfactory way. We do this in the following sections.

4. Poisson Structures on Weak Riemannian Manifolds

Let Q be a weak Riemannian manifold modelled on Banach space E with metric 〈·, ·〉.
Then TQ possesses a canonical weak symplectic form that is given in charts by the following
standard formula (see, e.g., Marsden and Ratiu [1999]):

Ω(η, e)((e1, e2), (e3, e4)) = 〈e1, e4〉η − 〈e2, e3〉η +Dη 〈e, e1〉η · e3 −Dη 〈e, e3〉η · e1,

where η ∈ Q, e, e1, e2, e3, e4 ∈ E.
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For a smooth function f : M → R on a (strong) symplectic manifold (M,Ω1), let Xf

denote its Hamiltonian vector field. Then

(4.1) {f, g} = Ω1(Xf , Xg)

makes (M, {·, ·}) into a Poisson manifold.
Since Ω is weak, formula 4.1 does not automatically define Poisson bracket {f, g} for

arbitrary functions f, g ∈ F(TQ) since Xf ,Xg may fail to exist and even if they do, one
has to make additional hypotheses to obtain the Jacobi identity.

However, under the two additional hypothesis:

(1) Q has smooth Riemannian connection;
(2) The inclusion TηQ→ T ∗

ηQ (the literal dual space) via

v(u) = 〈v, u〉η ∀u ∈ TηQ

is dense,

it will be shown that one can define a Poisson bracket on the subalgebra

K(TQ) =

{
f ∈ TQ

∣∣∣∣
∂f

∂η
,
∂f

∂v
∈ C∞(TQ, TQ)

}

of F(TQ). Here ∂f
∂η
, ∂f
∂v

are covariant partial derivatives on TQ, the definition of which

will be given below.
This newly defined bracket makes K(TQ) into a Lie algebra and retains essential dy-

namical properties of a “true” Poisson bracket, including the Jacobi identity and the fact
that flows of Hamiltonian vector fields are Poisson maps and, of course, energy is conserved.
Moreover, we will show that the bracket indeed is related to the canonical weak symplectic
form in the way that one would expect. In the following we assume that conditions (1) and
(2) are satisfied.

Covariant Partial Derivatives. First, we introduce covariant partial derivatives on TQ.
Let τ : TQ→ Q and τ1 : TTQ→ TQ be natural projections, Γ : Q ⊃ U ×E ×E → E be a
Christoffel map and K : TTQ→ TQ be a connector map. In local representation,

K(η, v, u, w) = (η, w + Γ(η)(v, u)).

Define Θ : TTQ→ TQ
⊕
TQ

⊕
TQ by

Θ = (τ1, T τ,K).

It is standard that Θ is a diffeomorphism (see Eliasson [1967]). For H : TQ→ R we set

∂H

∂η
(V ) ·W = dH · Θ−1(V,W, 0) ∀V,W ∈ TqQ,

∂H

∂v
(V ) ·W = dH · Θ−1(V, 0,W ) ∀V,W ∈ TqQ.

In local representation, this reads

∂H

∂η
(η, v) · (η, u) = dH · Θ−1((η, v), (η, u), (η, 0))

= dH · (η, v, u,−Γ(η)(v, u)),

and

∂H

∂v
(η, v) · (η, w) = dH · Θ−1((η, v), (η, 0), (η, w))

= dH · (η, v, 0, w)).
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Similarly, for φ : TQ→ TQ1 we define ∂φ
∂η
, ∂φ
∂v

: TQ→ L(TQ, TTQ1) (here L(TQ, TTQ1) is

the space of linear maps TQ→ TTQ1) by

∂φ

∂η
(V ) ·W = Tφ · Θ−1(V,W, 0) ∀V,W ∈ TqQ,

∂φ

∂v
(V ) ·W = Tφ · Θ−1(V, 0,W ) ∀V,W ∈ TqQ.

The following Lemmas are readily verified.

Lemma 4.1. Let X be a vector field on TQ, Y be a vector field on TQ1, φ : TQ1 → TQ.
Then

dH ·X =
∂H

∂η
· Tτ(X) +

∂H

∂v
·K(X),

∂(H ◦ φ)

∂η
· Y = dH ·

(
∂φ

∂η
· Y

)
,

∂(H ◦ φ)

∂v
· Y = dH ·

(
∂φ

∂v
· Y

)
.

Lemma 4.2. For H ∈ C1(TQ,R), we have

∂H

∂η
(η, v) · (η, u) =

d

dt

∣∣∣∣
t=0

H(ηt, vt),

∂H

∂v
(η, v) · (η, w) =

d

dt

∣∣∣∣
t=0

H(η, v + tw),

where (ηt, vt) is the parallel translation of (η, v) along the curve ηt with η′t(0) = u.

Let

Kk(TQ) =

{
f ∈ Ck+1(TQ,R)

∣∣∣∣
∂f

∂η
,
∂f

∂v
∈ Ck(TQ, TQ)

}
.

Now we can define the bracket {·, ·} via

(4.2) {f, g}(η, v) =

〈
∂f

∂η
(η, v),

∂g

∂v
v(η, v)

〉

η

−

〈
∂f

∂v
(η, v),

∂g

∂η
(η, v)

〉

η

.

Preliminaries on the Poisson Structure. The following is the first main result.

Theorem 4.3. The bracket (4.2) maps Kk×Km into Kmin(k,m)−1 and also maps K×K
into K.

Remark. By definition of the covariant partial derivatives, ∂h
∂η
, ∂h
∂v

: TηQ → T ∗

ηQ for

h : TQ → R. The theorem asserts that if h = {f, g} then, in fact, ∂h
∂η

(η, v), ∂h
∂v

(η, v) ∈ TQ,

i.e. there are Z(η, v), Y (η, v) ∈ TηQ such that

∂h

∂η
(η, v) ·X = 〈Z,X〉 ,

∂h

∂v
(η, v) ·X = 〈Z,X〉 ∀X ∈ TηQ

and the maps (η, v) → Z(η, v), Y (η, v) have appropriate smoothness.
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Proof. Define operator D

dt
= K ◦ d

dt
. This definition extends the usual notion of co-

variant derivative from vector fields along curves on Q to arbitrary curves on TQ. Let
f, g : TQ→ R and h = {f, g}. Choosing (ηt, vt) as in Lemma 4.2, we obtain

∂h

∂η
(η, v) · (η, u)

=
d

dt

∣∣∣∣
t=0

〈
∂f

∂η
(ηt, vt),

∂g

∂v
(ηt, vt)

〉

ηt

−
d

dt

∣∣∣∣
t=0

〈
∂f

∂v
(ηt, vt),

∂g

∂η
(ηt, vt)

〉

ηt

=

〈
D

dt

∣∣∣∣
t=0

∂f

∂η
(ηt, vt),

∂g

∂v
(η, v)

〉

η

+

〈
∂f

∂η
(η, v),

D

dt

∣∣∣∣
t=0

∂g

∂v
(ηt, vt)

〉

η

−

〈
D

dt

∣∣∣∣
t=0

∂f

∂v
(ηt, vt),

∂g

∂η
(η, v)

〉

η

−

〈
∂f

∂v
(η, v),

D

dt

∣∣∣∣
t=0

∂g

∂η
(ηt, vt)

〉

η

=

〈
K

∂

∂η

∂f

∂η
(η, v) · (η, u),

∂g

∂v
(η, v)

〉

η

+

〈
K

∂

∂η

∂g

∂v
(η, v) · (η, u),

∂f

∂η
(η, v)

〉

η

−

〈
K

∂

∂η

∂g

∂η
(η, v) · (η, u),

∂f

∂v
(η, v)

〉

η

−

〈
K

∂

∂η

∂f

∂v
(η, v) · (η, u),

∂g

∂η
(η, v)

〉

η

.

To proceed further, we need to calculate the quantity
〈
K

∂

∂η

∂f

∂η
(η, v) · (η, u), (η, w)

〉

η

,

where (η, w) is an arbitrary element of TηQ. Let (ηts, vts) be a parametric surface in TQ
with the following properties:

(1) d
dt

∣∣
t=0

ηt0 = u, (η00, v00) = (η, v);

(2) (ηt0, vt0) is a parallel translation of (η, v);
(3) (ηt0, wt) is a parallel translation of (η00, w0) = (η, w);
(4) d

ds

∣∣
s=0

ηts = wt for all s;

(5) (ηts, vts) is a parallel translation of (ηt0, vt0) for all s.

Then, keeping in mind Lemmas 4.1, 4.2 and symmetry of Riemannian connection, one
checks the following:

〈
K

∂

∂η

∂f

∂η
(η, v) · (η, u), (η, w)

〉

η

=

〈
D

dt

∣∣∣∣
t=0

∂f

∂η
(ηt0, vt0), (η, w)

〉

η

=
d

dt t=0

〈
∂f

∂η
(ηt0, vt0), (ηt0, wt)

〉

ηt

=
d

dt

∣∣∣∣
t=0

d

ds s=0
f(ηts, vts) =

d

ds s=0

d

dt t=0
f(ηts, vts) =

d

ds s=0
df ·

d

dt

∣∣∣∣
t=0

(ηts, vts)

=
d

ds

∣∣∣∣
s=0

[
∂f

∂v
(η0s, v0s) ·K

d

dt t=0
(ηts, vts) +

∂f

∂η
(η0s, v0s) · Tτ

d

dt t=0
(ηts, vts)

]

=
d

ds

∣∣∣∣
s=0

[〈
∂f

∂v
(η0s, v0s),

D

dt t=0
(ηts, vts)

〉

η0s

+

〈
∂f

∂η
(η0s, v0s),

d

dt t=0
ηts

〉

η0s

]

=

〈
D

ds s=0

∂f

∂v
(η0s, v0s),

D

dt t=0
(ηt0, vt0)

〉

η

+

〈
∂f

∂v
(η, v),

D

ds s=0

D

dt

∣∣∣∣
t=0

(ηts, vts)

〉

η

+

〈
D

ds s=0

∂f

∂η
(η0s, v0s),

d

dt t=0
ηt0

〉

η

+

〈
∂f

∂η
(η, v),

D

ds

∣∣∣∣
s=0

d

dt t=0
ηts

〉

η

.
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Lemma 4.4. (see Do Carmo [1992]). Let R denote the Ricci curvature tensor. Then

D

ds

D

dt
(ηts, vts) =

D

dt

D

ds
(ηts, vts) + R(

d

dt
ηts,

d

ds
ηts)(ηts, vts),

D

ds

d

dt
ηts =

D

dt

d

ds
ηts.

By construction of (ηts, vts), we have D

dt

∣∣
t=0

(ηt0, vt0) = 0. Applying lemma 4.4 we
obtain

D

ds s=0

D

dt

∣∣∣∣
t=0

(ηts, vts) = R

(
d

dt

∣∣∣∣
t=0

ηt0,
d

ds

∣∣∣∣
s=0

η0s

)
(η, v) = R((η, u), (η, w))(η, v),

D

ds s=0

d

dt

∣∣∣∣
t=0

ηts =
D

dt t=0
(ηt0, wt) = 0.

Thus,
〈
K

∂

∂η

∂f

∂η
(η, v) · (η, u), (η, w)

〉

η

= 0 +

〈
∂f

∂v
(η, v),R((η, u), (η, w))(η, v)

〉

η

+

〈
K

∂

∂η

∂f

∂η
(η, v) · (η, w), (η, u)

〉

η

+ 0

=

〈
K

∂

∂η

∂f

∂η
(η, v) · (η, w), (η, u)

〉

η

−

〈
R((η, v),

∂f

∂v
(η, v))(η, w), (η, u)

〉

η

by Bianchi’s identity. Similar calculations yield
〈
K

∂

∂v

∂f

∂v
(η, v) · (η, u), (η, w)

〉

η

=

〈
K

∂

∂v

∂f

∂v
(η, v) · (η, w), (η, u)

〉

η

,

〈
K

∂

∂η

∂f

∂v
(η, v) · (η, u), (η, w)

〉

η

=

〈
K

∂

∂v

∂f

∂η
(η, v) · (η, w), (η, u)

〉

η

.

Substituting this into the formulas for ∂h
∂η

and using Bianchi’s identity once again, we
get

∂h

∂η
(η, v) · (η, u) =

〈
K

∂

∂η

∂f

∂η
(η, v) ·

∂g

∂v
(η, v) +K

∂

∂v

∂g

∂η
(η, v) ·

∂f

∂η
(η, v), (η, u)

〉

η

−

〈
K

∂

∂η

∂g

∂η
(η, v) ·

∂f

∂v
(η, v) +K

∂

∂v

∂f

∂η
(η, v) ·

∂g

∂η
(η, v), (η, u)

〉

η

+

〈
R(

∂f

∂v
,
∂g

∂η
) · (η, v), (η, u)

〉

η

.

Similarly,

∂h

∂v
(η, v) · (η, u) =

〈
K

∂

∂η

∂f

∂v
(η, v) ·

∂g

∂v
(η, v) +K

∂

∂v

∂g

∂v
(η, v) ·

∂f

∂η
(η, v), (η, u)

〉

η

−

〈
K

∂

∂η

∂g

∂v
(η, v) ·

∂f

∂v
(η, v) +K

∂

∂v

∂f

∂v
(η, v) ·

∂g

∂η
(η, v), (η, u)

〉

η

.

As K is smooth, the statement of the theorem follows. �
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Hamiltonian Vector Fields. The smoothness structure of Hamiltonian vector fields is
given as follows.

Proposition 4.5. The vector field XH is a Ck Hamiltonian vector field (with respect to
canonical weak symplectic form) on TQ of class Ck if and only if H ∈ Kk(TQ). Moreover,

(4.3) XH(η, v) =

(
η, v,

∂H

∂v
,−

∂H

∂η
− Γ(η)(v,

∂H

∂v
)

)
.

Proof. In local representation, we have

(4.4) Ω(η, e)((e1, e2), (e3, e4)) = 〈e1, e4〉η −〈e2, e3〉η + 〈Γ(η)(e, e3), e1〉η−〈Γ(η)(e, e1), e3〉η .

Indeed,
Dη 〈e, e1〉 · e3 = 〈Γ(η)(e3, e1), e〉η + 〈Γ(η)(e3, e), e1〉η .

Substituting this expression into the formula for Ω and using the symmetry of Γ we obtain
the desired result. �

Let XH = (η, v, e1, e2) be a Hamiltonian vector field, Z = (η, v, u, w) ∈ T(η,v)TQ be
arbitrary. Then

Ω(XH , Z) = 〈w + Γ(η)(v, u), e1〉 − 〈e2 + Γ(η)(v, e1), u〉 .

On the other hand, by lemma 4.1

Ω(XH , Z) = dH · Z =
∂H

∂η
· TτZ +

∂H

∂v
KZ =

∂H

∂η
· (η, u) +

∂H

∂v
· (η, w + Γ(u, v)).

Setting u = 0 and comparing the above expressions we see that ∂H
∂v

(η, v) · (η, w) =
〈e1, w〉 ∀w ∈ E. Similarly, setting w = 0 yields

∂H

∂η
(η, v) · (η, u) = −〈e2 + Γ(η)(v, e1), u〉 ∀u ∈ E.

Thus, H ∈ Kk.
Conversely, let H ∈ Kk. Defining a vector field XH by formula 4.3 and substituting

into formula 4.4 one obtains for arbitrary vector Z ∈ T(η,v)TQ

Ω(XH , Z) =

〈
∂H

∂v
,KZ

〉
+

〈
∂H

∂η
, T τZ

〉
= dH · Z. �

Proposition 4.6. Let f, g ∈ Kk be arbitrary. Then

{f, g} = Ω(Xf ,Xg).

Proof. By Proposition 4.5, the vector fields Xf ,Xg are defined whenever {f, g} is.
Then

Ω(Xf ,Xg) = df · Xg =
∂f

∂η
· TτXg +

∂f

∂v
KXg =

∂f

∂η
·
∂g

∂v
−
∂g

∂η
·
∂f

∂v
= {f, g}. �

Theorem 4.7. The bracket {·, ·} is antisymmetric, bilinear, derivation on each factor
and makes K into a Lie-algebra.

Proof. Antisymmetry, linearity and property of being derivation follows directly from
the definition of the bracket. By Theorem 4.3 {·, ·} leaves K invariant. Then, Jacobi
identity follows from Proposition 4.6 in the usual way, for example as in Marsden and Ratiu
[1999]. �

Now, TQ has both symplectic and Poisson structures, and therefore two generally dif-
ferent definitions of Hamiltonian vector fields. We need to check that in our case these
coincide. To do so, let XP

f temporarily denote the Hamiltonian vector field with respect to
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Poisson structure {·, ·} and Xf denotes the Hamiltonian vector field with respect to canon-
ical symplectic form corresponding to function the f . Recall, that XP

f is defined as a vector
field such that

XP
f [h] = {h, f} ∀h ∈ K.

Thus, for all h ∈ K,

XP
f [h] =

∂h

∂η
·
∂f

∂v
−
∂h

∂v
·
∂f

∂η

= dh · XP
f =

∂h

∂η
· TτXP

f +
∂h

∂v
·KXP

f

and therefore, TτXP
f = ∂f

∂v
and KXP

f = −∂f
∂η

. Comparing this with formula 4.3, we see

that Xf ≡ XP
f . Finally, from the coordinate expression, it is easy to see that Xf is a well

defined Ck vector field for any f ∈ Kk.
Previously we established that classes Kk are preserved under bracketing. Unfortu-

nately, for f ∈ Kk and a diffeomorphism ψ : TQ→ TQ the composition f ◦ψ does not have
to be in any class Km. One can, however, compose with symplectic diffeomorphisms.

Proposition 4.8. Let ψ be a symplectic Ck diffeomorphism, f ∈ Kk. Then f ◦ψ ∈ Kk.

Proof. We have

Xf◦ψ = ψ∗(Xf ),

and so by Proposition 4.5, f ◦ ψ ∈ Kk. �

Proposition 4.9. Let Ft be a flow of a smooth Hamiltonian vector field on TQ. Then
Ft is a Poisson, i.e. for all f, g ∈ K

{f ◦ Ft, g ◦ Ft} = {f, g} ◦ Ft.

Proof. Ft is symplectic with respect to the weak Riemannian form. Since Ft preserves
class K, the statement follows from Jacobi identity by the usual argument. �

5. Geometric Properties of the Flow of the Euler Equations

As we stated earlier, in Ebin and Marsden [1970] it is shown that Ds
µ carries a smooth

Riemannian connection, and therefore the results of the previous section apply. Therefore,
by those results, the space TDs

µ carries a Poisson structure (in the precise sense given there)

which we denote {·, ·}. Let K, K̂, K̃ stand for the corresponding connector maps on the

underlying manifold M , on Ds and Ds
µ respectively, while ∇, ∇̂, ∇̃ are the corresponding

connections and Γ, Γ̂, Γ̃ are the corresponding Christoffel maps. In the following 〈·, ·〉 denotes
the Riemannian metric on M , Ds, Ds

µ and an induced scalar product on X
s
div = TeD

s
µ

depending on the context. The relationship between these metrics is given by 2.2.
Recall the notation from §3. Namely, let Ft be the flow of the spray on TDs

µ, F̃t denote

the flow of Euler equation on X
s
div and π : TDs

µ → X
s
div, π(η, v) = v ◦ η−1. Recall also that

we have the commutative diagram

Proposition 5.1. The following diagram is commutative:

TDs
µ

Ft−−−−→ TDs
µyπ

yπ

X
s
div

F̃t−−−−→ X
s
div

Now we prepare and recall from Ebin and Marsden [1970] some useful Lemmas.
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Lemma 5.2. Let ξ ∈ Ds
µ. Define Rξ : Ds

µ → Ds
µ via Rξ(η) = η ◦ ξ, ∀ξ. Then

TRξ ◦ Ft(v) = Ft ◦ TRξ(v) ∀v ∈ TDs
µ.

Proof. Indeed, notice that

d

dt
(ηt ◦ ξ, η̇t ◦ ξ) = (ηt ◦ ξ, η̇t ◦ ξ, η̇t ◦ ξ, η̈t ◦ ξ)

= TTRξ(ηt, η̇t, η̇t, η̈t) = TTRξS(Ft(v))

= S(TRξFt(v)) = S(ηt ◦ ξ, η̇t ◦ ξ)

by right invariance of the spray. Thus, TRξFt(v) = (ηt ◦ ξ, η̇t ◦ ξ) is an integral curve of S.
Since TRξF0(v) = TRξ(v), the statement of the Lemma follows from uniqueness of integral
curves. �

Recall that by definition, F̃t(V ) = π ◦ Ft(V ) for all V ∈ TeD
s
µ = X

s
div. Let V = (η, v) ∈

TDs
µ. Then, using the preceding Lemma, we obtain

F̃t ◦ π(V ) = π ◦ Ft(π(V ))

= π ◦ Ft ◦ TRη−1(V ) = π ◦ TRη−1 ◦ Ft(V ).

Notice, that π ◦ TRξ = π for any ξ ∈ Ds
µ. Indeed,

π ◦ TRξ(η, v) = π(η ◦ ξ, v ◦ ξ) = (e, v ◦ ξ ◦ (η ◦ ξ)−1)

= (e, v ◦ ξ ◦ ξ−1 ◦ η−1) = (e, v ◦ η−1) = π(η, v).

Thus π ◦ TRη−1 = π and the Proposition is proved. �

A Poisson Structure on the Lie Algebra. Now, we construct a Poisson bracket {·, ·}+ on
X
s
div so that π is a Poisson map. For f, g : X

s
div → R such that df, dg : X

s
div → X

r
div define

{f, g}+ (v) =
〈
dg(v),∇df(v)v

〉
−

〈
df(v),∇dg(v)v

〉
.

As in §4, define

Kk,s = {f ∈ Ck+1(Xsdiv,R) | df ∈ Ck(Xsdiv,X
s
div)}

and

Kk,sr,t = {f ∈ Ck(Xsdiv,R) | df ∈ Ck(Xrdiv,X
t
div)}.

Theorem 5.3. Let s > n/2+ 1. Then {·, ·}+ is a bilinear map Kk,s×Kk,s → Kk,ss+1,s−1

and a derivation on each factor. Moreover, it satisfies Jacobi identity on X
s+1
div , that is for

all f, g, h ∈ Kk,s, and v ∈ X
s+1
div ,

O(v) :=
{
f, {g, h}+

}
+

(v) +
{
h, {f, g}+

}
+

(v) +
{
g, {h, f}+

}
+

(v) = 0.

Proof. Let f, g ∈ Kk,s. Recall, that for r > n/2, Hr(M,R) is an algebra. Thus,
(u, v) → ∇uv is a bilinear bounded map X

s
div × X

s
div → X

s−1
div (and X

s
div × X

s+1
div → X

s
div),

hence smooth. This implies that

z(v) = {f, g}+ (v) ∈ Ck(Xsdiv,R).

Bilinearity and derivation property of {·, ·}+ trivially follows from properties of d,∇
and 〈·, ·〉.
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Now we calculate dz. Let v, u ∈ X
s+1
div . Since z ∈ Ck(Xsdiv,R), the Fréchet derivative of

z exists and coincides with its Gateaux derivative. Thus, by bilinearity of scalar product
and ∇,

dz(v) · u =
d

dt

∣∣∣∣
t=0

z(v + tu)

=
〈
Ddg(v) · u,∇df(v)v

〉
+

〈
dg(v),∇Ddf(v)·uv

〉

+
〈
dg(v),∇df(v)u

〉
−

〈
Ddf(v) · u,∇dg(v)v

〉

−
〈
df(v),∇Ddg(v)·uv

〉
−

〈
df(v),∇dg(v)u

〉

Lemma 5.4. Let X ∈ X
s
div, s > n/2 + 1, and let Y,W be Hs vector fields on M. Then

〈Y,∇XW 〉 = −〈∇XY,W 〉 .

Proof. By the Sobolev theorems, X is a C1 vector field on M . By properties of the
Riemannian connection, for all m ∈M

〈Y,∇XW 〉m = −〈∇XY,W 〉m +X 〈Y,W 〉m .

Thus,

〈Y,∇XW 〉 = −〈∇XY,W 〉 +

∫

M

X 〈Y,W 〉m µ.

Let Gt be a flow of X on M . Since X is divergence free, µ is Gt invariant, i.e. G∗

t (µ) = µ,
where G∗

t denotes a pullback by Gt. Then
∫

M

X 〈Y,W 〉m =

∫

M

d

dt t=0
〈Y,W 〉Gt(m) µ

=
d

dt t=0

∫

M

〈Y,W 〉Gt(m)G
∗

t (µ)

=
d

dt t=0

∫

M

G∗

t (〈Y,W 〉m µ)

=
d

dt t=0

∫

M

〈Y,W 〉m µ = 0. �

Lemma 5.5. Let df ∈ Ck(Xsdiv,X
t
div), s, t ≥ 0. Then for all u, v, w ∈ X

s
div

〈Ddf(v) · u,w〉 = 〈Ddf(v) · w, u〉 .

Proof. We compute as follows:

〈Ddf(v) · u,w〉 =
d

dt t=0
〈df(v + tu), w〉

=
d

dt t=0

d

ds s=0
f(v + tu+ sw)

=
d

ds s=0

d

dt t=0
f(v + tu+ sw)

= 〈Ddf(v) · w, u〉 . �

Lemma 5.6. (The Hodge Decomposition; see Ebin and Marsden [1970]). Let X be an
Hs vector field on M , s ≥ 0. There is an Hs+1 function θ and an Hs vector field Y with
Y divergence free, such that

X = grad θ + Y

Further, the projection maps

Pe(X) = Y

Q(X) = grad θ
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are continuous linear maps on Hs(M,TM). The decomposition is orthogonal in L2 sense,
that is for all Z ∈ X

s
div

(5.1) 〈Z,X〉 = 〈Z, Y 〉 = 〈Z, PeX〉

Lemma 5.7. There is a bilinear continuous map B : X
s
div×X

s+1
div → X

s
div (s > n/2) such

that for all Z ∈ X
s
div,W ∈ Xs+1, Y ∈ C(M,TM)

〈Z,∇YW 〉 = 〈B(Z,W ), Y 〉

Proof. Fix coordinate system {xi} on M and let gij denote components of metric
tensor, Zi denote components of vector field Z in the chosen system. Let gijg

jk = δki (as
usually, the summation on repeated indexes is understood). Then

〈Z,∇YW 〉 =

∫

M

gijZ
i

(
∂W j

∂xk
Y k + ΓjkrY

kW r

)
µ

=

∫

M

gsmg
mkgijZ

i

(
∂W j

∂xk
+ ΓjkrW

r

)
Y sµ

= 〈V, Y 〉 ,

where

V m = gmkgijZ
i

(
∂W j

∂xk
+ ΓjkrW

r

)
.

Since Hs is an algebra for s > n/2 it follows that V is an Hs vector field. Now we set

B(Z,W ) = PeV

and use 5.1. �

By Lemmata 5.4-5.7, we have

dz(v) · u =
〈
Ddg(v) · Pe∇df(v)v, u

〉
+ 〈Ddf(v) ·B(dg(v), v), u〉 +

〈
∇df(v)dg(v), u

〉

−
〈
Ddf(v) · Pe∇dg(v)v, u

〉
+ 〈Ddg(v) · B(df(v), v), u〉 +

〈
∇dg(v)df(v), u

〉
.

Thus for any v ∈ X
s+1
div ,

d {f, g}+ (v) = Pe[∇dg(v)df(v) −∇df(v)dg(v)]

+Ddf(v) · B(dg(v), v) −Ddg(v) ·B(df(v), v)

+Ddg(v) · Pe∇df(v)v −Ddf(v) · Pe∇dg(v)v,

and hence d {f, g}+ ∈ Ck(Xs+1
div ,X

s−1
div ) and {f, g}+ ∈ Kk,ss+1,s−1.

Remark. If f, g ∈ Kk,s ∩ Kk,s+1, then v → Pe∇df(v)dg(v), v → Pe∇dg(v)df(v) are Ck as

maps X
s+1
div → X

s
div, hence {f, g}+ ∈ Kk,ss+1,s.

Now we prove the Jacobi identity. To simplify notation, we set

Bf (v) = B(df(v), v), ∇f (v) = Pe∇df(v)v.
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Moreover, since in the following argument all functions are evaluated at the same point
v ∈ X

s+1
div , we will write Bf ,∇f , df instead of Bf (v), etc. By Lemmata 5.5-5.7, we obtain

Ofgh(v) =
{
f, {g, h}+

}
+

(v)

=
〈
d {g, h}+ ,∇f

〉
−

〈
Bf , d {g, h}+

〉

=
〈
d {g, h}+ ,∇f −Bf

〉

= 〈Pe[∇dhdg −∇dgdh],∇f −Bf 〉 + 〈Ddg · (Bh −∇h),∇f −Bf 〉

+ 〈Ddh · (∇g −Bg),∇f −Bf 〉

= 〈[dh, dg],∇f −Bf 〉 +Dghf −Dhfg,

where Dghf = 〈Ddg · (Bh −∇h),∇f −Bf 〉 and [·, ·] is a Lie bracket of vector fields on M .
Notice that Lie bracket of divergence free vector fields is divergence free.

For s > n/2 + 2

〈[dh, dg],∇f −Bf 〉 = 〈[[dh(v), dg(v)] , df(v)] , v〉 .

Since terms of type Dfgh cancel out in the Jacobi cycle

O(v) = Ofgh(v) +Ohfg(v) +Oghf (v),

and so the Jacobi identity for bracket {·, ·}+ follows from the Jacobi identity for vector fields.

However, for n/2 + 1 < s ≤ n/2 + 2 Lie bracket of dh(v) and dg(v) is an X
s−1
div vector field,

hence merely continuous and therefore [[dh(v), dg(v)] , df(v)] may fail to exist. Therefore, in
this case more care is needed.

Let

Afgh = 〈df,∇dg∇dhv〉 ,

Cfgh =
〈
df,∇[dg,df ]v

〉

With this notation in mind, by Lemma 5.4 and the Hodge decomposition

〈[dh, dg],∇f 〉 = 〈∇dhdg −∇dgdh,∇dfv〉 = −Aghf +Ahgf .

Similarly, by definition of B

〈[dh, dg], Bf 〉 = Cfhg.

By a well known formula for Riemannian connection,

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z,

for all sufficiently smooth vector fields X,Y, Z. Thus,

Afgh −Afhg = 〈df,∇dg∇dhv −∇dh∇dfv〉 =
〈
df,∇[dg,dh]v

〉
= Cfgh.

Thus, {
f, {g, h}+

}
+

= −Aghf +Ahgf − Cfhg +Dghf −Dhfg,

and so
{
f, {g, h}+

}
+

+
{
h, {f, g}+

}
+

+
{
g, {h, f}+

}
+

= −Aghf +Ahgf − Cfhg +Dghf −Dhfg

−Afgh +Agfh − Chgf +Dfgh −Dghf

−Ahfg +Afhg − Cgfh +Dhfg −Dfgh

= (Agfh −Aghf − Cgfh) + (Afhg −Afgh − Cfhg)

+ (Ahgf −Ahfg − Chgf ) = 0. �
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Remark. If df(v), dh(v) ∈ X
s
div, s > n/2 + 1, then by Lemma 5.4

{f, h}+ (v) = 〈[dh(v), df(v)], v〉 .

This shows that bracket {·, ·}+ is naturally related to Lie-Poisson bracket on (Xsdiv)
∗.

Now we establish the relationship between Poisson bracket {·, ·}+ on X
s
div that we just

introduced and Poisson bracket {·, ·} on Ds
µ. For f, h : X

s
div → R define

fR = f ◦ π.

Theorem 5.8. Define the function spaces

Ckr (Xsdiv) =
{
f ∈ Ck(Xsdiv,R)

∣∣ df(v) ∈ X
r
div∀v ∈ X

s
div

}
,

and

Ckr (TDs
µ) =

{
f ∈ Ck(TDs

µ,R)

∣∣∣∣
∂f

∂η
(v),

∂f

∂v
(v) ∈ TDr

µ ∀v ∈ TDs
µ

}
.

Then fR ∈ Ckr (TDs+k
µ ) for f ∈ Ckr (Xsdiv) (r, s > n/2 + 1, k ≥ 1) and for all f, h ∈

C1
r (X

s), v ∈ X
s+1
div

{f, h}+ (v) = {fR, hR} (v) = {f ◦ π, g ◦ π} (v).

Proof. Without loss of generality s ≥ r. Since π is not even a C1 function Ds
µ → X

s
div

it is not obvious that {fR, hR} is defined. However, differentiating fR and hR as functions
TDs+k

µ → TDs
µ one obtains the required result.

Lemma 5.9. Under the assumptions of the Theorem,

∂fR
∂v

(η, v) = TRηdf(π(η, v)).

Proof. It is well known (Ebin and Marsden [1970]) that π ∈ Ck(TDs+k
µ , TDs

µ). Notice,

that for (η, u) ∈ TDs+k
µ ,

∂π

∂v
(η, v) · (η, u) =

d

dt t=0
π(η, v + tu) = (e, v ◦ η−1, 0, u ◦ η−1)

where time derivative is taken in TDs
µ. By lemma 4.1

∂fR
∂v

= df · K̃
∂π

∂v
.

Thus, by right invariance of the metric on Ds
µ

∂fR
∂v

(η, v) · (η, u) = df(v ◦ η−1) · K̃(e, v ◦ η−1, 0, u ◦ η−1)

= df(v ◦ η−1) · (u ◦ η−1)

=
〈
df(π(η, v), u ◦ η−1

〉
e

= 〈TRηdf(π(η, v)), (η, u)〉
η
. �

Lemma 5.10. Under the assumptions of the Theorem

∂fR
∂η

(η, v) · (η, u) = −
〈
df(v ◦ η−1), K̃[T (v ◦ η−1) ◦ (u ◦ η−1)]

〉
e

that is,
∂fR
∂η

(η, v) = −TRηBf (π(η, v)).
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Proof. First, we calculate ∂π
∂η

. Let (η, u) ∈ TDs+k
µ , (ηt, vt) be a parallel translation of

(η, v) with d
dt t=0

ηt = u. Recall that

d

dt
ηt

−1 = −Tηt
−1 ◦

d

dt
ηt ◦ ηt

−1.

Then, by Lemma 4.2,

∂π

∂η
(η, v) · (η, u) =

d

dt t=0
π(ηt, vt) =

d

dt t=0
vt ◦ ηt

−1

= Tv0 ◦
d

dt t=0
ηt

−1 +

(
d

dt t=0
vt

)
◦ η−1

0

= −Tv ◦ Tη−1 ◦ u ◦ η−1 −

(
d

dt t=0
vt

)
◦ η−1.

Since connection on Ds
µ is right invariant, i.e.,

K̃ ◦ TTRξ = TRξ ◦ K̃ ∀ξ ∈ Ds
µ

we have

K̃

[
d

dt t=0
vt ◦ η

−1

]
=

[
K̃
d

dt t=0
vt

]
◦ η−1 = 0.

By Lemma 4.1
∂fR
∂η

= df · K̃
∂π

∂η
.

Combining above equalities together, we get

∂fR
∂η

(η, v) · (η, u) = −df · K̃
[
T (v ◦ η−1) ◦ (u ◦ η−1)

]
.

= −
〈
df(v ◦ η−1), K̃[T (v ◦ η−1) ◦ (u ◦ η−1)]

〉
e
.

We claim that for all X,Y, Z ∈ X
s
div

(5.2)
〈
Z, K̃[TX ◦ Y ]

〉
= 〈Z,∇YX〉 .

Recall that by construction (see Ebin and Marsden [1970]),

K̃ = P ◦ K̂,

P = TRη ◦ Pe ◦ TR
−1
η ,

K̂(Y ) = K ◦ Y,

By a well known formula of differential geometry, we have

K ◦ TX ◦ Y = ∇YX,

and hence

K̃[TX ◦ Y ] = Pe[∇YX ].

By the Hodge decomposition
〈
Z, K̃[TX ◦ Y ]

〉
= 〈Z,∇YX〉 = 〈B(Z,X), Y 〉 .

By the above developments and right invariance of metric on Ds
µ, we have

∂fR
∂η

(η, v) · (η, u) = −
〈
Bf (v ◦ η

−1), u ◦ η−1
〉

= −〈TRηBf (π(η, v)), u〉
η
. �
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Calculating {fR, hR} at v ∈ X
s+1
div by Lemmata 5.9,5.10, we obtain

{fR, hR} (v) = −〈Bf (v), dh(v)〉 + 〈Bh(v), df(v)〉

= −
〈
df(v),∇dh(v)v

〉
+

〈
dh(v),∇df(v)v

〉

= {df, dh}+ (v). �

Proposition 5.11. Map π : TDs
µ → X

s
div is a Poisson map, i.e. for all f, h ∈ C1

r (X
s
div)

pointwise in TDs+1
µ (r, s > n/2 + 1)

{f ◦ π, h ◦ π} = {f, h}+ ◦ π.

Proof. Since π is the identity on X
s
div, the statement follows immediately from Theorem

5.8. �

Proposition 5.12. Let v ∈ TDr
µ and f, g ∈ C1(TDr

µ,R) are such that ∂f
∂v

(Ft(v)) ,
∂f
∂η

(Ft(v)),
∂g
∂v

(Ft(v)),
∂g
∂η

(Ft(v)) ∈ TDs
µ, r, s > n/2 + 1. Then

{f ◦ Ft, g ◦ Ft} (v) = {f, g} (Ft(v)).

In particular, Ft preserves C1
s (TD

r
µ) and for f, h ∈ K1,s pointwise in TDs+1

µ

{f ◦ π ◦ Ft, h ◦ π ◦ Ft} (v) = {f ◦ π, h ◦ π} (Ft(v)).

Proof. Without loss of generality r ≥ s. First, we notice that covariant partial deriva-
tives of f ◦ Ft, g ◦ Ft at v are elements of TDs

µ. Indeed,

∂

∂η
(g ◦ Ft)(v) · u =

〈
∂g

∂η
(Ft(v)), T τ̃

∂Ft
∂η

(v) · u

〉
+

〈
∂g

∂v
(Ft(v)), K̃

∂Ft
∂η

(v) · u

〉
.

There is a function g̃ ∈ K(TDs
µ) such that

∂g

∂v
(Ft(v)) =

∂g̃

∂v
(Ft(v)),

∂g

∂η
(Ft(v)) =

∂g̃

∂η
(Ft(v)).

Thus,
∂

∂η
(g ◦ Ft)(v) · u =

∂

∂η
(g̃ ◦ Ft)(v) · u.

However, by Proposition 4.8 g̃ ◦ Ft ∈ K(TDs
µ) for any g̃ ∈ K(TDs

µ), hence there is Zg ∈
C∞(TDs

µ, TD
s
µ) such that for all u,

∂

∂η
(g ◦ Ft)(v) · u =

∂

∂η
(g̃ ◦ Ft)(v) · u = 〈Zg(v), u〉 .

In a similar sense, one shows that ∂
∂v

(f ◦ Ft)(v) ∈ TDs
µ.

Thus, {f ◦ Ft, g ◦ Ft} (v) is well defined and depends only on values of ∂f
∂v
, ∂f
∂η
, ∂g
∂η
, ∂g
∂v

calculated at point Ft(v). However, {f, g} ◦ Ft(v) also depends only on values of covariant

partial derivatives at Ft(v). Then, we choose f̃ , g̃ ∈ K(TDs
µ) such that

∂f

∂v
(Ft(v)) =

∂f̃

∂v
(Ft(v))

∂f

∂η
(Ft(v)) =

∂f̃

∂η
(Ft(v)),

∂g

∂v
(Ft(v)) =

∂g̃

∂v
(Ft(v)),

∂g

∂η
(Ft(v)) =

∂g̃

∂η
(Ft(v)).
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The equality {
f̃ ◦ Ft, g̃ ◦ Ft

}
(v) =

{
f̃ , g̃

}
◦ Ft(v)

follows from Proposition 4.9. By the preceding arguments, the same holds if we replace f̃ , g̃
with f, g. This concludes the first part of the Proposition. The second part then follows. �

Theorem 5.13. The map F̃t is Poisson with respect to the bracket {·, ·}+.

Proof. Let f, h ∈ Kk,s. Then f ◦ π ∈ C1
s (X

s+1
div ). By Proposition 5.12.

f ◦ F̃t = f ◦ π ◦ Ft ∈ C1
s (X

s+1
div )

and we have pointwise in X
s+2
div :

{
f ◦ F̃t, h ◦ F̃t

}
+

(Theorem 5.8)

=
{
f ◦ F̃t ◦ π, h ◦ F̃t ◦ π

}
(Proposition 5.1 )

= {f ◦ π ◦ Ft, h ◦ π ◦ Ft} (Proposition 5.12)

= {f ◦ π, h ◦ π} ◦ Ft (Proposition 5.11)

= {f, h}+ ◦ π ◦ Ft = {f, h}+ ◦ F̃t. �

6. Conclusions

In the previous sections we successfully implemented a nonsmooth Lie-Poisson reduction
technique for the study of the Euler equations of ideal fluid flow. This enabled us to find a
precise sense in which the flow of Euler equation on the Lie algebra of divergence free vector
fields (parallel to the boundary of the fluid region) is a Hamiltonian system in the Poisson
sense and that the flow consists of Poisson maps, despite the fact that this flow is believed
(as maps from Hs to Hs) to be continuous, but not differentiable.

A key part of this process was to introduce a Poisson structure on the space of divergence
free vector fields. As one would expect from the bracket derived via a type of Lie-Poisson
reduction, this bracket is closely related to the formal Lie-Poisson bracket on the dual to
the Lie algebra of divergence free vector fields.

Even though we consider only Euler’s equation, the technique developed here is directly
applicable to several other important systems—those which can be written as an ODE on
groups of diffeomorphisms, such as the following:

(1) The Camassa-Holm (CH) equation on S1—see Camassa and Holm [1993]:

ut − utxx = −3uux + 2uxuxx + uuxxx.

(2) The averaged Euler equations (or the LAE-α equations)—see Holm, Marsden, and Ratiu
[1998a,b]:

∂t(1 − α2∆)u+ (u · ∇)(1 − α2∆)u− α2(∇u)T · ∆u = − gradp ,

where div u = 0 and u satisfies appropriate boundary conditions, such as the no-slip
conditions u = 0 on ∂M .

(3) The EPDiff equation (also called the averaged template matching equation) on a
compact manifoldM—see Holm and Marsden [2003] and Hirani, Marsden, and Arvo
[2001]:

ut − α2∆u+ u(div u) − α2(div u)∆u+ (u · ∇)u

− α2(u · ∇)∆u+ (Du)T · u− α2(Du)T · ∆u = 0,

with appropriate boundary conditions, such as the no-slip conditions u = 0 on
∂M . The EPDiff equations reduce to the CH equations in the case M = S1.
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These equations may be derived as the right reduction to the identity of the geodesic mo-
tion on the appropriate Lie group (see, for example, Camassa and Holm [1993] and Misiolek
[1998, 2002] for the case of the CH equations), and the preceding references for the other
equations. The crucial technical fact that enables our methods to work in both cases is the
smoothness of the spray on the Lie group. For the case of the CH equations and the LAE-α
equations on regions with no boundary, this is due to Shkoller [1998] and for regions with
boundary to Marsden, Ratiu, and Shkoller [2000]. For the case of the EPDiff equations, a
rather convincing plausibility argument is given Holm and Marsden [2003].

One important direction in which we would like to pursue these ideas is that of non-
smooth solutions. Even for the ideal Euler equations, this is interesting because of the
singular solutions, such as point vortices, vortex filaments and sheets. They clearly have
themselves an interesting Poisson structure, as was investigated by Marsden and Weinstein
[1983] and Langer and Perline [1991]. There are similar interesting singular solutions for the
EPDiff equations, whose geometry is investigated in Holm and Marsden [2003]. It would be
very interesting if, on the smaller spaces appropriate for these classes of singular solutions
that are introduced in these references, the smooth spray property still holds and, if that is
the case, whether or not one could then carry out the program in the present paper.

Another interesting direction for the present research is to the case of free boundary
problems, a notoriously difficult case for infinite dimensional Poisson structures, even at the
formal level (see Lewis, Marsden, Montgomery, and Ratiu [1986], Kruse, Marsden, and Scheurle
[1993], Kruse, Mahalov, and Marsden [1999] and Bering [2000].)
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